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Abstract

In this paper, we consider the problem of estimating the mean and standard
deviation of a normal population based on multiply Type-II censored samples. We first
describe the best linear unbiased estimators and the maximum likelihood estimators of
these parameters. Then by noting that the best linear unbiased estimators need the
construction of some tables for its coefficients and the maximum likelihood estimators do
not exist explicitly and that they need to be determined by numerical methods, we derive
approximate maximum likelihood estimators by appropriately approximating the
likelihood equations. These estimators, in addition to being explicit in nature, are shown
to be almost as efficient as the best linear unbiased estimators and the maximum
likelihood estimators. We derive the asymptotic variances and covariance of these
estimators. Finally, we present an example to illustrate the methods of estimation

discussed in this paper.



1. Introduction

For the normal distribution, the estimation of the mean x4 and standard deviation
o based on doubly Type-II censored samples has been considered by several authors for
the past forty years or so. By applying the theory of least—squares estimation based on
an ordered sample proposed by Lloyd (1952), Sarhan and Greenberg (1956, 1958, 1962)
tabulated the best linear unbiased estimators of y and o. Gupta (1952) derived best
linear unbiased estimators of x and o based on singly censored samples for small
sample sizes and proposed an alternative linear estimator for large sample sizes. Dixon
(1957, 1960) proposed simplified linear estimators of x and o based on complete and
censored samples which are nearly as efficient as the best linear unbiased estimators.
Saw (1959) also derived simplified linear unbiased estimators based on singly censored
samples for sample sizes up to twenty. Downton (1966) proposed linear unbiased
estimators with polynomial coefficients. Abe (1971a, b) also gave some simplified linear
estimators of 4 and o based on doubly censored samples.

Cohen (1950) discussed the maximum likelihood estimation of ; and ¢ based on
singly and doubly censored samples. He (1955, 1959, 1961) then extended these results;
but, his discussion is primarily concerned with Type-I censoring (censoring at a pre—fixed
time) instead of Type-II censoring (censoring fixed number of items). Gupta (1952)
presented likelihood equations for p and o based on singly Type-II censored samples
and the asymptotic variances and covariance of the maximum likelihood estimators.
Some asymptotic properties of these estimators were studied by Halperin (1952) and
Breakwell (1953). Plackett (1958) showed that the maximum likelihood estimators of u
and o are asymptotically linear and that the best linear unbiased estimators are
asymptotically normal and efficient. He also proposed a linearized maximum likelihood

estimator for ¢ and compared it with the best linear unbiased estimator based on



censored samples for small sample sizes. The bias and mean square error of the
maximum likelihood estimators of x and o based on singly and doubly Type-II
censored samples were studied extensively through Monte Carlo simulations by Isida and
Tagami (1959) and Harter and Moore (1966); see also Harter (1970). By modifying the
likelihood equations for 4 and o based on doubly Type-II censored samples, Tiku
(1967, 1980) derived the modified maximum likelihood estimators of x and o.

Recently, Balakrishnan (1989) derived approximate maximum likelihood estimators of
and o based on doubly Type-II censored samples by using a linear approximation in the
likelihood equations which lends itself to possible extensions. Most of these developments
are presented in the recent book on this topic by Balakrishnan and Cohen (1990). In this
paper, we consider the problem of estimating the mean p and standard deviation ¢ of
a normal population based on multiply Type-II censored samples.

Consider the normal distribution with probability density function

g(y; p, 0) = —4_;_ _(y_”)2/2”2, -~ <y<um, (1.1)

and cumulative distribution function G(y; g, o). Let us assume that the following

multiply Type-II censored sample from a sample of size n

2+1:n ¢ g Yr2+s2:n ¢ g Yrk+1:n ¢ g Yrk+sk:n

(1.2)

Y <. <Y <Y
r1+1.n r1+s1.n I

is available from the normal population in (1.1). That is, among the n items placed on

a life-test, the smallest I the largest L and in addition some middle life-times



are assumed to be not observed. In Section 2, we present the best linear unbiased
estimators of 4 and ¢ based on the above multiply Type-II censored sample in (1.2).
In Section 3, we discuss the maximum likelihood estimation of x and o based on the
above multiply Type-II censored sample. By noting that the maximum likelihood
estimators do not exist in an explicit algebraic form and that they need to be determined
by numerically solving the two likelihood equations, we approximate the likelihood
equations by making use of some linear approximations and derive in Section 4 the
approximate maximum likelihood estimators of p and o based on the multiply Type-II
censored sample in (1.2). These estimators are simple explicit estimators which turn out
to be almost as efficient as the best linear unbiased estimators and the maximum
likelihood estimators. In Section 5, we present the asymptotic variances and covariance
of the approximate maximum likelihood estimators of g and ¢ which work out in
terms of the first two single moments and the product moments of standard normal order
statistics. In Section 6, we present an example from a life-testing experiment using

which we illustrate the methods of estimation of parameters p and o discussed in this

paper.

2. Best Linear Unbiased Estimation
Let X, =(Y.,—-#/ o, i=1,2,.. n Let usdenote E(X;. ) by

2
o, E(X2 n) by al(n), Var(X,. ) by ﬂ“n, B(X;.p Xjp) bY o jn and

*
Cov(X.. , X_] 11) by ﬂx i Then, we 1mmed1ate1y have E(Y, )=p+ oa,

1:n’
Var(Y;. ) = 2 ﬂl i and Cov(Y ) = o? ﬂi i Let us further denote

1n’



T
== [Yr1+1:n Yr1+slzn Yr2+1:n Yr2+s2:n Y1'k+1:n Yrk+sk:n] !
* * * * * * T
a= [ar1+1:n ar1+slrn ar2+1:n ar2+s2:n ark+1:n ark+sk:n] ’
T
1=(11.... 1)k )
}13 5 x 1

*
= [[ﬂi,j:n]] for i,jeI where I = {r1+1,...,r1+s1,r2+1,...,r2+s2,...,rk+1,...,rk+sk},

?

and
0=g"

Then, the Best Linear Unbiased Estimators of x and o based on the multiply Type-II
censored sample in (1.2) may be derived by minimizing the generalized variance (see

David, 1981; Balakrishnan and Cohen, 1990) given by

[Y—p,l—aa]TQ[Y—;Ll—aa]. (2.1)

The best linear unbiased estimators of x and o obtained by minimizing the generalized

variance in (2.1) are given by



* aTQalTQ—aTQI aTQ
(@ 0”01 - (e an?-
=-a Ay
kK TitSj
=X 3 aY. (2.2)
i=1 jer,+1 J ¥
and
. {ITQIaTQ—lTQalTQ}
¢ === = = ver o 1y
(@ 2 a) (17 21) - (@ 2 1)¥ "
=114y
k ri+si
=3 3 bY, (2.3)

i=1 j=r.+1 !

(2.4)

=
0 e

* *
The variances and covariance of the estimators x and o (see David, 1981;

Balakrishnan and Cohen, 1990) are given by



() = o s 0 (25)
Var(p )= ¢ T , 2.5

(@ 0o (1721 -(a 1)’
() = o (26)
Var(c ) = o T , 2.6

(@ 0o (1" 21 - (o 21

and

(") =~ o Lk (2)
Cov(ip ,0 )=-0 “— . 2.7

(@ 001 21 -(a a1’

By using the values of means, variances and covariances of standard normal order
statistics tabulated by Tietjen, Kahaner and Beckman (1977) for sample sizes up to fifty,
we may determine the coefficients 3, and b f in Eqgs. (2.2) and (2.3) and also the
variances and covariance of the best linear unbiased estimators from Egs. (2.5), (2.6) and
(2.7), respectively. For sample sizes larger than fifty, we may determine these quantities
approximately by using approximate expressions of means, variances and covariances of
standard normal order statistics derived by David and Johnson’s (1954) method; see, for

example, David (1981) and Arnold and Balakrishnan (1989).

3. Maximum Likelihood Estimation
With X. = (Y, —#)/o, we have the likelihood function based on the multiply

Type-II censored sample in (1.2) to be



(7[5, ]}

¥ ] { [ I : ] [ — I — : ]}

TS g TSy

" 1—F[X ]} I o f[x.,], (3.1
{ T+ i=1 j=r1.+1 U P )

where f(x) denotes the standard normal density function, F(x) denotes the standard
normal cumulative distribution function, Iy =8y =0, and 1 41 =0 From (3.1), we

have the log-likelihood function to be

L= Const—Abo+r m{F[Xrl+1:n]}

k
+ 3 [r.—r. 8. ]m{F[x ,]—F[x ]}
. i -1 Y-l r+lmn I,_yt+s,_ym

1=

k ri+s-

1 b2
+(n—r-s)£n{1——F[X ]}- 5 5 x2
(3.2)
k
where A= % 5; is the size of the available multiply Type-II censored sample. From
i=1

Eq. (3.2), we obtain the likelihood equations for z and o to be



dfnl _ _ 1 f[Xf1+1:’1] X : [X‘ +1=“] : [Xri—1+si—1 “]
=—-=|r + ¥ |r-T., ,-s.
ou o [ 1 F|X . I =92 [1 i-1 1—1] le J F[X
1+l r+1lmn I,_qt+s;,_qm
f[er+sk:n] k Tits;
~(neR) Ty R +1 xj’n]
Iy +s 0 =L En
=0, (3.3)
and
f[x , ]
oenL _ _1[, X r;+1ln
do ~ ©o 1 r1+1:11F X
r1+1:n
k XIi+1:n f[ ri+1:n] Xr1 1+si 1n f [Xrl 1+s-_1 n]
j=g L1 i= F|X, ., - F[X N
r+l:n I,_qt+s;_4m
( ) f [er+sk:n] kK Tits 9
- (n-r,-s,) X i - X ) X5, ]
k k l'k+Sk.11 1 lerk+8k:nJ i=1 j___l.i_l_l J-n
=0. (3.4)

Egs. (3.3) and (3.4) do not admit explicit solutions. But, the maximum likelihood
estimates of 4 and o may be determined from Egs. (3.3) and (3.4) by solving them

using numerical methods.
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4. Approximate Maximum Likelihood Estimation

Let p; =i/(n+1), ¢=1-p;, and ¢ =F—1(pi); further, let
[
N f_xr1+1:n‘ (41)
X = 4.1
1[ r +1:n]
1 F Xr1+1:n‘
and
h [X ] f[xrk+8k:n] (42)
| = 2
2071 +sy 1 —

F[X _
rk+sk.n

By expanding the functions h, [Xrl 41 n] and h, [er +s,:n) in (4.1) and (4.2) around
the points ¢ and ¢ in Taylor series (see David (1981) or Arnold and
r1+1 I8

Balakrishnan (1989) for reasoning), respectively, we may then approximate them by

t [Xr1+1 n]

h[ 1+1n] m -f X r,+1:n (4.3)

and

h [X ] f[xrkﬂk:n] By X (44)
al = ~ a9 + - .
207 tsn 1 - le J % 2 T tsn
Ik+Sk
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where

oy =16 {1+ & ¥ & 106 ) /B g} By (49)
r1+1 r1+1 r1+1 r1+1 r;+1 r+0
2
ﬂl = f(§r1+1) {f(£r1+1) + pr1+1 £r1+1} / pr1+1’ (4.6)
2
&= f[grk+sk] {1 + Erk+sk B é'1'1{+sk f[Erk+sk] / qu+sk}/ qu+sk’ (4.7)
and
2

By = f[Erk+sk] {f[frk+sk] - qu+sk grk+sk} / qu+sk' (4.8)

From Egs. (4.6) and (4.8), it can be shown that both §; and B, are positive. For

example, we see easily from (4.6) that §; > 0 whenever pr1 412 1/2. Also when

prl_*_1 < 1/2, we have frl+1 < 0 and

£r1+1
e el = Ve e )l =6y |
£r1+1
< J —xf(x)dx=f[£r1+1]

o
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by realizing that f’(x) = — x f(x), and consequently £ > 0. Now let,

f [Xri+1 : n] (4.9)
k [x X ] 4.9
1™, (+s. 0 “r.+1:n [ J l J
i-1"%-1 i F|X . F|(X
ri+1.n ri_1+si_1 n
and
k,|X X f[xri‘1+si"1 : n] (4.10)
2[ . ,+s. r.+1:n] = l J l J ’
i-1"%-1 i FIX . -FIX )
ri+1.n ri_1+si_1.n
By expanding the functions k1 [xri—l w0 Xri +1: n] and k2 [Xri—l TERg Xri +1:n]

in (4.9) and (4.10) around the point [51'. ] in bivariate Taylor series,
i .

RRL WA

respectively, we may then approximate them by

ky [Xri_1+si_1:n’ Xri+1:n] *Yi t M xri_1+si_1:n ~ Yo Xri+1:n
(4.11)
and
ky [Xri_1+si_1:n’ Xri+1:n] . 60i + 61i Xri_1+si_1:n B 62i Xri+1:n’
(4.12)

where
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2
sl e ) ) B g
T L L L A S 413)

2
i T L R U e O ) SR e
2i 1,+1 r,+1 r+1("+l T +s / +l T g +s

(4.14)
Yoi = 25 Srd1 M 6 +f[€ ]/[p -D ] (4.15
0i 2 cr+1 L+ g r,+1 e S L T )
s = () s 6 PPy}
T R L e S L B e S X
[ " )
P -Pp ] , 4.16
Gl tsia
/ 2 (
5.=7.=f[§ ]f[f ] [p “p ] 417
2 1i 1184 r,+1 L+l U g+s 4 )
and
b = by €1 =6y & +1¢ ]/ [prp1-p I
01 "2 *r.+1 Ui br g +s; L1841 L+l s
(4.18)

It is readily seen from Eqgs. (4.13) and (4.17) that v;; = &), is positive. From Egs.
(4.14) and (4.16), it can be shown that both To; and Jli are positive. For example, we
see easily from (4.14) that 7y, > 0 whenever pri+1 > 1/2. Also when pl,i_i_1 < 1/2, we

have ¢ < 0 and
ri+1
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I§ri+1[1’ri+1 - pri_1+si_1] = |§ri+1{F[fri+1] - F[gri_1+si_1]}|

Eri+1
by | W

£
Latsia

¢
ri+1

¢ J — x f(x)dx = f[gri +1] - f[{ri_l +Si-1]
Efi—1+ §i-1

(4.19)

by using the fact that f’(x) = — x f(x), and consequently Tg; > 0. By making use of

the approximations in (4.11) and (4.12), we obtain

k[X X ] =k[X X _]—k[X X ]
L_yt5_ 0 Trntln 17y +s; 0’ Tr+ln 207r;_y+s;_ 40’ Tr+ln

f [X ] f [x ]
_ ri+1 n I,_y+s;_ 4
F[X . J le J
ri+1.n I,_yts_ym

* Moi ~ i xfi_1+S 1o ~ Tlgj Xri+1:n’ (4.20)

where
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Ty = Toi — O
f[ﬁri+1] { e e
- Ay L SV B RIS (A
Gl Uity
(4.21)
Mi =0~ My
f[e ]
e (R Y. (A
- [ 2 ri_1+si_1 ri+1
P..q1—DP ]
Gl T tia
-¢ [p -p ]}, (4.22)
1'i_1+si_1 ri+1 ri__1+si_1

and

Mg = Y1~ Ooi

=Ty € gy My € o) -6 ve JV[peri-2 4s )
2 °r;+1 L g +s 4 r,+1 L_1+8_4 L+l g +s

(4.23)

From Egs. (4.21) and (4.22), it can be shown that both Tg; and 7. are positive. For
example, we show below that Tlgg > 0. When Pry12 1/2, we have Er. 41> 0 and
i i
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5ri+1 [Pri+1 - pri_1+si_1] B §Ii+1 [F('ffi“) - F(gri—1+si—1)]

€
ri+1

= g J f(x) dx
Ti—1+5%

6ri+ 1
> J x f(x) dx = f[gri_l +si_1] - f[gri +1]

£
178

and consequently flo; > 0. Similarly, when Pry1 < % we have Er. 41 < 0 and
i i

I5ri+1[pri+1 - pri_1+si_1] | =- £ri+1 [F(5ri+1) - F(§ri_1+si_1)]

£I‘i+1
SRC TR B CL

n1t8

£
ri+1

< J _x f(x) dx = f[{ri +1] _ f[gri_l . si—l]

and consequently Mg; > 0- Proceeding similarly, it can also be shown that My > 0.
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Now, upon using the approximations in Eqs. (4.3), (4.4) and (4.20) into the

likelihood equation for g in (3.3), we obtain the approximate likelihood equation for u
to be

k TiTs

5% X, +(n—r—s)[ + 6, X ]

k
- i_§.2 t [n()i i Xri_1+si_1:n ~ Mgy Xri+1:n]

-0 [al - B Xr1+1:n] =0, (4.24)

which when solved for u yields the approximate maximum likelihood estimator of ux to
be

p=B-0C, (4.25)

where

k
A= 1% 55
i=1
k k
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k k

1
B=——{rﬂY "t 2 tn.Y .+ 2ty Y )
m{'171 “r;+lm 72, 0 L1180 joo 172 "r4+1lm

k Tits;
+ (n-1,-5,) B, Y ot I )Y Y-.},
k "k’ 72 etsen Loy j=ri+1 jn
and
1 k
c=1 {rlal + 3 - (n—rk—sk)az}. (4.26)

Next, upon using the approximations in Eqs. (4.3), (4.4), (4.11) and (4.12) into the

likelihood equation for ¢ in (3.4), we obtain the approximate likelihood equation for o«

to be
Atn X tin [al“ﬂ1 xr1+1:n]
k
+ i£2 Y X1'i+1:n [70i * N Xri_1+si_1:n ~ T Xri+1:n]
k
-3 X o [+ 0 X =% X 410)
j=9 1 T_yt§_;m 01 1i L_qts_ym 21 ri+1.n

k ri+s-

1
2
- (n-1r,—s, ) X ) [ + 6, X _]—2 P X<

=0, (4.27)
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which when solved for ¢ (simultaneously, by using the solution for u in (4.25)) yields

the approximate maximum likelihood estimator of o to be

~

o= {— D + (D2+4AE)Y/ 2} [2A, (4.28)

where

s. as before,

o
il
I g

1

k k
D=ra Y S+ Y ty. Y =X t. 6. Y .
"1 "+l 75571 08 T4+l 2o 1 701 T g +s; g

= (01,8, ) o4 Yrk+sk:n - mBC,

and

k

.+ X t.n.Y .
r;+lm 7 5o 1 T T 448 g

k
2 2
+ ¥ t.n,.Y )
j=9 1 2i ri+1.n

_ 2
E—rlﬂlY

k ri+si
2 +3¥ % Y

+ (n1,-8,) B, Y , ..
k "k’ "2 ntsen oy j=ri+1 jn

k
+ X

2
] - mB2
i=2

t. v .[Y w—Y .
172" r+lm 1y +s, gm
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k 2 2
+ Ity [Yri+1:n B B] t+ (o185 By [Yrk+sk:n B B]

i=2

k TitS; 2k 2
+3 3 [Y.,-B]+zt.7.[Y Y ]

i=1 j=r+1 jn j=9 1 1 {"r+ln I ts_m

(4.29)

It is important to mention here that upon solving Eq. (4.27) we obtain a quadratic
equation in o which has two roots; however, one of them becomes negative and hence

inadmissible since ﬂl, ﬂz, My Mo and 75 are all positive and consequently E > 0.

Remark 1: For the special case when sy =8, =..=§ =11 =1, I, =1+l, ..,
I = r+k-1 and 5 = n-1—5-k+1, then the available sample simply becomes a Type-II
+1:n’ Yr+2:n’ R
observations have been censored. In this case, the estimators x and o in Egs. (4.25)

censored sample YI ,Yn s’ where the smallest r and the largest s
and (4.28), respectively, simply reduce to the approximate maximum likelihood

estimators of y and o derived by Balakrishnan (1989).

Remark 2: For the special case when the available multiply Type-II censored sample in

(1.2) is symmetric (that is, if Y, = is available then so alsois Y

PN

n—i+1:n)’ it can be

shown from Eq. (4.26) that C = 0. As a result, the estimator x in (4.25) simply

becomes
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which is just a linear function of the available order statistics with equal weights for the
symmetric order statistics. Due to the symmetry of the standard normal distribution and
hence the relation E[Xi:n] - E[Xn_i +1:n] (see David (1981) or Arnold and
Balakrishnan (1989), for example), it is easy to show that the above estimator p is

unbiased for p.

5. Approximate Variances and Covariance of the Estimators
By using the linear approximations in (4.3), (4.4), (4.11), (4.12) and (4.20), we also

obtain from the likelihood equations for g and ¢ in Egs. (3.3) and (3.4) that

& tnL
E[_ _a—%—] * (5.1)
(2 g
32 mnlL m |
E[" _5/73?] *—7 Vo (5.2)
and
32 {nL m
E[_ Py ] “—3 Vo (5.3)
g o
where, as before,
m = 12 S + 1,8 + 122 t;my; + iiz t; Mo + (01,8, ) By, (5.4)

and
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\ 3{ B, a + 5 ¢ i + 5 ¢ i
= T o . N . : No: O .
1 " m{"171 "ry4+lim © 5o 1 Tl Ty 48, gm0 25 71 21 T+l

k Ir.+s.

* 1 1 *
+ (n—1,-8,) B, gt 2 ) } C, (5.5)
( k k) 2 s iy j=r. +1 _]n

and

k

3 *(2) o (2) *(2)
V. =—{ B, a + 2 t, 7 + E t, 5 a, )
2 m 1 r1+1n —9 2i r+1n =9 11+s 0

r.+s§.

k i1
*(2) o (2)

+ (1,5, ) B, @ + X )
k k) 2 nsem LTy _]—r 41 Jn

k *
-2 3% t. 7. a . }
j=9 1 1i ri_1+si_1,ri+1.n

9 * k *
T m {rlal ar1+1:n + iE—2 Y Yoi ari+1:n

*
Tilo t; 0o ari__1+si_1:n (n-1,8,) 0‘ T, 5,0 }

b—to
o =

B>

(5.6)

* *(2) * 9
In the above formulae, a;., i)’ and @; ., denote E(X; ), E(X] ) and
E(X th

), respectively, where Xi-n is the i order statistic in a sample of size n

irn Jn

from the standard normal distribution. From these expressions, we may compute
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Var(g) » % {%} (5.7)

Var(o) = % {—12} (5.8)

and

Cov(h, 0) = - & __12} (5.9)

see, for example, Kendall and Stuart (1973) or Rao (1975).

Approximate variances and covariance of the estimators ;z and :7 may be
computed from Egs. (5.7) — (5.9) either by directly using the tables of means, variances
and covariances of standard normal order statistics prepared by Tietjen, Kahaner and
Beckman (1977) for sample sizes up to fifty or by using approximations of means,
variances and covariances of standard normal order statistics presented by David (1981)
and Arnold and Balakrishnan (1989).

The asymptotic distribution of the estimators p and o is presented in the

following theorem.

Theorem 1: Asymptotically, 4 and o jointly have a bivariate normal distribution with

mean vector [ ’; ] and variance—covariance matrix

2 Vo =V
o
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where m, V; and V, areas given in Egs. (5.4), (5.5) and (5.6), respectively.
For a proof, one may refer to Kendall and Stuart (1973) or Rao (1975).

Remark 3: For the special case when the available multiply Type-1I censored sample in

(1.'2) is symmetric (that is, if Y, is available then so alsois Y ., ;. )» Dby using the
*

~ %41 - "

that V1 = 0. As a result, we have the estimators x4 and o to be uncorrelated in this

*
facts that a;. = and C =0, it can be very easily shown from Eq. (5.5)

case. Furthermore, we obtain from Egs. (5.7) and (5.8) that

2

~ ~ 2
Var(p) » a_m_ and Var(o) » E%E'

6. Tllustrative Example

Let us consider the following data on lifetimes (in hours) of 20 electronic units that

were placed on a test:

-, -, 128.887, 132.585, 133.196, 140.734, 141.816,
146.864,  148.350, -, — , 154671, 159.188, 163.117,
166.252,  166.770, 172.017,  174.744, -, -

The first two units failed before the measurement started, the central two observations
are censored as the failure times of those two units were not recorded due to experimental
problems, and the experiment was stopped as soon as the eighteenth unit failed resulting
in the censoring of the last two observations.

By assuming that the above given multiply Type-II censored sample has come from
a normal N(g, 02) population, we shall estimate the unknown parameters g and o

and also construct approximate confidence intervals for them.
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For the approximate maximum likelihood estimation developed in this paper, we

have:

n = 20,

r1=2, s1=7, r2=11, s2=7,
t2=2,
A=s1+s2=14,

i Py Ei f( 51)
3 0.1429 — 1.0676 0.2256
9 - 0.4286 —0.1800 0.3925
12 0.5714 0.1800 0.3925
18 0.8571 1.0676 0.2256

_ 0.2256 2 0.2256) | _
@ = 51499 {1 + (- 1.0676)“ — 1.0676 [m]} = 0.7172,

0.2256
ﬂl =——3 {0.2256 - 1.0676(0.1429)} = 0.8069,

(0.1429)

0.2256 0.2256
= 2256 {1 + (1.0676)2 — 1.0676 [m]} = 0.7172,

0.2256 {0.2256 - 1.0676(0.1429)} = 0.8069,

27 (0.1429)
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Mg = (0.3925)2/(0.5714 — 0.4286)% = 7.5548,

Yy = —2392___, {0.3925 + 0.1800(0.5714 — 0.4286)} = 8.0495,
(0.5714 — 0.4286)

Ypg = 8.0495 (0.1800) + 7.5548 (0.1800) + 1 0.3925 o5 = 5-5574,

bq = 03920 {0.3925 + 0.1800 (0.5714—0.4286)} — 8.0495,
(0.5714 — 0.4286)

by = 119 = 15548,

6y = 7.5548 (0.1800) + 8.0495 (0.1800) + g 0.8925 o5 = 55574,

flgg = gy — yg = 8.0495 — 7.5548 = 0.4947,

Mg = b1 — Typ = 8.0495 — 7.5548 = 0.4947,

Moy = Tog — Ogg = 55574 - 5.5574 = 0,

m = 2(0.8069) + 2(0.4947 + 0.4947) + 2(0.8069) + 14 = 19.2064,

B = 2918.9997/19.2064 = 151.9806,

C = {1.4344 — 1.4344} [ 19.2064 = 0,

D = 4.4794,

E = 5377.4058,
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and hence

o= {- D + (D2 + 4AE)!/ 2} / 2A = 19.4392
and

4=B-oC =B = 151.9806.

Also, from Eqs. (5.5) and (5.6) we have

V,=0 and V2 = 1.5945

1

so that we have the approximate standard errors of the estimates ;I, and :7 to be
SE() = o/ [T = 19.4302/(19.2064)'/% = 4.4356

and

SE(2) = o/(mV,)/? = 19.4392/(19.2064 x 1.5945)1/2 = 3.5127

By using the asymptotic normality of the estimators u and o (see Theorem 1), we now

obtain 95% confidence intervals for x and o to be

[151.9806 — 1.96 (4.4356), 151.9806 + 1.96 (4.4356)] = [143.2868, 160.6744]
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and
[19.4392 — 1.96 (3.5127), 19.4392 + 1.96 (3.5127)] = [12.5543, 26.3241],
respectively.

By using the results presented in Section 2 and making use of the tables of means,
variances and covariances of normal order statistics prepared by Tietjen, Kahaner and

Beckman (1977), we find the best linear unbiased estimates of 4 and o to be

4 = 0.1374 (128.887) + 0.0517 (132.585) + 0.0518 (133.196) + 0.0519 (140.734)
+ 0.0519 (141.816) + 0.0520 (146.864) + 0.1033 (148.350) + 0.1033 (154.671)
+ 0.0520 (159.188) + 0.0519 (163.117) + 0.0519 (166.252) + 0.0518 (166.770)
+ 0.0517 (172.017) + 0.1374 (174.744)
= 151.9804

and

o = —0.3025 (128.887) — 0.0694 (132.585) — 0.0563 (133.196) — 0.0446 (140.734)
— 0.0339 (141.816) — 0.0239 (146.864) — 0.0157 (148.350) + 0.0157 (154.671)
+ 0.0239 (159.188) + 0.0339 (163.117) + 0.0446 (166.252) + 0.0563 (166.770)
+ 0.0694 (172.017) + 0.3025 (174.744)
= 20.7525

* *
and the standard errors of the estimates x4 and o to be
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1/2

* * 1/2
SE(x ) = o (0.0520)"/“ = 20.7525 (0.0520)"/“ = 4.7323

and

1/2 _ 4 0454,

* *
SE(c') = o (0.0380)/2 = 20.7525 (0.0380)
Making use of the asymptotic normality of the best linear unbiased estimators (since they
are linear functions of order statistics), we obtain approximate 95% confidence intervals

for 4 and o to be
[151.9804 — 1.96(4.7323), 151.9804 + 1.96(4.7323)] = [142.7051, 161.2557]

and

[20.7525 — 1.96(4.0454), 20.7525 + 1.96(4.0454)] = [12.8235, 28.6815],

respectively.

Upon comparing the results based on the two methods, we observe that the best
linear unbiased estimates of ;4 and o are numerically close to the approximate
maximum likelihood estimates of px and o¢. But, the best linear unbiased estimates
have slightly larger standard errors than the corresponding approximate maximum
likelihood estimates and, consequently, the confidence intervals based on the best linear
unbiased estimates turn out to be slightly wider than the corresponding confidence

intervals based on the approximate maximum likelihood estimates.
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