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Abstract

In this paper, we discuss the problem of estimating the mean and standard deviation of a
logistic population based on multiply Type—II censored samples. First, we discuss the
best linear unbiased estimation and the maximum likelihood estimation methods. Next,
by appropriately approximating the likelihood equations we derive approximate maximum
likelihood estimators for the two parameters and show that these estimators are quite
useful as they do not need the construction of any special tables (as required for the best
linear unbiased estimators) and are explicit estimators (unlike the maximum likelihood

estimators which need to be determined by numerical methods). We show that these



estimators are also quite efficient, and derive the asymptotic variances and covariance of
the estimators. Finally, we present an example to illustrate the methods of estimation

discussed in this paper.

1. Introduction

Order statistics from the logistic distribution and their moments were first examined by
Birnbaum and Dudman (1963). They tabulated the means and standard deviations of
logistic order statistics for some selected sample sizes. Gupta and Shah (1965) and Tarter
and Clark (1965) studied the distribution of order statistics and the sample range and
derived explicit exact expressions for the first four moments of order statistics in terms of
gamma function and its derivatives. Variances and covariances of order statistics were
tabulated by Gupta, Qureishi and Shah (1967). Shah (1966, 1970) established some
recurrence relations satisfied by the single and the product moments of order statistics
which would enable one to compute these moments for all sample sizes in a simple
recursive manner. After Kjelsberg (1962) pointed out various applications of the
truncated logistic distribution, Tarter (1966) studied order statistics from the truncated
logistic distribution and derived exact explicit expressions for the means, variances and
covariances of order statistics in terms of a finite series involving logarithms and
dilogarithms of the constants of truncation. By proceeding on the lines of Shah (1966,
1970), Balakrishnan and Joshi (1983) and Balakrishnan and Kocherlakota (1986) derived
several recurrence relations satisfied by the single and the product moments of order
statistics from a general truncated logistic distribution. All these developments have

been reviewed in a recent article by Gupta and Balakrishnan (1991).

The best linear unbiased estimation of the mean y and standard deviation ¢ based on
doubly Type-II censored samples was discussed by Gupta, Qureishi and Shah (1967) who

have also set up the necessary tables for some selected sample sizes up to 25 and for some



selected choices of censoring. Raghunandanan and Srinivasan (1970) proposed some
simple estimators of 4 and o based on a search made on some specific linear functions of
order statistics and set up the necessary tables for sample sizes up to 20. The maximum
likelihood estimation of u and o based on doubly Type-II censored samples was studied
by Harter and Moore (1967). They examined the bias and mean square error of the
estimators through Monte Carlo simulations for sample sizes 10 and 20 and over various
choices of censoring; see also Harter (1970). Tiku (1968) derived the modified maximum
likelihood estimators of 1 and o based on doubly Type-II censored samples.
Furthermore, the estimation of the parameters g and ¢ based on selected order statistics
was considered by several authors including Gupta and Gnanadesikan (1966), Chan
(1969), Hassanein (1969), Chan, Chan and Mead (1971), Chan and Cheng (1972, 1974),
and Beyer, Moore and Harter (1976). Many of these developments have been presented
in the recent books by Balakrishnan and Cohen (1990) and Balakrishnan (1991b). In this
paper, we consider the problem of estimating the mean x and standard deviation o of a

logistic population based on multiply Type-II censored samples.

Consider the logistic distribution with probability density function

T exp{—r(y—ﬂ)/aﬁ} ™ - < y < ®, (1.1)
o3 [1+exp{-n(y-x)/ov3}]
and cumulative distribution function
G(y; o) =1 + exp{—w(y—u)/aﬁ}]_l, 0 <y<o. (1.2)

Let us assume that the following multiply Type-II censored sample from a sample of

g(y; 1, 0) =

size n

1+1:n €. g Yrl+s1:n ¢ Yr2+1:n €. g Yr2+s2:n $.- g Yrk+1:n €. g Yrk+sk:n

(1.3)

is available from the logistic population in (1.1). Here, it is assumed that among the n

YI'

items placed on a life-testing experiment, the smallest I the largest n — Ty~ s and in

addition some middle life-times are not observed. In Section 2, we first present the best



linear unbiased estimators of x4 and o based on the multiply censored sample in (1.3).
The maximum likelihood estimation of x and ¢ based on the multiply censored sample in
(1.3) is discussed in Section 3. We note that these maximum likelihood estimators do not
exist in an explicit algebraic form and need to be determined by numerically solving the
two likelihood equations. In Section 4, by appropriately approximating the likelihood
equations by making use of some linear approximations, we derive the approximate
maximum likelihood estimators of x and o based on the multiply Type-II censored
sample in (1.3). These estimators, in addition to being simple and explicit, are nearly as
efficient as the best linear unbiased estimators and the maximum likelihood estimators.
We derive the asymptotic variances and covariance of these approximate maximum
likelihood estimators in Section 5. Finally, in Section 6 we present an example from a
life-testing experiment and illustrate the methods of estimation of ; and ¢ discussed in
this paper. It should be mentioned here that similar work for the normal distribution has

been carried out recently by Balakrishnan, Gupta and Panchapakesan (1991).

2. Best Linear Unbiased Estimation

Let Xi- = 1r[Y - u] [o¥8,1i=1,2,..n. Then, Xi-n are order statistics from the

standard logistic population with probability density function

fx)=eX/(1+e%)? w<x<o, (2.1)
and cumulative distribution function

F(x) = 1/(1 + ¢ ), < X< w. (2.2)

*(2)
Lit us denote E(X;. ) by of, - E(X o) by @t/ Var(X,. ) by ﬂl im? E(X,., Jn) by
% in and Cov(Xl - ., ) by ﬁi S We then immediately have
_ _ 23 *
E(Y, ) =4+ aﬁ O VaK(Yig) = 0" 2 ;1 amd
*
Cov(Y1 Il,Y ) = o2 ﬂi 5’ Further, let us denote
B T

Y= [Yr1+1:n Yr1+s1:n Yr2+1:n Yr2+s2:n Yrk+1:n Yrk+sk:n] !



* * * * * * T
g= [O‘r1+1:n ar1+s1:n ar2+1:n ar2+s2:n ark+1:n ark+sk:n] ’
T
l=111...... 1] )
k
) s5;x1

([ *
8= _[ﬂi,j:n]] fori,j eI wherel = {rl + Loty + 81, Iy + 1yTy + 5o,

ol + Loy + sk}, and Q = g‘l.

Then, the Best Linear Unbiased Estimators of 4 and o based on the multiply Type-II
censored sample in (1.3) may be derived by minimizing the generalized variance (see
David, 1981; Balakrishnan and Cohen, 1990) given by
T
[X—u},—oﬁﬂg] Q[X—u;—aég]. (2.3)
The best linear unbiased estimators of 4 nd o obtained by minimizing the generalized

variance in (2.3) are given by

* {aTleTQ—a 0

po= Y
Teoaten - (e gy

0
2 Y

;R

(
=~ ¢

and

=% X bV, (2.5)

k

where A is a skew—symmetric matrix of order X s, given by
i=1

(2.6)




* *
The variances and covariance of the estimators 4 and ¢ (David, 1981; Balakrishnan and

Cohen, 1990) are given by

9 o' Qo
Yl =< {eT 00 LT QD-(g 21 ] 0
N 1T g1
R {mT 00T oD -G o } .
and
T
Coviy', o) =- 1 02{ T g ke i p— ] (2.9)
09 2 D-( 91

By using the values of means, variances and covariances of logistic order statistics
tabulated by Gupta, Qureishi and Shah (1967) for sample sizes up to twenty five and
more recently by Balakrishnan and Malik (1991) for sample sizes up to fifty, we may
determine the coefficients 3 and b § in Eqgs. (2.4) and (2.5) and also the variances and
covariance of the best linear unbiased estimators from Egs. (2.7), (2.8) and (2.9),
respectively. For sample sizes larger than fifty, we may determine these coefficients and
the variances and the covariance of the estimators approximately upon using approximate
expressions of means, variances and covariances of logistic order statistics obtained by
David and Johnson’s (1954) method; for details, refer to David (1981) and Arnold and
Balakrishnan (1989).

3. Maximum Likelihood Estimation

With X, = «(Y;. — #)o//3, we have the likelihood function based on the multiply

Type-II censored sample in (1.3) to be



k
¥ s. T

Rl o R LAY |
= I r,+1ln
UL T T 1

k ii-1 %i-1
* il=12 {F [Xri+1:n] B F[Xri_1+si l'n]}
I, +s
* {I_F[ka'*'sk:n]} ]_[ ] I [ ] (3:1)
i=1 j—l‘ +1

where f(x) and F(x) are the density function and the cumulative distribution function of
the standard logistic population as given in Eqgs. (2.1) and (2.2), respectively, and
I, =8,= 0 and Teyq =1 From Eq. (3.1), we have the log-likelihood function to be

bL=Cost-Amo+r b {F(Xr +1n)}

+ 22t tn{ [ +1:n] _F[xri_1+si_1:n]}

one-nd e, )

k Tit8j k Titsi
+3% 3 zn{F[x.,n]}+ T3 en{1—F[x._n]} (3.2)
i=1 j=r +1 F i=1 j=r,+1 J

k
upon using the fact that f(x) = F(x) (1 - F(x)), where A = ¥ s; is the size of the
i=1
available multiply Type-II censored sample and t=n-1_,- 51 fori = 2,...k. From

Eq. (3.2), we obtain the likelihood equations for x and & to be

B e G Lk P | S LR AT C N
ou o3 o 1 Fxr1+1:n =T =5 F s
k ri+si
+3 3 {1—2F[X._n]}
i=1 j=r.+1 ¥
k f(Xr +1:n) - f(Xr- 115 l:n)
+ 2 t{ xl— - }]
i=2 F(Xr +1:n) - ¥ ri_1+si__1:n)

=0, (3.3)



and

0MmL _ 1
g~ E[A Tt Xr1+1:n{1 - F[Xr1+1:n]}

B [n kT sk] er+sk:n F [er+sk:n]
k ri+si

+3% % X {1—2 F[x., ]}
i=1 j=r+1 Jn jn
k Xr.+1:n f(Xr.+1 :n) - Xr. 1+s. 1: f(Xr. 1+s. 1;11)
+ 3 ti{ i F(Xl = Fz—i i—1:n )1— i- }]
i=2 ri+1:n ri_1+si_1:n
= 0. (3.49)

Eqgs. (3.3) and (3.4) do not admit explicit solutions even though f(.) and F(.) are simple
explicit functions. But, the maximum likelihood estimates of 4 and ¢ may be determined

by numerically solving Eqgs. (3.3) and (3.4).

4. Approximate Maximum Likelihood Estimation

Let p;, = i/(n+1), ¢ =1-p,;,and § = F_l(pi) =t (pi/qi). Then, by expanding the
function F(X;. ) around the point { in Taylor series (see David (1981) or Arnold and

Balakrishnan (1989) for reasoning), we may approximate it by

F(X) 2 o + B X, (4.1)

where

o = F(§) - §H(§) = Pi{1 g ‘“[Pi/ qi]} (4.2)
and

'Bi = f(é‘i) =P q > 0. (4°3)
Now, let

f(Xri+1:n)
by [Xri_1+si_1:n’ Xri+1:n] = Xt - PO e ) (4.4)

and



hy X X, +1:0) i Eha (45)
By expanding the functions h [X - X . ] and h [X o X . ]
1"t y+s;_y0’ “r+1m 207 _yts;,_ 0’ r+ln

in (4.4) and (4.5) around the point [Er. ] in bivariate Taylor series,
i

atsig’ Gt
respectively, we may then approximate them by

*
by [Xri_1+si_1:n’ Xri+1:n] = 6i + Xri_1+si_1:n B [7i + ﬂri+1] Xri+1:n

(4.6)
and
hy|X Xy 1) 20+ %+ A Jx X
q? . 2o % g .
207 g8, 0 Tr4lin i i L t8 1) g ts g 1T+l
(4.7)
where
2
% =D ;14 o .q /[p -p ] > 0, (4.8)
I T AN R WL
L3 ﬂ pri+1 /
Al 75 o )
i r.+1 qri +1 L+l r 48 4
Pr 41 Pr. 4s,
+afalg ) -alg ) (49
5+l G185
and
Y
% T8
A O A Rl oo |
R T T R R LU . ts.
i-1""i-1
pr-+1 Pr. +s,
+ oyl -l (4.10)
T+l G178
By making use of the approximations in (4.6) and (4.7), we obtain
8%, yo o X grm) =1 [X w0 X 1) ~Bg[X X 4 1)
I+s, 0’ T4+l 17t 48, 4’ “r+1lm 20 _y+8;,_ g0’ Tr+ln
f(Xri+1:n) - f(Xri_1+si_1:n)
B F(Xri+1:n) - F(Xri_1+si_1:n)
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2 4 - ﬂri_1+si_1 Xri_1+si_1:n - ﬂri+1 Xri+1:n’
(4.11)
where f, is as given in Eq. (4.3) and
¥ kk
pri+1
= 1/ [p -p ] + fn [
ri+1{ L+l T g +s 4 qri +1
I._+s;
=1 " "i-1
-B {1/[ ] - tn[-—i——] } (4.12)
g U Pl " P gt s g+

Now, upon using the approximations in Egs. (4.1) and (4.11) into the likelihood equation
for p in (8.3), we obtain the approximate likelihood equation for x to be

r1{1 B ar1+1 B ﬂr1+1 Xr1+1:n} B [n kT sk] {ark+sk + ﬂrk+sk er+sk:n}
k Tits;
+32 3 f1-20-28% }
i=1 j=r1 +1 I
k

+ 2:2 4 {61 'B i—1+si—1 Xri_1+si_1:n - ﬂri+1xri+1:n} =0, (4'13)
which when solved for u yields the approximate maximum likelihood estimator
of u to be

L=—B- ¥3
p=B —0C, (4.14)
where
t=ri—r11 5, 1) i=23,..k,
k
A= 1% 8.5
i=1
k 1‘.+s.
m =18 +[n—-r s]ﬂ +2 3 D)
1"r +1 k “k I 8y i=1 _]—r+1 j
k k
+_2 t. B + 2 t, ﬂ
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_ 1
B=m { 4 1+1 r,+Ll:n + [n Tk T sk] ﬂrk+sk Yrk+sk:n

kK TitSi k
+2 X ¥ B.Y. + E tﬂ Y .
i=1 j=rg+1 3O i=p Ui it
k
+ Ezt '3 r+1n}
and
_1
C—E{A+r1—r1 a +1—(n—rk—sk) @ s
1 k™ 5k
k Titsj k
_2 % % a+2t6} (4.15)
i=1 j=r +1 J 2

Next, upon using the approximations in Eqgs. (4.1), (4.6) and (4.7) into the likelihood
equation for ¢ in (3.4), we obtain the approximate likelihood equation for o to be

Atr Xr1+1:n {1 - ar1+1 - ﬂr1+1 Xr1+1:n}

- [n Tk T sk] Xrk+sk:n ‘{ark+sk + ﬂrk+serk+sk:n}

T. .
1+sl

k
+3 % X {1-2a ~ 926, X, }
i=1 j= r+1 Jn J

k
+ E Y xr +1: n{ﬁi % Xr._1+si_1:n - [7i + ﬂri+1] Xri+1:n}

MW‘

-2 X ,{6 +[7+ﬂ ]X D Sy
i=2 1 Tt B R L B e
=0, (4.16)
which when solved for ¢ (simultaneously, by using the solution for x in (4.14)) yields the
approximate maximum likelihood estimator of o to be

7[-D + (D2 + 4AE)1/2}

PN

o=1T { , (4.17)
V3 2A
where
k
A= % 8; as before,
i=1

D

gl [1 B ar1+1] Yr1+1:n B [n kT sk] ark+sk Yrk+sk:n
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k TitS k
+3 3 [1—2a]Y + 3 46 Y
i=1 j=r+1 ) R ) r,+1ln
5 ity BC
29 4 9 ,+s_qin mEb,
and
0 k ri+si
2 2
E=r,0 Y ) +[n—r —s]ﬂ Y ~+23Y X B. Y.
1"ry+1 “ry+1lm k 7k I+ 8 Iptsn i=1 j=ri+1 j jm
k 2 X 2
+ 3%t 4 + 3 46, Y .
j=9 1 ri+1 r+1n i=9 1181 TS
+ 12( t. 'y[Y ]2—mB2
—9 r.+1ln "~ I,_;t84m
2 2
= rlﬂr1+1 [Yr1+1:n B B] + [n Tk —sk] ﬂrk+sk[Yrk+sk:n B B]
k 5t 2 2
+23% % ﬁ.[Y.. —B] +2 4By [ B]
i=1 j=ri+1 JU Jn I, +1ln
k 2 k 2
+ 3 48 [Y ,-—B]+2t'y[Y _Y ]
i=2 1 T8 UGt i= Hlin o T gs g
(4.18)

It should be mentioned here that upon solving Eq. (4.16) we obtain a quadratic equation
in ¢ which has two roots; however, one of them is negative and hence inadmissible since
both ﬂi and Y, are positive and consequently E > 0.

Remark 1: For the special case when §) =8y = .. =58 4 = 1, =1, =1+ 1,...,
I, =I+k-lands =n-r1-s-k+ 1, then the available sample in (1.3) simply

<Y

r+l:n = “r42: n ¢
and the largest s observations have been censored. In this case, the estimators ,u and oin

becomes a Type-II censored sample Y . < Y . where the smallest r

Eqs. (4.14) and (4.17), respectively, simply reduce to the approximate maximum
likelihood estimators of x4 and o derived by Balakrishnan (1991a).

Remark 2: For the special case when the available multiply Type-II censored sample in
it

(1.3) is symmetric (that is, if Y;. is available in the sample then so alsois Y . +1:n)’
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can be shown from Eq. (4.15) that C = 0. As a result, the estimator ;tin (4.14) simply
becomes

L=B
which is a linear function of the available order statistics with equal weights for the
symmetric order statistics. Due to the symmetry of the logistic density function in (2.1)

and hence the relation E(X,. ) = -E [X (see David (1981) or Arnold and

n—i+1:n]
Balakrishnan (1989)), it may be easily shown that the above estimator 4 is an unbiased

estimator of u.

5. Approximate Variances and Covariance of the Estimators

By using the linear approximations in (4.1), (4.6), (4.7) and (4.11), we also obtain from
the likelihood equations for x and o in Egs. (3.3) and (3.4) that

2
E[— & 2 L] ~RT (5.1)
i/ 3o
& L s
E[‘ 3 0o ] T Vi (5.2)
and
& L L m
E[— _(.9_2_] v, (5.3)
o o
where, as before,
kK Tits;
m=r,0 +[n—r —s]ﬂ +2 X z B.
1" +1 k "k I 8y i=1 j=ri+1
k k (5.0
+ X t.8 + X t.6 .4, 5.4
i=2 1ty gmp 1T
2 * *
V= ﬁ{rl 'Br1+1 ar1+1:n + [n "k T sk] ﬂrk+sk ark+sk:n
k Tits . k .
+2 % ) B.a._ + % t. 06 a )
k *
+ i£2 t ﬂri+1 C"1‘i+1:n} -C, (5.5)

and
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r-+s.
3 +(2) «(2) k +(2)
v =—{ [ 1 - ] 2% %
2 m |11 ﬂr1+1 ar1+1:n R s ﬂrk+sk ark+sk:n + i=1 j=r+1 ﬂJ j:n
+l§tﬂ (2)+]§tﬂ 2
i=9 o +1n =9 151 ri_1+si_1:n
N 15 " [ *(2) 4 (2) 5 o *
o i o )
imp 1 AL :11‘ it e r+lm
2
—E{ (1~ r1+1) O’r1+1:n"(11 —I —8) @ T H8y rk+sk:n
k 5t ( ) * 1{: 5* * 1}5 ¥k
+ ¥ X 1-2a)a..  + t. 6. a - t. 6. a }
i=1 j=ri+1 Voim Dy 1 ri+1.n j=9 171 Tr,_4+s, i
A
A (5.6)
(2)

* %k
In the above equations, like in Section 2 Q.00 @0 and a; jin denote the first and second

I3 B

single moments and the product moments, respectively, 'of order statistics from the

standard logistic distribution in (2.2). From these formulae, we may compute

N 2 V.

3 o 2
Var(u) ~ }, (5.7)

A {Vz-vf
Var(;):ai { 1 2}, (5.8)

Vo Vi
and
0' .
2 "1

refer to Kendall and Stuart (1973) or Rao (1975).

The approximate variances and covariance of the estimators ;l, and :7 can be determined
from Eqgs. (5.7) — (5.9) either by directly using the tables of means, variances and
covariances of logistic order statistics prepared by Balakrishnan and Malik (1991) for
sample sizes up to fifty or by using approximate expressions of means, variances and

covariances of logistic order statistics presented by Arnold and Balakrishnan (1989).
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The asymptotic distribution of the estimators ;l, and :ris given in the following theorem;
for a proof, refer to Kendall and Stuart (1973) or Rao (1975).

Theorem 1: Asymptotically, the approximate maximum likelihood estimators ;z and :7
jointly have a bivariate normal distribution with mean vector [’;] and

variance—covariance matrix

vV, -Tv
302 2 ‘/3- 1
2[ 2J 2 ’
ma |Va—V - T
2 "1 (- V1 T—

where m, V, and V, are as given in Egs. (5.4), (5.5) and (5.6), respectively.
Remark 3: For the special case when the available multiply Type-II censored sample in

*
(1.3) is symmetric, by using the facts that a; = and C = 0 as noted earlier

n= " %41

in Remark 2, it can be very easily shown from Eq. (5.5) that VvV, =0. Hence, we have

the estimators # and o to be uncorrelated in this case. Also, we have from Egs. (5.7) and

(5.8) that
N 3 02 N o 2
Va,r[u] ] and Va,r[a] Y v
ma 2

6. Tllustrative Example

Let us consider the following lifetime data of 20 electronic units given by Balakrishnan,
Gupta and Panchapakesan (1991):

—, ——, 128.887, 132.585, 133.196, 140.734, 141.816, 146.864, 148.350, —, —, 154.671,
159.188, 163.117, 166.252, 166.770, 172.017, 174.744, —, —

Out of the 20 units placed on test, the first two units failed before the measurement
started resulting in the censoring of the first two observations, two central observations
are censored as the failure times of those two units were not recorded due to e:éperimental
difficulties, and the experiment was stopped immediately after the failure of the

eighteenth unit resulting in the censoring of the last two observations.
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We shall now assume that the above given multiply Type-II censored sample has come
from a logistic distribution in (1.2) and estimate the unknown mean p and the unknown
standard deviation ¢ and also construct approximate confidence intervals for both these

parameters.

For the approximate maximum likelihood estimation developed in this paper, we have:

i Py 9 % A 1-20
3 0.1429  0.8571 0.3623 0.1225  0.2754
4 0.1905  0.8095 0.4136 01542  0.1728
5 02381  0.7619 0.4491 01814  0.1018
6 02857  0.7143 0.4727 02041  0.0546
7 03333  0.6667 0.4874 02222 0.0252
8 0.3810  0.6190 0.4955 0.2358  0.0090
9 04286  0.5714 0.4990 02449  0.0020
10 0.4762  0.5238 0.5000 02494 0

11 05238  0.4762 0.5000 02494 0

19 05714 04286 0.5010 02449  ~0.0020
13 0.6100  0.3810 0.5045 0.2358  —0.0090
14 0.6667  0.3333 0.5126 02202  —0.0252
15 07143  0.2857 0.5273 02041  -0.0546
16 0.7619  0.2381 0.5509 0.1814  -0.1018
17 0.8095  0.1905 0.5864 01542  -0.1728
18 0.8571  0.1429 0.6377 0.1225  —0.2754

n = 20,

= ,s1=7,r2=11,s2=7,

ty =2,

A=sl+s2=14,

2
Ty = [0.4286 x 05T, 0419

* 0.5714 1 0.5714) 0.4286]
b = 0.2449 {tu[m T . } + 2.9412 {zn [ ‘5“‘0‘.57‘11}

= 3.4770,

ko 1 0.5714 (0.5714) [0.4286]
by = 0.2449 {m‘ ‘“[m]} + 2-9412{‘11 0-4285) ~ & |05712 }

= 3.4770,
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*x
by=10y-6, =0,

m = 6.93,
B = 1053.5435/6.93 = 152.0265,

C=0,

D = -39.4441,

E = 1490.0910,

and hence

. 2 1/2

o= T {‘ D + gR +4AE)"/ } = 21.4413
V3

and

up=B-Y35C =B = 152.025.
Also, from Egs. (5.5) and (5.6) we have

V, =0and V2 = 4.21153

1
so that we have the approximate standard errors of the estimates u and o to be

~

SE(u) = £ 72 = 4.4905

and

~

SE(0) = W = 3.9688.

By applying the asymptotic normality of the estimators ;L and o (see Theorem 1), we get
approximate 95% confidence intervals for x4 and o to be

[152.0265 — 1.96(4.4905), 152.0265 + 1.96(4.4905)] = [143.2251, 160.8279] and

[21.4413 — 1.96(3.9688), 21.4413 + 1.96(3.9688)] = [13.6625, 29.2201], respectively.

By using the results presented in Section 2 and the tables of means, variances and
covariances of logistic order statistics prepared recently by Balakrishnan and Malik

(1991), we find the best linear unbiased estimates of 4 and ¢ to be
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*

p = 0.0581(128.887) + 0.0431(132.585) + 0.0524(133.196) + 0.0602(140.734)
+ 0.0664(141.816) + 0.0711(146.864) + 0.1488 148.3503 + 0.1488(154.671
+ 0.0711(159.188) + 0.0664(163.117) + 0.0602(166.252) + 0.0524(166.770
+ 0.0431(172.017) + 0.0581(174.744
= 152.0655
and

*
o = —0.2741(128.887) — 0.0899(132.585) — 0.0808(133.196) — 0.0691(140.734
— 0.0555(141.816) — 0.0406(146.864) — 0.0274(148.350) + 0.0274{154.671
+ 0.0406(159.188) + 0.0555(163.117) + 0.0691(166.252) + 0.0808(166.770)
+ 0.0899(172.017) + 0.2741(174.744)
= 22.4462

* *
and the standard errors of the estimates 4 and o to be

1/2 1/2

%k *
SE(u ) = o (0.0465)"/2 = 22.4462(0.0465)'/% = 4.8403
and

* *
SE(c") = o (0.0457) 12 = 22.4462(0.0457)1/2 = 4.7984.

Now by using the asymptotic normality of the estimators u* and a* (since they are linear
functions of order statistics), we obtain approximate 95% confidence intervals for x and o
to be

[152.0655 — 1.96(4.8403), 152.0655 + 1.96(4.8403)] = [142.5785, 161.5525] and

[22.4462 — 1.96(4.7984), 22.4462 + 1.96(4.7984)] = [13.0413, 31.8511], respectively.

It is of interest to mention here that by assuming this multiply Type-II censored sample
to have come from a normal population, Balakrishnan, Gupta and Panchapakesan (1991)
computed the approximate maximum likelihood estimates of the mean y and the standard

deviation ¢ to be 151.9806 and 19.4392, respectively, and the best linear unbiased
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estimates of y and ¢ to be 151.9804 and 20.7525, respectively. Balakrishnan, Gupta and
Panchapakesan (1991) also worked out approximate 95% confidence intervals for y and o
based on the approximate maximum likelihood estimators to be [143.2868, 160.6744] and
[12.5543, 26.3241), respectively, and the approximate 95% confidence intervals for 4 and ¢
based on the best linear unbiased estimators to be [142.7051, 161.2557] and [12.8235,
28.6815], respectively. The results obtained in this paper by assuming the multiply
Type-II censored sample to have come from a logistic population are seen to be close to
the results obtained by Balakrishnan, Gupta & Panchapakesan (1991) under the

assumption of a normal distribution for the given multiply Type-II censored sample.

Furthermore, upon comparing the results obtained by the two methods, we observe that
the best linear unbiased estimates of x4 and o are numerically close to the approximate
maximum likelihood estimates of u and ¢. However, the best linear unbiased estimates
have slightly larger standard errors than the corresponding approximate maximum
likelihood estimates and, therefore, the confidence intervals based on the best linear
unbiased estimates turn out to be slightly wider than the corresponding confidence

intervals based on the approximate maximum likelihood estimates.
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