ON EMPIRICAL BAYES SELECTION
RULES FOR SAMPLING INSPECTION *

by
Shanti S. Gupta and TaChen Liang
Department of Statistics Department of Mathematics
Purdue University Wayne State University
West Lafayette, IN 47907 Detroit, MI 48202

Technical Report #91-35C

Department of Statistics
Purdue University

July 1991
Revised November 1992

* This research was supported in part by NSF Grants DMS-8923071 and DMS-8717799
at Purdue University.

*



ON EMPIRICAL BAYES SELECTION RULES FOR SAMPLING INSPECTION *

by
Shanti S. Gupta and TaChen Liang
Department of Statistics Department of Mathematics
Purdue University Wayne State University
West Lafayette, IN 47907 Detroit, MI 48202
Abstract
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1. Introduction

The hypergeometric distribution arises in sampling without replacement from a finite
population. Consider a finite population, say, a batch of M items, which is inspected for
defectives. One takes a sample of size m without replacement from the population. Let X
denote the random number of defectives in the sample. Also, let d denote the number of

defectives in the population. Then, the random variable X has a probability function

= ()4 /(4

where max(0,d + m — M) < z < min(m,d). Such a finite population with the probability
model (1.1) is denoted by m(M,m,d).

The problem of acceptance sampling has been studied by several authors for a long
time, e.g., see Booth and Smith (1976), and Craig and Bland (1981), among the many
authors. In the area of ranking and selection, Bartlett and Govindarajula (1970) have
studied the problem of selecting the best population from among k(> 2) independent
hypergeometric populations via the subset selection approach. The reader is referred to
Gupta and Panchapakesan (1979) for detailed discussions on the research area of ranking

and selection. Also, see Gupta and Liang (1991) for recent developments in this research

field.

In this paper, we consider the problem of acceptance sampling for k& independent
hypergeometric populations, say, m; = m(M;,m;,d;), i = 1,...,k. Let di be a positive
integer such that 0 < djo < M;, 1 = 1,...,k. In general, d;p is a given number used
as a standard to evaluate the quality of the population m;. Population 7; is said to be a
good population if d; < djp, and said to be bad otherwise. Our goal is to select all good

populations and to exclude all bad populations.

In this paper, it is assumed that there is a prior distribution depending on some un-
known hyperparameter(s) on the parameter space of the interest. The empirical Bayes
approach is employed here. We combine information from each of the k¥ populations and

use them to estimate the unknown hyperparameter(s) of the prior distribution. Then, we
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do the typical Bayesian analysis based on the estimated prior distribution, which is ob-
tained by substituting the unknown hyperparameter(s) by the corresponding estimator(s).
Two empirical Bayes selection rules, called parametric empirical Bayes and hierarchical
empirical Bayes selection rules, are studied, respectively, according to the corresponding
statistical models which will be described later. When k, the number of the populations
involved in the selection problem, is large, the asymptotic optimality of the proposed em-
pirical Bayes selection rules is investigated. It is shown that in each case, the Bayes risk of
the concerned empirical Bayes selection rule tends to the minimum Bayes risk with a rate
of convergence of order O(exp(—ck + Ink)) for some positive constant c, where the value
of ¢ varies depending on the rules. Finally, a simulation study is carried out to investigate

the performance of the empirical Bayes selection rules for small to moderate values of k.

2. Formulation of the Selection Problem

Let X; denote a random variable arising from the population m; = wm(M;, m;,d;).

Conditional on d;, X; has a hypergeometric distribution with probability function

sy = (F) (2900, (2.)

where max(0, d; + m; — M;) < z < min(m;, d;). It is assumed that X}, ..., X} are mutually
independent so that (X;,...,X%) has a joint probability function

k
f(zld) = Hfi(wildi), z = (z1,-..,2k), d=(d,...,di).

It is also assumed that for each ¢, d; follows a binomial B(M;,6;) distribution and that

di,...,d; are mutually independent. That is, d; has the (prior) probability function

gz(dzlaz) = (15-1)0?.(1 - 01')M'.—d"7 d; = 0,1,... ’Mi

and 0; is the probability that any item in the population 7; will be defective. It follows

that given 6;, X; has a marginal probability function
M;—m;+z

fi=l6:) = ) fi(eld)gi(di6:)
d=z
= (n:) 7 (1—-6,)™ % z=0,1,...,m,.
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Also, X3,..., X} are marginally mutually independent.

Let d;o denote a positive integer such that 0 < d;p < M;. The d;p will be used to
assess whether population 7; should be accepted or not. Population 7; is said to be good
if d; < dio, and to be bad otherwise. Our goal is to select all good populations and to

exclude all bad populations.

Let @ = {d = (d1,...,d;)|0 < d; < M;, i =1,...,k} denote the parameter space and
let A= {a=(a1,...,ar)|la; =0,1; i =1,...,k} denote the action space. When action
a is taken, it means that population ; is selected as a good population if a; = 1, and
excluded as a bad one if a; = 0. For the parameter d and the action a, the loss function is

defined as follows:

k k
L(d,a) = > (1 —ai)Lio(d:) + > a:Lia(di),
=1 =1 (2.2)

k k
= Z Lio(di) + Z a;[Li1(d;) — Lio(d;))

where Lio(d;) and L;;(d;) are bounded functions and satisfy

L: (d) =0 if di > di07
N >0, and nonincreasing in d; for d; < d;o;

L. (d) =0 lfdz Sdi(),
AL [P 0, and nondecreasing in d; for d; > djq.
In (2.2), the first summation is the loss due to not selecting some good populations,
while the second summation is the loss due to including some bad populations in the

selected set.

Let X be the sample space generated by (X1,...,Xx). A selection rule Ok = (bk1,. .., 6kk)
is defined to be a mapping from the sample space X' to the product space [0,1]%, such that
for each z € X, 6;i(z) is the probability of selecting population 7; as a good population,
1=1,...,k.

In this paper, the following two cases will be considered.

Case 1. It is assumed that 6§, = 0, = ... = 6, = 0, and the value of the common

parameter 6 is fixed, but unknown.



Case 2. It is assumed that for each 7 = 1,...,k, the parameter 6; is a realization of a
random variable ©;; and ©,...,0; are iid, having a beta distribution Beta (ay, a1 — )

with probability density function h(f|a, u)
I'(a)
h(0|la,p) =
Ol ) = Tl = )
where 0 < ¢ < 1, @ > 0, and the values of both the parameters a and p are fixed but

g+l (1-6)°0-m-1 p<g<1,

unknown.

3. Bayes Selection Rules

In order to construct the empirical Bayes selection rules, as a first step, we derive the
Bayes selection rule for each case. Also, in the following, we assume that M; < M* for all
1 =1,...,k, where the upper bound M* is independent of & for all k, and max(2,d;) < m;
forall:=1,...,k.

3.1. Case 1. A Bayes Selection Rule Relative to ¢

Consider the unknown hyperparameter 0 as fixed, we define, for each 7 = 1,...,k,
Ci(6) = E[Lio(di)|0] = E Lio(di)gi(d:|0),
Hi(zi,0) = E[Lir(di) — ,o(d )i, 6] (3.1)
Mi—m;+=z; dig—1
= Y, La(di)gi(dilzi,0) — X Lio(di)gi(di|x:, 6),
di=dio+1 di=z;
where

gi(di|z;,6) = fi(mi|d‘)gi(d'|0)/fi($i|9)

_ (dl?l . )ad;—:c.-(l _GMi—dimmitsi o< o<
m) (%)
is the posterior probability function of d; given X; = z;, and the summation zt: =0if
t < s. It can be seen that given X; = z;, d; — z; ~ B(M; — m;,0). Let rki(6, 6:T)sdenote
the i~th component Bayes risk, 1 = 1,...,k, and let r(8, §x) be the overall Bayes risk of
the selection rule §x = (8k1,-..,0kk). From the statistical model described in the preceding

and the loss function L(d, a) given in (2.2), it follows that
rei(6,6ki) = 3 6ri(z) Hi(zi, 0)f(216) + Ci(0),
X

P (3.2)
r&(0,8%) = Y rki(8, 0ki);

=1



k
where f(z|0) = [] fi(zi|0) is the marginal joint probability function of (X1,...,X%).
=1

Therefore, relative to the fixed parameter 8, a Bayes rule, denoted by §¢ = (6,‘:1, ey 6,‘gk),

can be obtained as follows:

Foreachz e X, i =1,...,k,

52,(@) — { 1 if H,'(.'I:,‘,e) <0, (3.3)

0 otherwise.

3.2. Case 2. A Hierarchical Bayes Selection Rule wrt Beta (ay, a(l—p)) Prior
First, we introduce some notation. For each i = 1,..., k%, let
1
Flailosn) = [ Fi(ardo)hOlo, )t
0

1
iwindilon) = [ filald:)on( i 10)h(6las u)de,
gi(dilzi, a, p) = fi(zi, dila, p)/ fi(zila, u)

Gi= [ (ool yas (34)
Qi(zi,a,p) = /Hi(l'i,o)h(elaa/-‘)da
M;—m;+z; dig—1
= Y. Lald)gi(dilei,ap) — Y Lio(di)gi(dilz:, o, p).
di=dio+1 di=z;

Straightforward computations show that

(3.5)

gi(dilzi, o, p) = (Mi - m‘) oo D(di + ap)T(M; + a(1 — p) — di)T(mi + @)

d; — z; I(M; + a)T(z; + ap)T(m; + a(l — p) — z;)’
For fixed values of the parameters a and y, we denote the i—th component Bayes risk
and the overall Bayes risk of the selection rule §x = (8k1,...,6kx) by Rii(a, p, 6ki) and

Ri(a, p,61), respectively. Then, under the corresponding statistical model,

Rii(o, p, 6r:) = ZX: 6ki(2)Qi(zi, a, p) f(zla, u) + Ci,

k (3.6)
Rk(a7/‘7§k) = E Rki(a7“76ki)’
i=1
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k
where f(z|a,p) = '1;11 fi(zila, p).

Under this hierarchical statistical model, a Bayes selection rule, called the hierarchical

Bayes selection rule, is 658 = (6£B,... 68B) where for each z € X,
HB — 1 if Qi(xi, a, #) < 0,
S (2) {0 otherwise. (8.7)

Remark 3.1.

(a) Note that for each i, both functions H;(z;,6) and Qi(zi, a, p) are independent of
all z; for which j # ¢. Hence, both the i—th component selection rules 6%, and 68B depend
on z only through z; only. Also, as z; > djg, both H;(z;,6) > 0 and Qi(zi,a,p) > 0 and
hence, 6{,(z) = 0 and 6B (z) = 0.

(b) Definition 3.1. A selection rule Or = (6k1,...,6kk) is said to be monotone if for
each ¢ = 1,...,k,6i(z) is nonincreasing in x ; while all the other variables are kept fixed
foreach j =1,... k.

Note that L;;(d;) — Lio(d;) is nondecreasing in d;. Also, the posterior probability
function g;(d;|z;,0) has monotone likelihood ratio. Therefore, Hi(z;,0) = E[L;(d;) —
Lio(d;)|zi, 6] and Qi(zi,d,p) = [ Hi(zi,0)h(6|a,u)df are increasing functions of z; for
0 < z; < dijo— 1. This fact together with Remark 3.1(a), and the definitions of éz and QIk{B

imply the monotonicity of the selection rules 89 and §HB,
(c) Foreachi=1,...,k, let
B;(6) = {«|Hi(z,0) >0, 2 =0,1,...,m;},
B; = {z|Qi(z,0,4) 2 0, 2 =0,1,...,m;}.

Note that B;(6) # ¢ and B; # ¢ since H;i(di,0) > 0 and Qi(dio,a, ) > 0. Let b;(0) =
min B;(#) and 58 = min B;. By the increasing property of H;(x;,0) and Q;(z;, a, ),
Hi(zi,0) > 0 (Qi(zi,a, p) > 0) iff z; > b;(8)(2; > bHB). Therefore, the Bayes rule §¢ and

the hierarchical Bayes rule 6B can be written as follows: For each reXandi=1,...,k,
§0(z) = {1 if z; < b;(0); .
(2) { 0 otherwise. (38)
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§HB () = { 1 if 23 < 5%
PAe 0 otherwise.

Accordingly, the minimum Bayes risks in the two cases are:
k

ri(6,60) = > rei(8,88;)

=1

E {bi(6)-1
- Z [ Z Hi(z;,0)f:(z:]6) +Ci(9)} ;

z;=0

k
Ri(a, u,68B) = Z Rii(o, s, 61°)

=1
ko [iP-1

= Z [ Z Qi(zi, o, p) fi(wilo, p) + CiJ .
=1 ;=0

(d) Consider the following linear loss: For each i = 1,...,k, let

Lii(di) = (di — dio)I(d; > dip),
{Lio(di) = (dio — di)I(dio > d;);

where I(A) denotes the indicator function of the set A. Then,
Hi(z:,0) = (M; — m;)6 + z; — djo;
Qi(zi, o, p) = (Mi — mi)(zi + ap)/(mi + ) + z; — dio.
Therefore, we have:

1 if (M —m)0 + xz; < dyo;
0 otherwise;

8ki(z) = {

and

e (Mi—mi)(zitap) _ .
5l}chB("E) = {1 if ¢ .m.'+¢z1 = +z; < dzO,
0 otherwise.

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)



4. Construction of Empirical Bayes Selection Rules

Note that the Bayes selection rule §! and the hierarchical Bayes selection rule §HB
are strongly sensitive to the values of the parameters 6 and (e, p1), respectively. In many
practical problems, the values of these parameters may not be known. In such situations,
it is not possible to employ the Bayes selection rule §2 and/or the hierarchical Bayes
selection rule QI,C{B. Hence, the empirical Bayes approach is employed in the following. We
combine information from each of the k¥ populations and use them to make a decision for
each of the k component problems. Two empirical Bayes selection rules, called parametric
empirical Bayes and hierarchical empirical Bayes, are studied, respectively, according to

the appropriate statistical model.

Case 1. A Parametric Empirical Bayes Selection Rule

Under the statistical model of Case 1, for the common parameter 6 being kept fixed,

X1,..., Xk are mutually independent with X; ~ B(m,, 8), : =1,...,k. Therefore, X; +

..+Xy~B (E m;, ) Hence 6 = (X1+...+Xr)/ Z m; is an unbiased estimator of and

sufficient sta,txszt:é for the parameter 6. It is suggested to estimate the function H;(z;,6) by

H;(z;, 0) We then propose a parametric empirical Bayes selection rule §% = (6% k101 0%k)
as follows: Foreachi=1,...,k,and 2 € X,

85.(z) = { 1 if Hi(z:;6) <0, (4.1)

0 otherwise.

For the linear loss of (3.12), the empirical Bayes selection rule d% turns out to be:

8t(z) = { 1 if (M; - m;)0 + z; < dio; (4.2)
” 0 otherwise.
Case 2. A Hierarchical Empirical Bayes Selection Rule
Under the statistical model of Case 2, for each i = 1,...,k,
m; a(l pp | mi(ap+ 1y

21 = 4.
E[Xi]_ o+ 1 + o+ 1 = Hi2,




where p;2 is decreasing in « and tends to m;u(l — p) + m?u? as o tends to infinity.

Therefore,

k k
E [;X,- =p;m,-, and

k k
k op(l—p) Yymi (ap+1)p X m}
2| 1= 1=
E [Z X = a+1 + a+1
Hence,
k 2 k
K Z:l m; — Z:l Hi2
o = A '_k = k . (43)

_21/11'2 —p? Elmf —p(1—p) _Elmi
= = 1=

We may use j = Z X/ E m; to estimate the parameter y and E X2 to esti-
i=1 =1 =1

k
mate ) pis. Note that, since m; > 2, pip — m? 2u? — mip(l — p) > 0 for each : =
=1

k k k
., k, and hence, Z Pio — p? Z m? — u(1 — p) E m; > 0. However, it is possible that

k
D(Xy,...,Xy) = Z X2 — pt E m? — (1 - f) (Z m,-) < 0. Also, it is possible that

i=1

it E m? — E X? < 0 though p E m? — E Kiz is always nonnegative. Motivated by the
=1
form of (4. 3) and the decreasmg property of p;2 with respect to a, we define

ma,x(uzm —ZX

D(Xl: ,Xk)l if D(Xla- . an) >0, (44)

00 otherwise.

o}
I

Note that when z; and p are kept fixed, lim Q;(z:,, u) exists. We denote this limit
value by Q;(z;, 00, ). Then,

Mi—m;+z; dio—1

Qi(xi, 00, ) = Z Li1(di)gi(di|zi, 00, p) — Z Lio(di)gi(di|z;, 0o, p),

di=dio+1 di=z;

where

M; —m;

gi(dilzi, 00, p) = (d 3 ) di=zi(] _ y)Mi=mitai—d;

i
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We then estimate Q;(zi,a,u) by Qi(zi, @, ), and propose a hierarchical empirical

Bayes selection rule & = (81, ... ,b11) defined as follows: For each i = 1,...,k, and
TEX,

' _J1 if Qi(xi’&’ﬁ’) < 0)

okilz) = {0 otherwise. (4.5)

For the linear loss of (3.12), the hierarchical empirical Bayes rule ;Sk turns out to be:

A i (Mi—mi)(zit+ép) . .
ok (z) = {1 if =R 4 0 < dios (4.6)

0 otherwise.

Remark 4.1

(a) It has already been mentioned in Remark 3.1(b) that H;(z;,0) is an increasing
function of z; for 0 < z; < d;p — 1. Also, an algebraic computation shows that for each
fixed z;, 0 < z; < dip ~ 1, Hi(z;,0) is an increasing function of , 0 < @ < 1. Since
the estimator 4 is increasing in x; for each j = 1,...,k, it can be seen that Hi(m,-,é) is
increasing in zj for j # ¢, and increasing in z; for 0 < z; < d;p — 1. By the definition of

9%, we can see that §} has the monotonicity property.

However, though the hierarchical Bayes selection rule 618 has the monotonicity prop-

erty, the hierarchical empirical Bayes selection rule & k may not possess the same property.

(b) For the statistical model of Case 1, consider a Beta(apu, a(1 — p)) prior having
density h(6|a, i) on the common parameter 6, 0 < < 1. Under the linear loss of (3.12),

a hierarchical Bayes selection rule, denoted by 68 = (6,?1, ey 6B), is:

§B(z) = {1 if Eld;|z, a, p] < dy, (4.7)

0 otherwise;

where E[d;|z, @, y] is the posterior mean of d; given X = z. Note that for the M; — m;
unsampled units in population 7;, conditional on 8, d; —z; has a B (M; —m;, 6) distribution,

k k
and the posterior on 6 is Beta(ap + Y zj,0(1 — p) + 3. (m; — z;)). Then,
7=1 j=1

k k
Eldilz, e, p] = (M; — m;)(op + ij)/(a + ij) + ;. (4.8)
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The Bayes risk of the selection rule §2 is

k
ri(a, p, 68) = Z riia, g, 65)

i=1

where
rii(a, 1, 68) = Y 88(2)[Eldile, o, p] — dio] f(z) + C}
TEX
nO -1

Ci= 3 (=) [ siasoyncoio, pyas,

flz) = / Hfi(zi|e>h<ela,n>de.

From (4 8) we see that E[d;|z, a, 1] is a continuous function of o and lim Eldilz,a,pu] =

(M; — m;) E z;/ E m; + z;. Since the sample space X is finite, for & > 0 being very
=1 " j=1

close to zero, we have E[d;|z,a, ] < dip iff (M; —m;) E zj/ E mj + z; < dj for all ¢
and for z = 1,...,k. This fact implies that the emplrlc;l—];ayesj‘sjelectlon rule ¢} is a hier-
archical Bayes selection rule relative to the hierarchical priors: d; ~ B(M;,0),d,,...,d;
are independently distributed and § ~ Beta(ap,a(1 — p)) for some a > 0, a being very

close to zero, (see (4.2)). Hence, the empirical Bayes selection rule §§ is admissible in the

sense that there exists no other selection rule §% such that
ri(6,8%) < ri(6,8%) for all 8 € (0,1),

and r(6,63) < ri(8,83}) for all € A C (0,1) for which [, df > 0.

5. Asymptotic Optimality of Empirical Bayes Selection Rules

5.1. Case 1. Asymptotic Optimality of §}

Under the statistical model of Case 1, rri(8,65;) > rii(6,6%;) since r4:(6,62;) is
the minimum Bayes risk for the i-th component selection problem. Hence, rx(8,8%) —
re(6, 62 %) = 0 for all k. This nonnegative difference of the regret risk r£(0,8%) — ri (9, 68 %) 1is
a suitable measure of the performance of the empirical Bayes selection rule 0%. We evaluate

the performance of é} for large k case.
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Definition 5.1. A selection rule §; is said to be asymptotically optimal of order Br(0), if
r5(6,6k) — r(8,8%) = O(B(8)) for each 8 € (0,1) as k — oo

where Bi(6) > 0 for all k and klim Br(6) = 0 for each 6 € (0,1).

For the empirical Bayes selection rule §}, the associated Bayes risk is:

k
re(6,6%) = ) rei(8, 6%:), (5.1)

=1
where from (3.2),

rki(0,8%:) = D 8ti(z) Hi(wi,0) f(2]6) + Ci(6)

zex (5.2)
=Y Eil63:(X)|X: = z:]Hi(=:,0) fi(z:]8) + Ci(6),

zi
where the expectation E; is taken with respect to the probability measure generated by

X(@) = (X1,..., Xiz1, Xiz1,- -, Xx).

From (3.2), (3.10), (5.1) and (5.2),
k
0 <ri(6,63) — (6, 6%) = Z[’”ki(a, 85:) — rei(6, 6¢;)] (5.3)

and for each : = 1,...,k,
0 < rxi(8, 8%;) — rai(6, 63;)
=Y Eil63:(X) — 65:(X)X: = | Hi(x:,6) fi(w:1)

T

bi(9)—-1

= 3 [Hi(wi, O)P{65(X) = 01X: = z:} fi(xil6) (54)
dio—1
+ Y Hi(w, 0)P{65(X) = 1X; = z;} fi(w:]6),
z;=b;(9)

where P; is the probability measure generated by X ().

For each fixed z;, let H;(6|x;) = H(z;,0). Then H;(6|z;) is an increasing function of

the parameter 6.
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For each 0 < z; < b;(f) — 1, Hi(6|z;) <0, and therefore, § < H~'(0|x;). Hence, by

(4.1),
Pi{6:(X) = 0|X; = z;}

=P,'{H,'(é|-’l:i) > 0|X; = 2;}
=P,'{é > Hi_l(OI.’IZ,')I.X,‘ = z;}

k k
=P; ZXj/ij—GZHi_l(0l$i)—0+\11,'(x,')

i=1
i i

k

where H; ' (0|z;)— 8 > 0 and ¥;(z;) = [H;2(0|z;)m; —x;]/ 3 mj tends to 0 as k tends to
j=1
i

infinity. Hence, for sufficiently large k, H;'(0|z;) — 8 + ¥;(z;) > [H71(0|z;) — 6]/2, and

therefore,
Pi{bpi(X) = 01X = 23}

k k
<P, {) X, / > mj— 6> [H(0le;) - 6]/2
i ot (5.6)

k

<exp  —[H; ' (0lz;) — 0] ) “m;/2
j=1
J#s

In (5.6), the last inequality follows from Theorem 1 of Hoeffding (1963) and the fact that

k k

marginally, Y X; ~B [ }° m,-,e) .
i=1 j=1
i i

For each b;(6) < z; < dip — 1 such that H;(6|z;) > 0, following a similar discussion as

in the preceding, we can obtain: H;'(0|z;) — 6 < 0 and

k
Pi{bpi(X) = 1|Xi = 2:} < exp § —[H[(0]z;) — 6] Zm1/2 : (5.7)

i
We summarize the preceding results in the following theorem.
Theorem 5.1. Suppose that m, < m; < M; < M* for all i = 1,...,k, and L;j(d;) < L*

forall j =0,1andi=1,...,k, where L;;(-),j = 0,1, depend on i only through the values

of m; and M;; and where the bound values L*, m, and M* are independent of k. Then,
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under the statistical model of Case 1, for each 6 € (0,1), the empirical Bayes selection
rule é} is asymptotically optimal, its rate of convergence being O(exp(—e1 (6, k)k + In k)),
where

e1(0,k) = 121}21: nii‘n{m*[Hi_l(0|x,~) —6)2/2: H7'(0|z;) — 6 # 0}.

Note that €;(0,k) > 0 since M; < M* foralli =1,...,k.

Proof: By the boundness of the loss L;j(d;) < L* for all j = 0,1, ¢ =1,...,k, we have
|Hi(xi,0)] < L* for all z; =0,1,...,digp—1and ¢ =1,...,k.

By the definition of e;(6, k),

P{6;(X) =0|X; =z} < exp{—ei(0,k)k}, 0 < z; < b;i(0) — 1,
and Pi{6;i(X) = 1|1Xi = zi} < exp{—e1(0, k)k}, bi(0) < zi < dip — 1.

Substituting the preceding inequalities into (5.4), we obtain:
0 < ri(8, 65;) — rri(6, 80;) < L* exp{—e1(6,k)k}, i =1,...,k,

and hence

0 < ri(6,8}) —ri(6,68%) < L* exp{—e1(6, k)k +Ink}.

Note that since the loss functions L;j(-),7 = 0,1, depend on ¢ only through the values
of m; and M; and M; < M* for all ¢t = 1,...,k, it follows by the definition of e;(6, k) that
e1(0,k) > e2(8) for all k for some positive value ez(6). This completes the proof. |

5.2. Case 2. Asymptotic Optimality of §;

Under the statistical model of Case 2, for any selection rule éx, Rgi(a,p,0ki) —
Rii(a, u, 62B) > 0 since Ryi(a, 1, 682) is the minimum Bayes risk for the i~th component
selection problem. Hence Ri(«, p, 8x) — Ri(a, s, 618) > 0. This nonnegative difference is

used as a measure of the performance of the selection rule 4;.
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Definition 5.2. Under the statistical model of Case 2, a selection rule 6}, is said to be

asymptotically optimal of order fi(a, u) if

Ri(o, p, 8) — Ri(, 1, 612) = O(Br(a, 1)),

for each (a,p) as k — oo, where Bi(a,u) > 0 for all k, and klim Br(a, 1) = 0 for each

(o, p).

For the empirical Bayes selection rule ék, the associated Bayes risk is:

k
Ri(a,p,81) = ZRki(aaﬂ’Ski),

=1
where

Rki(ahuvgki) = Z 3ki(:§)Qi($i7a, ”)f(:flanu) + C;
TEX

=Y Eilbii(X)|1X: = 2:]Qi(zi, @, 1) fi(wila, p) + C.

From (3.6), (3.7), (3.11), (5.8) and (5.9),
0 < Ri(a, /-”75’6) — Ri(a, p, ‘EII;IB)

k
= Z[Rki(a, K, Ski) - Rki(a, Ky 6£IzB )]

=1
and for each : = 1,...,k,
0 < Rki(a7 K, Ski) - Rki(aa H, 5II;IzB)
=D Eildri(X) — SEP(XO)IX: = 2:]Qu(ws, o, ) fi(wi v, 1)

bHB 1

= Y [-Qi(zi, 0, WPi{bi(X) = 01X; = 2} fi(wi v, )
;=0
d;o—1 )

+ Z Qi(zi, o, p)Pi{6ri(X) = 1X; = 23} fi(wi|a, p).
z,'=b§{B

(5.8)

(5.9)

(5.10)

(5.11)

Note that for each z;, Qi(z:,a,p) is a continuous function of the variables (a, p) (see

(3.4) and (3.5)).
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For each 0 < z; < !B — 1, Qi(z:i,a,p) < 0. Then,
Pi{ri(X) = 01X; = =}
= P{Qi(zi, 4, 1) > 0|1 X; = z;}
= P{Qi(zi, &, 0) — Qi(zi, a, 1) > —Qi(zi, o, )| X; = z;}
< P{lé — af > gi(zi, a, p) or | — p| > gi(zi, o, p)| X = )
< Pi{la - a| > gi(zi, @, p)|X; = 23} + Pi{| — p| > qi(zi, 0, )| X = 23}

for some ¢;(x;, a, 1) > 0 and the first inequality is obtained due to the continuity property
of Qi(xivaﬁ‘) wrt (oz,,u).

Similarly, for each z;, B®B < z; < djo — 1 such that Qi(zi,a,p) >0,

Pi{bri(X) = 1|X; = 2.}
= P{Qi(zi, &, ) < 0|X; = z;}

< Pi{ld - of > qizi, 0, p)|Xi = z:} + Pi{|p — p > gil@i, 0, )| X; = 23)
for some g;(zi, a, 1) > 0.

Therefore, it suffices to investigate the behavior of
Pi{lé - a| > gi(z, 0, p)|X; = 2;} and P{|f — p| > qi(zi, o, )| X = 2:}
for each z; and 2 = 1,...,k. For this, we first present several useful preliminary lemmas.

Lemma 5.1

(a) For positive ¢ such that £ > |z — ),

k k
P; {Z(Xyz = pj2) < —c|X; = f'Ji} < exp —02/ 22’"? )

= i
k k

P L0 = >l = <empd - [ (23 ms
j=1 =1
J#E
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k
(b) For positive ¢ such that ¢ 3 m;/2 > |m;p — z;],
=1

2
k k
P{pi—p<—clX;i=z;} <exp —(chj) / Zme ,
j=1 j=1

J#ti

2
k k
Pi{p—p>c|X; =2} <exp —(szj) / 22"‘?
j=] i=1

i

k
(c) For positive ¢ such that ¢ 2:1 mj > 4|lmip — z;|,
]=

k 2 k \
P,-{ﬂZ_'u2<—c|X,-=:c,-}§exp —(chj) / 82m§ ,
i=1 i)

2 )
k k
Pi{ﬁ2_'u2>c|X,-=z,-}§exp —(CZTIZ_,’) / Sme
j=1 j=1

i J

V
.

Proof: Straightforward computation and application of Theorem 2 of Hoeffding (1963)

will yield the results. Details are omitted here.
The following lemma is a direct consequence of Lemma 5.1(b).

Lemma 5.2. Suppose that m; > m, > 1foralli = 1,...,k, where the value of the bound
my is independent of k. Then, for sufficiently large k,

P{|g — pl > gi(zi, o, p)| Xi = 2:} < exp{—kn},
2
where 71 = 337 11<n]_'£1k Iﬁi.n ¢3(zj,a,p) > 0, and
—_ = J

A; ={z;|0 < z; <djo— 1, gj(zj,a,u) > 0}.

Lemma 5.3. Suppose that 1 < m, <m; < M; < M*foralli =1,...,k, where the values

of the bounds m, and M* are independent of k. Then for sufficiently large k,
Pi{é = 00| X; = z;} = O(exp(—12k))

18



for some positive value 7, defined below.

Proof: By the definition of & and an application of Bonferroni’s inequality,

k
P,'{& = OOIX,' = :1:,'} < P; {Z(ij — #jz) < —c(k)lX,' = .’lt,'}

i=1

=1

k
+ P, {(ﬂ—#)zmj ZC(k)lXi=“’i}

k
+P; {(ﬂ2 — #%) Y (m} —m;) > ok)|X; = $i} ’

i=1
where

k
c(k) = Z[ﬂjz — p*(m3 —m;) — pm;]/3

) (5.11)
=) lum} — puj]/(3),
=1
which is obtained from (4.3). Also,
k k
Y lum} — pp] =Y E[Xj(m; — X;)]
=1 =1
(5.12)

k
> Z(mj = D[1 - £;(Ola, p) = fi(mjla, p)]

2 (m* - l)ks(a’/-")7
since 1r<n_i£1k[1 — fi(0la, p) — fi(mjla, p)] > e(a, p) for some positive value (e, u) for all k
<5<

which is guaranteed by our assumption that the bound m, and M* are independent of k.

By (5.11) and (5.12), ¢(k) tends to infinity as k tends to infinity. Therefore, for
sufficiently large k, by Lemma 5.1, we have,

k
P; {Z(XJ2 — pj2) < —c(k)|X; = a:,-} < exp —cz(k)/ 2Zm , (5.13)

=1

. (5.14)

—

k
Pz’{(ﬂ—#)zijC(k)lXi=wi}Sexp —Cz(k)/ 22’”

=1
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P{ —u )Z(m —mj) > (k)| X; —:c,}
< exp —cz(k)/ 8M* . (5.15)

Let 7 = (m. — 1)%¢*(a, u)/[72a® M**]. Then, by (5.11)~(5.15) and the definition of

72, for sufficiently large k,

Pi{a = ool X; = z;} = O(exp(—2k)). O

Note that this rate is independent of z; and i for all i = 1,... k.

Lemma 5.4. Under the assumption of Lemma 5.3,
P{é& — a > gi(zi,a,p),a < 00| X; = z;} < exp{—3k}, and
P{é—a < —qi(zi,a,p), & < oo X; = z;} < exp{—73k}

for some positive number 73 defined below.

Proof: In the following, we let ¢; = ¢;(z;, a, ). By the definition of & and (4.3),

P{é—a> gi,& < o|X; = z;}

k k k
< Pi{(ﬂ ) [Z m? + (a + ¢) ijJ +(a + ¢i)(p* - p) Z(mf —m;)

k
—(a+g+1) Y (X7 - pja) > 3g; c(k)|X; = wi}

j=1

k
=5 { (=) 3_(m] + (a+ gi)my) > g; efk)|X; = } (5.16)

=1

k
+ P; {(ﬂ2 — ) (a+q) Z(mf —m;) > q; c(k)| X = :1:,-}

=1

Jj=1

k
P; {(a + i+ 1) Y (XF — pjp) < —gi c(R)|X: = xi} :
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By Lemma 5.1, for sufficiently large k, we have

k
P {(ﬂ —p) Z[mﬁ + (e + gi)m;] > ¢i (k)| X; = z,-}

k 2 k k
<exp{ — [q,- c(k)ijJ / 2 I:Z(mf +(Ol+q:')mj):l me , (5.17)

J#E

J=1

k
P; {(ﬁ2 — u*)a + @) Z(mf —m;) > gi c(k)|X; = xi}

k 2 k 2 k
<exp —[qi c(k)Zm]] / 8[(a+q,-)Z(mf——mj)} Em? , (5.18)

J#i

and

k
P; {(a +4i+1) Z(Xf — pjz) < —¢i c(k)|X; = ﬂh‘}

k
<exp{ —|g c(k)]z/ 2(a+gi +1)° ij-‘ . (5.19)

i

Let 72 = (me—1)’e(a,u)m? min min [ gi(z,0,p) ]2 where 4; = {z|0 < z < djp —

3 = T2a2M*° 1<i<k €A, a+gi(z,o,p)+1] °? L = = %0
1, gi(z,a, p) > 0}. Hence 73 > 0. From the definition of 75 and (5.16)—(5.19), we conclude
that

Pi{d —a > g, & < oo|X; = z;} < exp{—73k}.
Note that the rate is independent of z; and :.
Part (b) can be proved in a similar way and hence the proof is omitted. O

Note that when the loss functions L;;(-),j = 0,1, which are bounded above by L*,
depend on ¢ only through the values of m; and M;, and the values of the bounds L*, m,
and M* are independent of k, 7 and 73 are always positive and min (71, 73) > 7(a, ) for

all k for some positive value 7(a, ).
We summarize the results in this subsection in the following theorem:
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Theorem 5.2. Suppose that 1 < my, < m; < M; < M* for all i = 1,...,k, and
Lij(d;) < L* for all j = 0,1 and ¢ = 1,...,k, where L;;(-),7 = 0,1, depend on 7 only
through the values of m; and M;; and where the values of the bounds L*, m, and M* are
independent of k. Then, under the statistical model of Case 2, for each pair of the values
(a,p), 0 < @ < 00, 0 < p < 1, the empirical Bayes selection rule ‘Ek is asymptotically

optimal with rate of convergence O(exp(—7k + Ink)), where 7 = min(my, 72, 73) > 0.

6. Small Sample Performance: Simulation Studies

Monte Carlo studies have been carried out to investigate the small sample performance
of the proposed empirical Bayes selection rules §5 and ;?k, respectively. In these Monte

Carlo studies, we have assumed that

M, = =My, =M,

my = =mi =1m,

le =..,.= dko = dO- (6.1)
L1j(-) = L2;(-) = ... = L;(-),5 = 0, 1.

Under the preceding assumption and the statistical model of Case 1, for the Bayes

selection rule §¢ = (8%,,...,6¢,)
r51(0,601) = ... = rx(8,68) and r¢(8,8%) = kree(6,6%).
Also, for the parametric empirical Bayes selection rule 8§ = (6,,...,6%;), it can be seen
that
r£1(6,6%1) = ... = rix(0, 63;) and therefore ri(6, 6%) = krix(6, 655 ).

Similarly, under the assumption (6.1), and the statistical model of Case 2, for the

hierarchical Bayes selection rule §I,;IB = (6}3113, ey 6}3,? ,
Rex(a, p,67°) = ... = Rur(a, p, 6 ) and Ri(, 1, 87°) = kRex(ov, p, 652).
Also, for the hierarchical empirical Bayes selection rule (5 E= (3k1, ey Skk), we have:
Rkl(a,p,gkl) =...= Rir(a, p, Skk) and Rk(a,u,§k) = kRkk(a,p,Skk).
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Therefore, in the following, we simulated the differences

rkk(a? 5751:) - Tkk(e’ 6l€k) and Rkk(av M, Skk) - Rkk(a, H, 6}3’?)7

and used k[rxx(6, 65, )—7xx(0, 67, )] to estimate ri(8, §%)—ri (6, 6?2) and used k[Rir(a, p, bxr)—
Rix(a, g, 61B)] to estimate Ri(a, p, 6r) — Ri(a, p, 811B), respectively.

We used the linear loss of (3.12) as the loss function. The simulation scheme used in

this paper is described as follows:

Case 1. The Parameter ¢ Being Fixed

(1)

(2)

3)

For any fixed value of the parameter § and a given value of m, generate k — 1 inde-

pendent random numbers, say, X1,...,Xz—; from a B(m, ) distribution.

Let 74 be an observed value from a B(m, 6) distribution. Use X;,..., X;—;1 and zx to
estimate § and construct the parametric empirical Bayes selection rule O according
to (4.2). Then, we computed the conditional regret Bayes risk of O3 (conditional on

Xla' .. 7Xk—1) by

Di(X1,-.., Xko1) = i (6, 6561 X1, - -, Xe—1) — rei(6, 62, ).

The above process was repeated 500 times. The average of the regret Bayes risk based
on the 500 repetitions denoted by 5: was used as an estimator of the regret Bayes
risk rx(0, 65,) — rrr(0,62,). Then, we used k—ﬁz as as estimator of the total regret
risk 7, (0, 8%) — & (6, 89).

A summary of the simulated results is given in Table 1.

Case 2. The Parameter § with a Prior Distribution Beta (ap,a(l — p))

1)

For given values of a and u, we generated k — 1 random numbers from a distribution

having the probability function f(z|a,u),

f(zla, ) = / F(216)h(Bla, 1)db,
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where f(z|0) = (’Z)G”(l —0)m*,0<6<1, 2=0,1,...,m, and where h(0]a, u) is
defined in Section 2.

Then we followed steps (2) and (3) analogous to steps (2) and (3) of Case 1, by just
replacing the Bayes risks by the corresponding Bayes risks of the hierarchical empirical
Bayes selection rule &x; and the hierarchical Bayes selection rule 658, respectively. We
denote the average of the conditional regret Bayes risk based on 500 repetitions by 5:”.
ﬁ:# was used to estimate the regret Bayes risk Rix(a, g, Skk) ~ Rix(a, p1, 68B). Then, we

used kﬁ:” to estimate the total regret Bayes risk Ry(a, p, ¢:5k) — Ri(a, p, 61B).
The results of these simulations are reported in Table 2 and Table 3, respectively.

The simulated results indicate that in each of the two models, the total regret risks
(kﬁz in Case 1 model and kD,  in Case 2 model) converge to zero as the value of k
becomes large. Of course, the rates of convergence vary according to the models. In Case
1 model, for small values of k, kﬁz is small and k—ﬁz tends to zero gradually. While in
Case 2 model, though for small values of k, the km” values are larger (compared with

-0 . .
kD, ), however, the rate of convergence of kﬁ:” to zero is very fast, as for example, in

Table 3, kD, = 0 for k > 180.

Acknowledgement: We are thankful to two referees and the Associate Editor for very

useful comments and suggestions which improved the presentation of results in this paper.
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Table 1. The Small Sample Performance of 3
M =100, m = 20, dy = 6, and 8§ = 0.02.

b D, kD, SE(D})
10 2.9878 x 10~% 29.8785 x 10~3 0.6169 x 103
20 0.5254 x 10~3 10.5073 x 10~3  0.0822 x 103
30 0.1811 x 10~3  5.4324 x 10~3 0.0369 x 103
40 0.1097 x 102  4.3891 x 102 0.0190 x 103
50 0.0719 x 10~%  3.5932 x 10~% 0.0047 x 1073
60 0.0774 x 103  4.6418 x 10~ 0.0190 x 103
70 0.0539 x 10~®  3.7705 x 10~®  0.0043 x 1073
80 0.0386 x 103  3.0882 x 10~% 0.0038 x 103
90 0.0359 x 10~  3.2319 x 10~ 0.0037 x 103

100 0.0310 x 10~%  3.0972 x 10~%  0.0035 x 103
120 0.0269 x 10~%  3.2319 x 10~%  0.0033 x 103
140 0.0162x 103  2.2623 x 10~%  0.0026 x 10~3
160 0.0148 x 103 2.3700 x 102 0.0025 x 10~3
180 0.0076 x 10~%  1.3755 x 10~% 0.0018 x 103
200 0.0108 x 10~*  2.1546 x 10~®  0.0021 x 1073
250 0.0022 x 10~  0.5611 x 10~ 0.0010 x 103
300 0.0031 x 10~ 0.9426 x 10~ 0.0012 x 103
350 0.0004 x 103 0.1571 x 10~3 0.0004 x 1073
400 0.0004 x 1073 0.1795 x 103  0.0004 x 10~3
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Table 2. The Small Sample Performance of §HB
M =100, m =20, dy =6, & =10 and px = 0.02.

k D," kD" SE(D,"
10 36.7345 x 10™° 367.3446 x 10~® 1.8780 x 10—3
20 30.8095 x 10~* 616.1903 x 103 1.8231 x 103
30 26.0696 x 103 782.0877 x 103  1.7493 x 103
40 17.4362x 10~* 697.4465 x 10~  1.5324 x 103
50 17.0976 x 10~% 854.8797 x 10~% 1.5213 x 103
60 11.6805x 10~* 700.8327 x 10~% 1.3069 x 10~3
70  9.3106 x 10~* 651.7408 x 10~% 1.1856 x 10~3
80 9.8963 x 10™% 791.7044 x 10~% 1.2592 x 10~3
90 6.7713x 107 609.4202 x 103  1.0280 x 103
100  8.6335 x 103 863.3451 x 103 1.1468 x 103
120  3.8935 x 10~® 467.2222 x 10~%  (.7938 x 103
140  3.5550 x 10~* 497.6932 x 10~% 0.7600 x 103
160  2.2009 x 10~ 352.1094 x 103  0.6030 x 103
180  0.8464 x 10~ 152.3550 x 10~*  0.3770 x 103
200 0.5079 x 10~% 101.5700 x 10~3  0.2926 x 103
250 0.3386 x 107%  84.6417 x 10~% 0.2392 x 103
300 0.1693 x 10~*  50.7850 x 10~3  0.1693 x 10~3
350 0. 0. 0.
400 0. 0. 0.

the entry 0 means that the exact value is less than 10~".
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Table 3. The Small Sample Performance of §i8

M =100, m =20, dy =6, =1 and g = 0.02.

k D" kD;" SE(D;"
10 4.4973 x 10~% 44.9733 x 10—°  0.5255 x 10~3
20 4.6379 x 1073 927573 x 10~%  0.5324 x 1073
30 3.8649 x 102 115.9467 x 10~% 0.4921 x 1073
40 3.3027 x 1073 132.1090 x 102 0.4590 x 103
50 2.1784 x 10~% 108.9196 x 102 0.3793 x 1073
60 1.9676 x 10~% 118.0547 x 103 0.3616 x 1073
70 1.1946 x 10~2  83.6221 x 10~  0.2851 x 103
80 0.5622 x 1073 44.9732x 102 0.1974 x 103
90 0.7730 x 10~*  69.5680 x 10~%  0.2307 x 1073
100 0.3514 x 1072 35.1353 x 102  0.1565 x 10~3
120 0.2108 x 10~3  25.2975 x 102  0.1215 x 1073
140 0.2811 x 10%* 39.3516 x 102  0.1401 x 103
160 0.0703 x 10~3 11.2433 x 10~2 0.0703 x 103
180 0. 0. 0.
200 0. 0. 0.
250 O. 0. 0.
300 O. 0. 0.
350 0. 0. 0.
400 0. 0. 0.

the entry 0 means that the exact value is less that 10~7.
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