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Abstract

In this paper we investigate the problem of selecting a population associated with
the largest location parameter among k logistic populations. We propose and study a
single-stage procedure using the indifference zone approach which selects the population
associated with the largest sample mean. Also two subset selection rules based on the
largest order statistics are investigated; these rules select the population II; if and only if
Ti(X) — max; Tj(X) > d, where d is an appropriate constant chosen to satisfy the usual
probability requirement of a correct selection. In the preceding T;(X) is a suitable statistic
based on the sample X from ith population. An approximation for the distribution of the
sample mean from the logistic population is derived by using Edgeworth series expansions.
Using this approximation the procedures are compared when T;(X) is either a sample
mean or a sample median.

Key words: Selection and ranking, Subset selection, Logistic populations, Largest order
statistic.



1. Introduction

The logistic distribution has been widely used by Berkson (1944, 1951, 1957) as a
model for analyzing experiments involving quantal response. Pear]l and Reed (1920) used
this in studies connected with population growth. Plackett (1958, 1959) has considered
the use of this distribution with life test data. Gupta (1962) has studied this distribution

as a model in life testing problems.

The shape of the logistic distribution is similar to the normal distribution. The simple
explicit relationship between the logistic random variate, its probability density function
(pdf) and its cumulative distribution function (cdf) render much of the analysis of the logis-
tic distribution attractively simple and many authors, for example, Berkson (1951) prefer
it to the normal distribution. The importance of the logistic distribution in the modeling
of stochastic phenomena has resulted in numerous other studies involving probabilistic and
statistical aspects of the distribution. For example, Gumbel (1944), Gumbel and Keeney
(1950) and Talacko (1956) show that it arises as a limiting distribution in various situations;
Birnbaum and Dudman (1963), Gupta and Shah (1965) study its order statistics. Many
other authors, for example, Antle, Klimko and Harkness (1970), Gupta and Gnanadesikan
(1966), Tarter and Clark (1965), Gupta and Balakrishnan (1991), Balakrishnan, Gupta and
Panchapakesan (1991), and Panchapakesan (1991), investigate inference questions about

its parameters.

As might be expected, because of the similarity beetween the logistic and the nor-
mal distributions, the sample mean and variance, the moment estimators of the logistic
population parameters, are effective tools for statistical decisions involving the logistic
distribution. Antle, Klimko and Harkness (1970) give a function of the sample mean as
a confidence interval estimate of the population mean when the population variance is
known. Schafer and Sheffield (1973) show that in terms of the mean squared error the
moment estimators of the logistic population parameters are as good as their maximum
likelihood estimators. The fact that the distribution of a sample mean has monotone
likelihood ratio (MLR) with respect to the population mean when the variance is known
is used by Goel (1975) to obtain a uniformly most accurate confidence interval for the

population mean and a uniformly most powerful test for one-sided hypotheses involving



the population mean. The sampling distribution of the mean is a primary requirement for
these statistical purposes. The papers by Antle, Klimko and Harkness (1970) and Tarter
and Clark (1965) used a Monte Carlo method for this distribution.

Goel (1975) obtains an expression for the distribution function of the sum of in-
dependent and identically distributed (i:d) logistic variates by using the Laplace trans-
form inverse method for convolutions of Pdlya type functions, a technique developed by
Schoenberg (1953) and Hirschman and Widder (1955). He provides a table of the cdf
of the sum of 7id logistic variates for the sample size n = 2(1)12,2 = 0(0.01)3.99 and
n = 13(1)15,z = 1.20(0.01)3.99. He also gives a table of the quantiels for n = 2(1)15,a =
0.90,0.95,0.975,0.99,0.995. George and Mudholkar (1983) obtain an expression for the
distribution of a convolution of the uid logistic variables by directly inverting the charac-
teristic function. However, since both formulas of Goel (1975) and George and Mudholkar
(1983) contain a term (1 —e®*)™% k =1,...,n, a problem of precision of the computation
at the values of z near zero arises when n is large. George and Mudholkar (1983) also
show that a stnadardized Student’s ¢ distribution provides a very good approximation for

the distribution of a convolution of the u2d logistic random variables.

-This paper considers approximation problems to the distribution and quantiles of a
standardized mean of samples from a logistic population by using Edgeworth and Cornish-
Fisher series expansions respectively. Tables of the cdf and quantiles are provided and it
is shown that these are far better approximations than the Student’s ¢ distributions as
suggested in George and Mudholkar (1983) and hence these approximations will be used
henceforth.

In the rest of this paper a single-stage procedure P; using an indifference zone for-
mulation for selecting the best among several logistic populations with unknown means
and a common known variance based on sample means is proposed and studied. A table
of the smallest sample size n needed to implement P; subject to the basic probability

requirement is provided.

Two subset selection rules R; and R; based on sample means and sample medians
respectively for selecting the best among several logistic populations are proposed and

tables of constants to implement the rules are provided. We also compare the two rules



with respect to their performance characteristics.

2. Distribution of logistic sample means

2.1. Logistic distribution

A random variable X has the logistic distribution with mean x and variance o2,

denoted by L(u,o?), if the pdf of X is given by

f(z) = (9/o)lexp{—g(z — w)/o}][1 + exp{~g(z — )/} (1)
and the edf of X is defined by

F(z) = [1+exp{—g(z — p)/o}]7", (2)
where —00 <z < 00,—00 < p < 00,0 >0and g = 7/+/3. This distribution is symmetrical

about the mean pu.

The standard logistic distribution with mean zero and variance unity, denoted by

L(0,1), has the pdf and cdf defined as

f(z) = glexp{—gz}][1 + exp{—gx}] (3)
and
F(z) = [1+ exp{—gz}]™" (4)

respectively, where —co < z < oo. The standard logistic distribution has a shape similar
to the standard normal distribution. The curve of the logistic distribution crosses the
density curve of the normal between 0.68 and 0.69. The inflection points of the pdf of the
standard logistic distribution are & 0.53 (approx.).

Letting Y = (X — p)g/o, the random variable Y has the logistic distribution with

mean zero and variance 72 /3. The pdf and cdf of the random variable Y are given by

F(y) = lexp{—y}][1 + exp{—y}]~* (5)

and
F(y) = [1 + exp{-y}]™" (6)

4



respectively, where —co < y < o0. (5) may be written in terms of F(y) as

fly) = F(y)(1 — F(y))

The moment generating function (mgf) of Y is given by

My(t) =T(1 4+ t)I'(1 —t)
= wt/sin(nt), |t| < 1.

We can also express (8) as

oo

My (t) =y (=17 [2(2%7" = 1)/(2)1] Baj(nt)™,

j=0

where B,’s are Bernoulli numbers defined as
z/(exp(z) — 1) = ¥ _ Byz"/(v)).
v=0

The relationships between B,’s are given by

k k k
1+ (1>B1+ (2>B2++ (k—_]-)Bk—l:O,k:l)---)

and hence the first few values of B, are

By =1,
By =—1/2,
By =1/6,
By = —1/30,
Bg =1/42,
Bg = —1/30,

By = 5/66,

(M)

(8)

(9)

(10)

(12)



The v** central moments of Y, denoted by u,, can be obtained as

py = E(Y")
B (—1)»/212(2"t — 1)]|B,7?; ifv=2j5=12,...,
0; otherwise,

by using (9).

Then the v** central moments of X, denoted by p,(z), are given by

(@) = BX - )’

=(0/9)"E(Y")
(-1)*?71(v/30)*[2(2*7 — 1)|By; ifv=2j,j=1,2,...,
0; otherwise.

In terms of the central moments p,(z) of X, first few of the »** cumulants of X, denoted

by K,(z),v =1,2,..., which are defined by
log px(t) = Y K (@)(it)" /(WY),
v=1

where @ x(t) is the characteristic function of the random variable X, are given by

Ki(z) = pa(z) = s,
Ks(z) = pa(z) = 0%,
Ky(z) = pa(w) — 3(p2(2))* = 2o,
Ko(z) = po(z) — 15p2(2)pa(@) + 30(p2(2))® = Fo°,
Kg(z) = ps(z) — 28pz(z)ps(2) — 35(na(2))? + 420(u2(2))* pa(2)
— 630(u2(2))* = 420,
Kio(z) = pro(z) — 45pa(z)us(z) — 210u4(z)pe(x)
+1260(p2(2))” po(z) + 3150u2(2)(pa(2))?
— 18900(p2(2))° pa(z) + 22680(p2(z))® = 143182410

I{2j+1($) = 0,] = 1,2,... .



The first few relative cumulants of X, A\, (z), where A,(z) is defined as
M(2) = K, (2)(Ka () ™2,

are given by

Ai(z) = p/o,
da(e) = 1,
A(z) = 6/5,
No(z) = 48/7,

>\8(-77) = 432/5,
Ao(z) = 145152/77,

)\2j+1(:1:) =O,] = 1,2,.... (13)

2.2. Edgeworth series expansions for the distribution of the mean of samples

from a logistic population

Let X1,Xs,...,Xn be a random sample of size n from a logistic population L(y,o?)
with mean p and variance ¢ whose cdf and pdf are given in (1) and (2) respectively.

Define a standardized mean of samples of size n from L(y,0?), Z say, as

Zz—\/%;(Xi—u)
_Vn

o)

(X ~ n), (14)

where X = %Z‘?lei is the sample mean.

Let fn(2) and F,(z) denote the pdf and cdf of the standardized mean of samples of
size n from L(y,0?). Then the Edgeworth series expansions of the fn(2) and Fy(z) are

given symbolically as

fa(2) = $(2) + $(2) D_ pi(2In ™72 + O(n~=C+D/2)

=1



and

Fo(2) = 8(2) — ¢(2) ) Pi(z)n™3/* + O(n~ 172

i=1

respectively, where ¢(z) and ®(z) are the standard normal pdf and cdf respectively and
p;(z) and Pj(z) are polynomials in z, which are obtained up to v = 10 in Draper and

Tierney (1973).

Using p;(2) and Pj(z) from Table II of Draper and Tierney (1973) and the relative

cumulants of X given in (13), the Edgeworth series expansions of the f,(z) and F,(z)

-v/2

correct to order n ,v=4,6,8, are given by

fo(z,v =4)
= ¢(2){1 + [(F)(§)Ha(2)n ™"
+[(5)(5) Hs(2) + (B)(3)* H(2)In7*} + O(n™%/2),
Fo(z,v =4)
= ®(2) — $(){[(F)(§)Hs(2)In ™"
I Hs () + () Hr(2)n )+ 0(n/2)

fa(z,v =6)
= fn(z,v = 4) + ¢(2)[(5)(%* ) Ha(2)

+ (G Huo(2) + (535)(5) Hia(2)In™° + O(n™™/), (15)
Fo.(z,v = 6)
= Fu(z,v = 4) — ¢(2)[(51) (%2 Hr(2)

+ (G Ho () + ((GE)(E) Hu(2)]n™° + O(n~"72), (16)
fa(z,v =38)

= fale,v = 6) + $(2)[(57)(H522) Ho 2)
+ (48 (42)(9) Hiz(2) + (42)(£)* Hus (2)
 (REE)($)2(4) Hia (=) + (BZB22)( )" Hio(2)]n ™" + O(n"/?)
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and

Fu(z,v =8)
= Fu(z,v = 6) — ¢(2)|(551)(*572) Ho (2)
+ (3R Hu (2) + () Hu ()
+ (R52)(8)P () Has (=) + (BH2)(3) Has(2)ln™* + O(n ™07,

where H;(z)’s are the Hermite polynomials of degree j, which are defined by

(%>J exp(—x2/2) = (—l)jHj(x) exp(—x2/2), 7=0,1,....

The first thirty Hermite polynomials which follow the recurrence relation
Hj(z) = zHj-1(z) = (j — 1)Hj-2(z),  =2,3,...,

are given in Table III in Draper and Tierney (1973).

Table 1 contains the values of the cdf of the standardized mean of samples of size
n from a logistic population with mean p and variance o? for n = 3,10,15 and z =
0.00(0.10)1.00(0.20)3.00(0.40)3.80 using the Edgeworth series expansion correct to order
n~3 given in (16). Entries in the tables were computed by using double-precision arithmetic

on a Vax-11/780.

2.3. Cornish-Fisher series expansions for the quantiles of the mean of samples

from a logistic population

The representation of a quantile of one distribution in terms of the corresponding
quantile of another is widely used as a technique for obtaining approximations for the
percentage points. One of the most popular of such quantile representations was introduced
by Cornish and Fisher (1937) and later reformulated by Fisher and Cornish (1960) and is

referred to as the Cornish-Fisher expansion.

By means of formal substitutions, Taylor expansions and identification of powers of n,
the Cornish-Fisher expansion of a quantile z of F3,(z) which is the cdf of the standardized
mean of samples of size n from L(u,o?), in terms of the corresponding normal quantile y,

1s of the form

2=yt QT + 0TI,

j=1



where @ ;(y)’s are polynomials of y, which are obtained up to v = 8 in Draper and Tierney

(1973).

Using @ ;(y) from Table VII of Draper and Tierney (1973) and Aj(z) in (13), we obtain

the Cornish-Fisher series expansions for the quantiles z of F,(2) up to order v = 4,6, 8 as

follows:

and

2(v =4) =y + (D@ —3y)n™
+ () (E)(Y° - 10y° + 15y)
+(8)(£)2(—9y° + 724 — 8Ty)In"2 + O(n~/2),
2(v = 6) =2(v = 4) + [(z)()(y" — 21y° + 105y° — 105y)
+ () (2)(E)(—15y" + 255y° — 1035y° + 855y)
+ (3718)(£)%(243y" — 3537y° + 12177y° — 8667y)|n "
+0(n~"/?) (17)
2(v = 8)

= 2(v = 6) + [( ;) (2252)(y° — 36y" + 378y° — 1260y° + 945y)
+ (428)(£82)(8)(~21y° + 630y" — 5502y° + 15330y* — 9765y)

12!

+ (482)(48)2( 25, 4 700y” — 5850y° + 15900y° — 9945y)

(108105 )(8)2(48(495y° — 12510y" + 92370y° — 219810y° + 121455y)

(2821825 )(8)4(_11583y° + 259848y" — 1686906y + 3539376y

16!

— 1743471y)|n"* + O(n™%/?).

Table 2 provides the quantiles of the distribution of the standardized mean of samples

from the logistic population for sample sizes n = 3,5,10,15,25 and probability levels
o = 0.900,0.950,0.975,0.990,0.995 using the Cornish-Fisher series expansions correct to

order v = 8. Entries of the table were calculated by using double-precision arithmetic on

a Vax-11/780.
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2.4. Legitimacy of using the Edgeworth and Cornish-Fisher series expansions

Noting the similarity of the distribution of Z in (14), the standardized mean of samples
from L(u,0?), to the normal distribution in shape except its relatively longer tails, George
and Mudholkar (1983) compare the three approximations, that is, the standard normal
distribution, the Edgeworth series expansion correct to order n~! and the standardized
Student’s t distribution to the exact distribution of Z. In using the standardized Student’s
t distribution, they use the degree of freedom £ = 5n+4 which can be obtained by equating
the coefficients of kurtosis. They show that the Student’s ¢ distribution provides a very

good approximation.

We show here that the Edgeworth and Cornish-Fisher series expansions correct to
order n~3, which are given in the (16) and (17) respectively, are far better approximations

than even the Student’s ¢ distribution in George and Mudholkar (1983).

Table 3 illustrates the quality of the four approximations. In Table 3 the four approx-

imations, that is, the standard normal, the Edgeworth series expansion correct to n™!,

the standardized Student’s t and the Edgeworth series expansion correct to order n™* are
compared to the exact distribution given in Goel (1975). The approximation using the
Edgeworth series expansion correct to order n™> appears to be superior to the other three
by noting that the maximum error is about 0.0001 as shown in the last column of Table
3. The exact quantiles for n = 2,3,...,15 tabled by Goel (1975) were compared with the
corresponding approximations obtained form the Student’ ¢ distribution and the Cornish-
Fisher series expansion correct to order n™3, and it was found that for sample size 7 or
more the Edgeworth series expansion correct to order n™3 provides an excellent approxi-
mation for the standardized mean of samples from the logistic distribution. Consequently,

3

we will use the Edgeworth series expansion correct to order n™° as an approximation to

the distribution of the standardized mean of the samples from the logistic distribution

henceforth.

3. A single-stage procedure P; for selecting the population with the largest

mean from k logistic populations
Bechhofer (1954), in introducing the indifference zone formulation, considered the

11



problem of ranking means of normal populations with a common known variance. Here
we consider a single-stage procedure using an indifference zone approach for selecting the
population with the largest mean from k logistic populations when they have a common

known variance.

3.1. Statement of the problem

Let 7y,..., 7 be k independent logistic populations with unknown means g; and a
common known variance o2. let pry < - S be the ranked p;. We assume that it is
not known which population is associated with p;,2 = 1,...,k. We further assume that
a population is characterized by its population mean and the ‘best’ population is the one

having the largest mean.

Our procedure will be based on the sample means. Let X;,i = 1,...,k, denote the
means of independent samples of size n from i** population. The sample mean associated
with population having population mean p(; will be denoted by X:(i), that is, the expected
value of Y(i) is pp;. Let 7[1] <...< f[k] be ranked X;. If X; = fj for ¢ # j, due to
the limitations of the measuring instrument, the tied means should be ‘ranked’ using a

randomized procedure which assigns equal probability to each ordering.

Assuming that the goal of the experimenter is to select the best among the k popula-

tions, we propose a single-stage procedure P; as follows.

Procedure P;; Take n observations from the i** population for each ¢ = 1,..., k.

Compute the k sample means X1,...,X. Select the population associated with X:[k] as

the best one.

Defining the event of the experimenter’s selection of the best population with P; as
[CS|P4], the probability of a correct selection with the procedure Py, P{CS|P;1} can be

written as
P{CS|P,} = Pﬂ[f(k) > —X—(j),j =1,...,k—1]
= Pal(vn/o)(X ) — i) < (Vo)X wy — piw)
o k-1
= [ Bl (Vo) oy = iaE(2), (18)

12



where F,(2) is the cdf of the standardized mean of samples from a logistic population.

For the fixed values of the p; and o2 the probability of a correct selection will depend
only on the sample size n. We propose to design the experiment in such a way, that is,
choose the n in such a way that under specified conditions the probability of a correct

selection with procedure P; will be equal to or greater than some preassigned value P*.

3.2. Determination of the sample sizes

Now for the problem to be meaningful P* lies between 1/k and 1. Since the true
values of the u; are not known, we need the probability of a correct selection to be at least
P* whatever be the values of the y;. Thus we are interested in the configuration of the y;
for which the probability in (18) is a minimum. Such a configuration will be called a least
favorable configuration (LFC). It is obvious that the LFC is given by pupy) = ... = pp). But
unfortunately the minimum value of the probability in this LFC case is 1/k. So we cannot
achieve the probability requirement whatever be the sample size unless some modification

is made in the probability requirement.

A natural modification is to insist on the minimum probability P* of selecting the
-best population whenever the best is sufficiently far apart from the next best. In other
words, the experimenter specifies a positive constant 6 and requires that the probability of
selecting the best population is at least P* whenever (u[x — px—1]) > 6. The specification

of § provides a partition of the parameter space {1 where
Q={g=(p1,..- k)| —00 < pi <o0,i=1,...,k} (19)
into two parts, namely Q(§) where
Q(8) = {& € Q(pux — Kx-1) = 6} (20)

and the compliment Q¢(§) of (§). The minimization of the probability of selecting the
best population is over {(§). For an obvious reason, 2°(6) was called the indifference zone

by Bechhofer (1954). Subsequent authors have termed §2(6) the preference zone.

It is now easy to see that the LFC in §(6) is given by

0°(8) = {it € U6)|pps) = ppp—1y = 1y — 6} (21)

13



and the minimum sample size required is the smallest integer n for which

Jnt BOSIP = [ (Fae+ (VAfo)0) T dB(z) 2 P (22)

A table has been prepared to assist the experimenter in designing the experiments
to meet the above goal. Table 4 is to be used for designing experiments involving &
logistic populations to decide which has the largest population mean. The table provides
the estimates 71 of the values of minimum sample size n associated with the probability
P* = 0.75,0.90,0.95,0.99 for £ = 2,3,4,5,10,15, and §/0c = 0.5,1.0,2.0. These were
computed by setting the left hand side of (22) equal to P*. The minimum sample size n
can be obtained by n = [ + 1] where [t] denotes the greatest integer which is less than ¢.

All computations were carried out in double-precision arithmetic on a Vax-11/780.

4. Subset selection procedures

Gupta (1956, 1965) introduced a subset selection formulation as a multiple decision
problem, where the investigation was carried out for the case of normal means. Here
we consider the subset selection rules for selecting the population with the largest mean
from k logistic populations. We propose two subset selection rules R; and R; based on
sample means and sample medians respectively, provide tables for implementing these
rules, consider the performance characteristics of each rule, and we compare the two rules

to each other.

4.1. Statement of the problem

Let m;,i = 1,...,k, be k independent logistic populations with unknown means p; and
a common known variance o2. Let ppy < ... < ) be ranked p; and ;) be the population
with mean uj;;. We assume that it is not known which population is associated with
prgyt = 1,..., k. We further assume that a population is characterized by its population

mean and the ‘best’ population is the one having the largest mean, that is, 7.

Let X;j,7 = 1,...,n, denote a random sample from m;,¢ = 1,...,k, where the ob-
servations within and between populations are all independent. Let X; and X7 =
1,...,k,n = 2] — 1, denote the means and medians of samples of size n from m; respec-

tively. The sample mean and the sample median associated with the population having

14



population mean yf;; will be denoted by 7(1-) and X(;).,7 = 1,...,k, respectively. Let
X:[l] <...< ‘_X—[k] and Xpq3. < ... < X[x)1 be ranked X; and X, respectively.

The goal is to select a small but non-empty subset S of the k populations so that the
selected subset includes with a high probability P* the ‘best’ population. The size of the

selected subset S is an integer-valued random variable taking on values 1,..., k.

Let us define the two subset selection ruels R; and Ry based on the sample means

and sample medians, respectively, as follows;

Rule Ry: select m; if f

X; > X; - i =1,...
X’_l??gxkxj hio/v/n,i=1,...,k, (23)

and

Rule Ry: select ;1 f f
Ly > ] — =1,...
Xz.l = 112]_3'-%{,‘7 XJ.I th’/\/T_Z, t 17 ) ka (24)

where hy and h, are nonnegative constants.

By defining the events [CS|R;],7 = 1,2, as selections of any non-empty subset of k
populations which includes the best population using R;,t = 1, 2, respectively, it is required
that for any 7 € Q

PA[CS|R] > P, (25)

where P* € (1/k,1) and ( is the parameter space given by (19).

The requirement of (25) will be called as the basic probability requirement or the

P*-condition.

Remark 2.1 Lorenzen and McDonald (1981) used a subset selection rule R based on

sample medians defined as
Rule R: select m; if f
Xiq > max Xjy —d, d>0,1=1,...,k,
1<5<k

where X is defined as above. Here we use Ry instead of R only for the purpose of

comparing Ry to Ry easily. Basically the rule Ry is the same as Lorenzen and McDonald’s

rule R.

15



4.2 Probability of a correct selection
¢ Probability of a correct selection for the means rule R;

Using (23) we can write the probability of a correct selection for the rule R, as follows.

For i € Q,

P[CS|R]
= Pi[X 4y > X(j) — hao/v/n, Vi=1,...,k—-1]
= Pa[(vn/o)(X Gy — i) < (Vo) Xy — pm) + ha
+(Vn/o)pm — wn) Yi=1- k1]
= [T Bl ok (V) = i) (26)

—o0 J=

We see from (26) that the infimum over the parameter space of the probability of a

correct selection for the rule R; takes place when y = ... = p; and so
inf FlOSIR = [ (B o+ b)) () (27)
That is, the LFC for the rule R; is 2° where
Q" ={Felu=...= p = p} (28)

and the Pz[CS|Ry] in the LFC does not depend on this common y. Hence, if we choose

h1 to satisfy
/ (Fu(z + h1)}¥ 1 dFu(z) = P* (29)

—00

then we have determined the smallest h; for which

i > P*,
l_}lélg Pz[CS|R,] > P (30)

It should be noted that h; = hy(n, k, P*) depends on n as well as k and P*.

Table 5 gives the values of hy = hi(n,k, P*) which satisfy (29) for n = 6(1)10,k =
2(1)10 and P* = 0.75,0.90,0.95,0.975,0.99. We use the Edgeworth series expansions

correct to order n=% for F,,(z) and fn(z), the Gauss-Hermite quadrature algorithm with

16



sixty nodes for the evaluation of the integrals and the modified regular falsi algorithm for

solving the non-linear equation.
e Probability of a correct selection for the medians rule Ry

Let Z;.1,...,Z;n be a random sample of size n, where n is an odd integer, drawn
from the 7** standard logistic population. Then it is well known that the sample median,

denoted by Zi.,(n = 2] — 1), has the pdf

ga(2) = %—lz)l—z)w(zn’-lu P ()
and the cdf
Gul) = H{F(2) L, 1), (31)

where f(z) and F(z) are the pdf and cdf of the standard logistic population given by (3)

and (4) respectively and I{y; a, b} is the incomplete beta function with parameters a and
b, which is given by

I'(a+1b) [¥

‘ I{y;a, b} = ORONA w* (1 — w)*duw. (32)

- Now the probability of a correct selection for the medians rule R, can be written as

follows. For I €

Pp;[CS'Rz] = P/I[X(k):l Z X(])I - hzO’/\/’ﬁ, V] == 1, ceey kE— 1]
= Pﬂ[Z(])l < Z(k):l + h2/\/ﬁ
*© k-1
= / T Ga(t + ha/vn+ (ppy — pys1)/0)dGn(t). (33)

—c0 J=1

We see that the infimum over § of the probability of a correct selection for the rule

R, takes place when py = ... = pg = p and so
éxelg P;[CS|Ry) = /_ Z{Gn(t+ ha/v/R) T dGR(2). (34)

Hence, if we choose hg to satisfy
| (Gatt 4 /a6 (0) = P, (35)
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then we have determined the smallest hy for which

. > p*
;%Ielff‘l P3[CS|Ry) > P (36)

The values of hy/+/n = ha(n, k, P*)//n which satisfy (35) for n = 1(2)19,k = 2(1)10
and P* = 0.75,0.90,0.95,0.975,0.99 were given in Table I of Lorenzen and McDonald
(1981).

4.3. Performance characteristics

In this section some performance characteristics of the subset selection procedures Ry

and R, are studied.

LetPy[r(;)|R;),¢ = 1,...,k,j = 1,2, denote the probabilities of including in the subset
the population 7(;), that is, the i** ranked population, using the rule R; for the i € Q,
thenforz=1,...,k,

Pyl |Ra] = PalX (i) 2 maxi<j<eXj — hao//n, by 2 0]

= [T R b+ () — ma)FO) (37)

ji=1
—0Q0 . .-
J#i

and
Palm(i)|Re] = Pu[X(iya 2 maxi<j<eX(j)1 — heo/v/n, he > 0]
©
= [ B Galt o+ ha/VA+ (g ~ ) 2)AG (0. (39)

TO0 i
It is easy to see that the expected sizes of the selected subset using the rule R; for

£ € Q, denoted by E[S|R;j],j = 1,2, are given as follows:

k
Ea[S|R;] = ZPﬁ[W(iﬂRJ‘]- (39)

Consistent with the basic probability requirement, we would like the size of the selected

subset to be small.

The expected numbers of non-best populations selected by rule R; for i € 2, denoted
by Ez[S*|R;],7 = 1,2, are defined as

k-1
Eg[S*|R] =Y Pa[ms)|Ry] (40)

i=1
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and also we would like the value of the Ez[S*|R;] to be small.

In using the rule R;,j = 1,2, the ranks of the selected populations are random vari-
ables and one may want to evaluate the expected sum of ranks of the selected popula-
tions. Let the population with parameter up; be assigned rank :,4 = 1,...,k. Then the
expected sums of ranks of the selected populations by rule R; for g € €2, denoted by

- Ez[SR|R;],j = 1,2, are
k

Ez[SRIR;] =) iPx[r|R;]. (41)

i=1
For given i € §, the expected proportions of the selected populations by the rule R;,
denoted by Ez[P|R;],j = 1,2, are given by

Ep[P\R;] = Eg[S|R;]/*. (42)

Since the values of Pglm;y|R;],5 = 1,2, depend on { € {2, we consider them for the

special case, namely the slippage configuration.

For the slippage configuration, we assume that the unknown means of k£ populations
are uy;) = 1, § =1,...,k—1,and pj) = p+6o for 6 > 0. Then the probabilities of including
in the selected subset the population 7(;) using the rule R;, denoted by Psy[n(;)|R;],J =
1,2, are given by

Poplm(iy | Fal

- / (Bt + h )P 2Fa(t 4 by — 63/m)dFa(t)yi = 1,... k1

— 00
o0

Pulrn|Bil = [ {Fu(t+ b+ 6/} HE(Q)
Pgp[m(s)| Re]
= /oo {Ga(t + ho /)Y 2Ga(t + hi/v/m — 6)dGa(t),i = 1,...,k — 1,
and

Puly|Bal = [ {Galt+ ha/y/i+ YGn(1)

Now we can compute the performance characteristics Ez[S|R;], Ez[S*|R;], Ez[SR|R;]
and Ez[P|R;] for the slippage configurations by substituting Ps,[m(;y|R;] for Pg[m(;)|R;] in
(39), (40), (41) and (42) respectively.
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Table 6 gives the values of the performance characteristics of the mean rule R; and
Table 7 gives the same values of the medians rule R, for the slippage configuration for the

given values of k = 2,3,5,10, P* = 0.90,n = 3 and /né = 0.5,1.0,2.0,3.0,5.0.

For instance, from Table 6 for P* = 0.90,n = 3,k = 5 and 8y/n = 1.5, the probability
of a correct selection by using the means rule Ry is 0.991. The expected size of the selected
subset is 4.006 and the expected number of the non-best populations selected is 3.015. The
expected sum of the ranks in the selected subset is 12.49 and the expected proportion of
the selected population is 0.801. It should be noted that the expected sum of ranks by
itself is not a good criterion of the performance of a selection rule. It should be looked at
together with the expected values of S and S* to make a more meaningful performance

characteristic.

Note that, for both rules Ry and Ry and for the fixed values of P*,n,k and 1 =
1,2,...,k — 1(k), the probability of selecting the it* ranked population in the slippage
configuration can be proved to be monotonically decreasing (increasing) with §1/n and

“hence monotonically decreasing (increasing) with § and n separately. Also for i = 1(k),
the probability of select'ing the 7t* ranked population in the equally spaced configuration
can be proved to be monotonically decreasing (increasing) with §1/n. A look at the table
values seems to indicate that, for both rules R; and R; and for the fixed values of P*,n,k
and ¢ = 2,...,k — 1, the probability of selecting the it* ranked population in the equally
spaced configuration is also monotonically decreasing with §y/n. For fixed P*,i,n and
§y/n, the probability of selecting the 3t ranked population is monotonically decreasing
with the values of k for all 7,7 = 1,...,k.

4.4. Comparison between the means rule R; and the medians rule R,

In this section we compare the efficiency of the means rule R; to that of the medi-
ans rule Ry. Lorenzen and McDonald (1981) have studied the problem of large sample
comparisons between the two rules R; and R;. They computed the asymptotic relative

efficiency (ARE) of R, relative to Ry defined by, for e € (0,1) and i € Q,

. NRy
ARE(Ry, Ry i) = 161?51 Ne.’
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where Ng;,j = 1,2, are the numbers of observations needed so that
inf Pz[CS|R;] = P*

and

EalS°*|R;] = ¢

by assuming a slippage configuration, that is,
prayp == pe-1 = 0, pp = 6> 0.

Their value of the ARE(Ry, R; i) is 0.822. Thus, under a slippage configuration, asymp-
totically the means procedure requires about 82% of the sample size required by the me-

dians rule to achieve the same expected number of non-best populations in the selected

subset.

Now we consider the small sample comparisons between the rules R; and R, by using
the performance characteristics of each rule given in the previous section. In Table 8, we
compute the values of the probability of a correct selection (P(CS)), the expected sizes of
the selected subset (E(S)), the expected numbers of non-best populations in the selected
subset (E(S*)), the expected sums of the ranks of the populations selected in the subset
(E(SR)) and the expected proportions of the populations selected in the subset (E(P))
for each rule R; and R, and the ratio of those values of the rules when the unknown means
have the slippage configuration for the selected values of P* = 0.90,0.95,n = 3,5,k = 4,
and é4/n = 1.5,3.0.

It was found that

e P(CS|R;)/P(CS|Rz2) > 0.991 for all cases, the values of P(CS)’s are not much dif-

ferent for all cases.

e E(S|R1)/E(S|R;) <1 for all cases, the values of E(S), E(S*), E(SR) and E(P) for

the rule Ry are less than or equal to the same values for the rule R, for all cases.

o The values of the ratio of the rules R; and R; for all characteristics are decreasing as

the values of n are increasing.
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Hence, as expected, the means rule Ry is definitely better than the medians rule R, in
the sense of their performance characteristics and the performance of the rule R; relative

to the rule R, improves as sample sizes increase.
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Table 1. Approximate cdf of the standardized mean of samples

from a logistic population: Sample sizes n = 3, 10, 13.

z\n 3 10 15

0. 0.500 0.500 0.500
0.10 0.542 0.540 0.540
0.20 0.583 0.580 0.580
0.30 0.623 0.620 0.619
0.40 0.662 0.658 0.657
0.50 0.699 0.694 0.693
0.60 0.734 0.728 0.728
0.70 0.767 0.761 0.760
0.80 0.797 0.791 0.790
0.90 0.824 0.819 0.818
1.00 0.849 0.844 0.843
1.20 0.890 0.887 0.886
1.40 0.922 0.920 0.920
1.60 0.946 0.946 0.946
1.80 0.964 0.964 0.964
2.00 0.976 0.977 0.977
2.20 0.984 0.985 0.986
2.40 0.990 0.991 0.991
2.60 0.994 0.995 0.995
2.80 0.996 0.997 0.997
3.00 0.998 0.998 0.998
3.40 0.999 1.000 1.000
3.80 1.000 1.000 1.000
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Table 2. Approximate quantiles of the standardized mean of samples from a
logistic population using Cornish-Fisher expansion for v = 8.

Probability level
n 0.900 0.950 0.975 0.990 0.995
3 1.2550 1.6377 1.9850 2.4100 2.7136
5 1.2651 1.6403 1.9755 2.3786 2.6624
10 1.2731 1.6425 1.9680 2.3534 2.6208
15 1.2759 1.6433 1.9654 2.3446 2.6062
25 1.2781 1.6439 1.9632 2.3374 2.5942

Table 3. A comparison of four approximations for the cdf of standardized mean of

samples of size 3 from a logistic population.

z || () | FE(z) - ®(2) | Fi(z) - Ga(e) | Fi(2) — Ta(2) | F5(2) — Ga(=)
0.05 || 0.5209 0.0010 0.0000 0.0001 0.0000
0.15 |} 0.5625 0.0029 0.0000 0.0003 0.0000
0.25 | 0.6033 0.0046 0.0008 0.0005 0.0000
0.45 |} 0.6809 0.0073 —0.0017 0.0007 0.0001
0.65 || 0.7506 0.0084 —0.0006 0.0007 0.0000
0.85 || 0.8106 0.0083 —0.0007 0.0007 0.0000
1.00 || 0.8486 0.0073 —0.0008 0.0004 0.0000
1.20 || 0.8903 0.0054 —0.0007 0.0002 0.0000
1.45 || 0.9291 0.0026 —0.0004 0.0000 0.0000
1.75 || 0.9598 —0.0001 0.0001 —0.0002 0.0000
2.50 || 0.9918 —0.0020 0.0004 0.0002 0.0000
3.00 || 0.9975 —0.0012 0.0001 0.0001 0.0000

F{(z) = cdf of the standardized mean of 3 iid logistic r.v.’s.
®(z) = cdf of the standard normal r.v.

Gs(z) = Edgeworth series expansion correct to order n™

1

Ts5(z) = cdf of the standardized Student’s r.v.’s with 19 d.f.

G5(z) = Edgeworth series expansion correct to order n™
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Table 4. Values of the estimate 7 of the minimum sample size n
for the single-stage procedure.

k §/a P
075 | 090 | 095 [ 0.99
2.00 0.20 0.77 1.34 2.82
2 1.00 0.81 3.22 5.40 10.94
0.50 3.51 13.07 21.63 43.42
2.00 0.46 1.21 1.85 3.42
3 1.00 1.95 4.93 7.36 13.25
0.50 8.11 19.86 29.40 52.49
2.00 0.65 1.49 2.17 3.78
4 1.00 2.74 5.99 8.55 14.61
0.50 11.23 24.02 34.06 57.86
2.00 0.80 1.69 2.39 4.04
5 1.00 3.34 6.76 9.40 15.58
0.50 13.56 27.04 37.40 61.67
2.00 1.28 2.28 3.03 4.76
10 1.00 5.12 8.96 11.80 18.29
0.50 20.50 35.66 46.86 72.38
2.00 1.56 2.61 3.39 5.15
15 1.00 6.14 10.17 13.12 19.77
0.05 24.41 40.39 52.01 78.17
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Table 5: Values of h; for the means rule R; for selecting the the subset containing the largest

logistic population mean: P* = 0.75,0.90,0.95

n k 0.75 0.90 0.95
2 0.5395 1.0351 1.3400
3 0.8131 1.2794 1.5696
3 4 0.9572 1.4115 1.6953
5 1.0538 1.5012 1.7813
10 1.3068 1.7395 2.0115
2 0.4213 0.8052 1.0388
3 0.6342 0.9935 1.2143
S 4 0.7457 1.0945 1.3097
) 0.8200 1.1628 1.3746
10 1.0123 1.3423 1.5468
2 0.2997 0.5712 0.7351
3 0.4509 0.7039 0.8578
10 4 0.5296 0.7746 0.9242
) 0.5818 0.8221 0.9691
10 0.7159 0.9463 1.0875
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Table 6: Performance characteristics of the median rule R; under the slippage configu-

ration for P* = (0.90 and n = 3.

8/
k P(Select 7;) ] 0.5 | 1.0 | 20 | 3.0 | 50
2 i=1 0.824 | 0.717 | 0.440 [0.192 | 0.013
i=2 0.948 | 0.975 | 0.995 | 0.999 | 1.000
E(S) 1772 | 1.692 | 1.436 | 1.192 | 1.013
E(S*) 0.824 | 0.717 | 0.440 | 0.192 | 0.013
E(SR) 2.720 | 2.667 | 2.431 | 2.191 |2.013
E(P) 0.886 | 0.846 | 0.718 | 0.596 | 0.506
3 :1=1,2 0.856 | 0.784 | 0.552 | 0.283 | 0.025
;=3 0.950 | 0.977 | 0.996 | 0.999 | 1.000
E(3) 2.662 | 2.545 | 2.100 | 1.565 | 1.050
E(S*) 1.712 | 1.568 | 1.104 | 0.566 | 0.050
E(SR) 5.418 | 5.283 | 4.644 | 3.847 | 3.076
E(P) 0.887 | 0.848 | 0.700 | 0.522 | 0.350
5 ¢=1,...,4 | 0.875 | 0.829 | 0.647 | 0.380 | 0.045
i=5 0.951 | 0.978 | 0.996 | 1.000 | 1.000
E(S) 4.453 | 4.295 | 3.585 [ 2.519 | 1.178
E(S*) 3.502 | 3.317 | 2.588 | 1.520 | 0.178
E(SR) 13.510 [13.183 |11.453 | 8.797 | 5.446
E(P) 0.891 | 0.859 | 0.717 | 0.504 | 0.236
10 :=1,...,9 | 0.888 ] 0.862 | 0.734 | 0.492 | 0.078
i =10 0.952 | 0.979 | 0.997 | 1.000 | 1.000
E(S) 8.943 | 8.735 | 7.602 | 5.428 | 1.702
E(S*) 7.991 | 7.756 | 6.605 | 4.429 | 0.702
E(SR) 49.476 |48.572 [42.992 |32.140 |13.509
E(P) 0.894 | 0.874 | 0.760 | 0.543 | 0.170
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Table 7:  Performance characteristics of the median rule R, under the slippage configu-

ration for P* =0.90 and n = 3.

8y/n
k P(Select ;) | 0.5 1.0 2.0 3.0 5.0
2 =1 0.968 | 0.939 | 0.817 |0.594 |0.136
1 =2 0.992 | 0.997 | 0.999 | 1.000 | 1.000
E(S) 1.960 | 1.935 | 1.816 |1.594 |1.136
E(S*) 0.968 | 0.939 | 0.817 |0.594 |0.136
E(SR) 2.953 | 2.932 | 2.816 |2.594 |2.136
E(P) 0.980 | 0.968 | 0.908 |[0.797 |0.568
3 =12 0.986 | 0.976 | 0.920 |[0.779 |[0.284
=3 0.996 | 0.998 | 1.000 |1.000 |1.000
E(S) 2.968 | 2.949 | 2.839 |2.557 |[1.567
E(S*) 1.972 | 1.951 | 1.840 | 1.557 |0.567
E(SR) 5.946 | 5.921 | 5.759 |5.336 | 3.851
E(P) 0.989 | 0.983 | 0.946 [0.852 |0.522
5 1=1,...,4 0.993 | 0.990 | 0.967 |[0.893 |0.468
1=95 0.998 | 0.999 | 1.000 | 1.000 [ 1.000
E(S) 1971 | 4.958 | 4.868 |4.571 |2.873
E(S*) 3.974 | 3.959 | 3.868 |[3.571 |1.873
E(SR) 14.923 [14.893 |14.669 |[13.927 |9.682
E(P) 0.994 | 0.992 | 0.974 [0.914 |0.575
10 2 =1,...,9 0.997 | 0.996 | 0.989 [0.959 |0.676
=10 0.999 | 1.000 | 1.000 | 1.000 |1.000
E(S) 9.971 | 9.963 | 9.897 |9.627 | 7.088
E(S*) 8.972 | 8.963 | 8.897 |8.627 |6.088
E(SR) 54.851 |54.812 |54.485 |[54.136 [40.440
E(P) 0.997 | 0.996 | 0.990 |0.963 |0.709

30



Table 8: Comparison of the rule R; and Ry: Slippage configuration.

P*=090,n=3k=4

5/n=15 6+/m = 3.0
Perf. Char. Ry Ry Ri/R, Ry R, R,/R,
P(CS) 0.991 1.000 0.991 1.000 1.000 1.000
E(S) 3.169 | 3.921 | 0.808 | 2.018 | 3.560 | 0.567
E(S*) 2.179 2.922 0.746 1.018 2.560 0.398
E(SR) 8.320 9.841 0.845 6.034 9.120 0.662
E(P) 0.792 | 0.980 | 0.808 | 0.504 | 0.890 | 0.566
P*=090,n=5/k=4
5\ /n=15 §\/n = 3.0
Perf. Char. R1 R2 Rl /Rz R1 Rz Rl /R2
P(CS) 0.991 | 1.000 | 0.991 | 1.000 | 1.000 | 1.000
E(S) 3.167 | 3.999 | 0.792 | 2.025 | 3.917 | 0.517
E(5*) 2.176 | 2.922 | 0.727 | 1.025 | 2.917 | 0.351
E(SR) 8.317 9.983 0.833 6.048 9.834 0.615
E(P) 0.792 0.998 0.794 0.506 0.979 0.517
P*=095,n=3,k=4
5y/n =15 6+/n = 3.0
Perf. Char. R1 Rz Rl/Rz Rl R2 - R1 /Rz
P(CS) 0.996 1.000 0.996 1.000 1.000 1.000
E(S) 3.496 3.981 0.878 2.435 3.852 0.632
E(S*) 2.500 2.981 0.839 1.435 2.852 0.501
E(SR) 8.985 9.962 0.902 6.869 9.703 0.689
E(P) 0.874 0.995 0.878 0.609 0.963 0.632
P*=095,n=5k=4
5/n=15 6y/n = 3.0
Perf. Char. Rl R2 Rl /R2 R1 R2 Rl /Rz
P(CS) 0.997 | 1.000 | 0.997 | 1.000 | 1.000 | 1.000
E(S) 3.489 3.999 0.827 2.429 3.987 0.609
E(S*) 2.492 2.999 0.831 1.429 2.987 0.478
E(SR) 8.971 | 9.998 | 0.897 | 6.858 | 9.974 | 0.688
E(P) 0.872 1.000 0.872 0.607 0.997 0.609
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