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Abstract

We study the problem of testing Hy: 8 > 6y against Hy:0 < 6y with 0 — L; loss for
a truncation parameter distribution family through the nonparametric empirical Bayes
approach. A monotone empirical Bayes testing procedure d}; is proposed. The asymptotic
optimality of the empirical Bayes procedure d}, is investigated. It is shown that under
certain regularity conditions, the associated convergence rate of the empirical Bayes pro-
cedure d¥ is of order O(((¢n n)**%/n)?/3) where n is the number of accumulated experience
at hand and § is a small positive number.
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1. Introduction

Since Robbins (1956, 1964), empirical Bayes theory has been developed extensively
in the literature; for example, see Johns and Van Ryzin (1971, 1972), Van Houwelingen
(1976) and Stijnen (1982) for empirical Bayes testing, and Lin (1972, 1975), Singh (1976,
1979) for empirical Bayes estimation. Many of the authors are dealing with exponential
family distributions with either linear error loss (for testing problem) or squared error
loss (for estimation problem). In recent years, there appears to be a growing interest in
empirical Bayes analysis for nonexponential families. Fox (1970, 1978), Wei (1983, 1985)
and Nogami (1988) have considered empirical Bayes estimation for the parameter 6 of a
uniform distribution 2/(0, ) with squared error loss. Van Houwelingen (1987) and Liang
(1990) have studied empirical Bayes testing procedures for a #/(0, 8) distribution with linear
error loss. Gupta and Hsiao (1983) and Huang and Liang (1990) have developed empirical
Bayes selection procedures for ¢(0,6) distributions. Recently, Datta (1991) studied an
empirical Bayes estimation problem with squared error loss for a class of distribution
having pdf f(z|0) = -:17(%)51(0’0)(.’17), where a(z) > 0 for £ > 0 and A(f) = foo a(z)dz < oo,
which includes uniform distributions ¢(0,6) as a special case. Also, Prasad and Singh
(1990) studied an empirical Bayes estimator for the truncated location parameter in a

truncated exponential distribution.

In this paper, we study an empirical Bayes testing procedure for testing Ho:6 > 6o
against Hy:6 < 6y with 0—L; loss in a distribution with pdf f(x|6) given above. The general
setup of this testing problem is described in Section 2. Motivated by the behavior of a Bayes
decision procedure, a monotone empirical Bayes testing procedure d}, is proposed in Section
3. Finally we investigate the asymptotic optimality of the empirical Bayes procedure dy,.
It is shown that under certain regularity conditions, the associated convergence rate of the
empirical Bayes procedure d* is of order O(((¢n n)!*%/n)2/3), where n is the number of

accumulated experience at hand, and § is a small positive number.



2. The Testing Problem

Let X be a random variable having a distribution with pdf

f(=|0) = %I(o,e)(w), (2.1)

where a(z) > 0 for z > 0 and A(9) = foo a(z)dz < oo for all 8 > 0. We consider the
problem of testing Hy: 0 > 6y against Hq:60 < 6y with the 0 — L; loss:

L(H, Z) = (1 — i)LoI(O,oo](o) + iLlf(go,oo)(a), (2.2)

where 6 is a known positive constant, and ¢ denotes the action in favor of the hypothesis
H;, :=0,1and L; > 0, : =0,1. It is assumed that the parameter 0 is a realization of a

random variable © having an unknown prior distribution G over (0, co).

A decision procedure d is defined to be a mapping from X, the sample space of the
random variable X, into the interval [0, 1] such that d(z) is the probability of taking action
0 when X = z is observed. Let D be the class of all decision procedures. For each d € D,
let r(G,d) denote the associated Bayes risk. Then, r(G) = }2}1‘_‘) r(G,d) is the minimum
Bayes risk among all decision procedures in D. A decision procedure, say dg, such that

r(G,dg) = r(G) is called a Bayes procedure.

Based on the precedingly described statistical model, simple algebraic computation

yields that for each d € D,
(G, d) = / ~ d@)[LoGlbolz) — Li(1 — G(Bo]2)))f(z)dz + C, (2.3)
z=0

where
* a(z)

@) = [ saipic®) = [ 57360 = )i,

* 1
P(z) = / ——dG(9),
(=) . A) (9)
G(0|z) is the posterior distribution of © given X = z, and

C = Ly[1 — G(o)].

Straightforward computation yields

6O ={1_ 30 g5y @9



Hence,

8o oo
(G, d) = / ROCOTOUS / | d(@)x f(e)d +C, (2.5)

where

Qz) = Lob(2) — (Lo + L1)(60). (2.6)
It is clear that the Bayes procedure dg can be obtained as follows:

1 if (X >6) or (X <6 and Q(X) £0), (2.7)
0 otherwise. )

da(X) ={

An Alternative Form of the Bayes Procedure dg

Let S = {0 <z < 60|Q(x) <0} and T = {0 < z < 6|Q(z) > 0}. Define

inf S if S
so-——-{g; ifsiz; (2.8)

T T
t°={?)up ;fTizf (2.9)

Since () is nonincreasing in z for all z > 0, by (2.7), @(z) is nonincreasing in z. By the
definitions of sq and to and the nonincreasing property of Q(z), to < so. We see that the

Bayes procedure dg can be presented in the following form:

1 if X 230;
de(X) = {any if to < X < s0; (2.10)
0 if X <tp.

Note that as to < so, by the definitions of so and to, Q(z) = 0 for = € (%o, s0). In such

a situation, no matter what action is taken, it does not affect the Bayes risk.

When the prior distribution G is unknown, it is not possible to apply the Bayes
procedure dg for the decision problem at hand. Suppose that the same decision problem
repeats independently and certain past experience is available. In such a situation, the

empirical Bayes approach can be applied.

Note that the class of densities {f(z|6)|@ > 0} has monotone likelihood ratio in z. For

the 0 — L; loss, all monotone decision procedures form an essentially complete class; see
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Berger (1985). Therefore, we seek a monotone empirical Bayes procedure for the testing

problem under study.

3. A Monotone Empirical Bayes Testing Procedure

For the empirical Bayes framework, for each j = 1,2,..., let (X;,0;) be a pair of
random variables incurred at stage j, where X is observable but ©; is not observable.
Conditional on ©; = 6;, X; has a pdf f(z|0;). It is assumed that (X;,0;), j =1,2,...,
are mutually independent and ©1,03,... are iid having the unknown prior distribution
G. Therefore, X1, Xa,... are iid with pdf f(z). Suppose that we are now at stage n + 1.
S0, Xn+1 is the present random observation and Xj, ..., Xy are the n past observations.
An empirical Bayes procedure is a decision procedure for testing Ho:6n41 > 6o against
H,:0,41 < 6y with the error loss (2.2), which can be viewed as a function of the present
observation X411 =  and the n past observations X1,...,Xn, and is denoted by dn(z) =
dn(z; X1, -, Xn)-

Let V; = A(X;),i=1,...,n+1. It can be shown that conditional on ©; = 6;, Y;
is uniformly distributed over the interval (0, A(6;)). Therefore, Y; has a marginal pdf, say
h(y),

h(y) = /O_A_I(y) A(o)dG(G),y > 0. (3.1)
Hence,
h(A(z)) = / A(a)dG(G) ¥(z),@ > 0. (3.2)

Let Hp(y) = L E I(0,4)(Y;) be the empirical distribution based on Y1,...,Y,. Let

{b,} be a sequence of pos1t1ve numbers such that lim b, = 0 and lim nb, = oco. For
n—o0 n—o0

each z > 0 and each n, define
Pn(x) = [Ha(A(z) + bn) — Ha(A(2))]/bn (3.3)

and
Qn(z) = Lotpa(z) — (Lo + L1)¥n(bo)- - (34
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Based on the form (2.7) of the Bayes procedure dg, we may consider an empirical

Bayes procedure d;, defined as follows:

o 1 if (Xp41 2 00) or (Xpt1 < 6 and Qpn(Xp41) < 0);
d°(Xniy) = { nt+1 2 o nt+1 < bo n(Xn+1) < 0); 35
w(Xn+1) 0 otherwise. (3.5)

However, since Q,(z) may not be nonincreasing in z, the empirical Bayes procedure

d° is not a monotone decision procedure. In the following, we consider a monotonized

version of the empirical Bayes procedure d;,.

Let A, = {0 < z < 65|Q~(z) > 0}. Also let a, = fA,. a(z)dz. Note that A, C (0,6)).

Therefore, a, < f00° a(z)dx = A(6p). Since A(z) is a strictly increasing function, we have

A_l(an) < 6.

We propose an empirical Bayes procedure dj, given as follows:

= {1 o> £ 50

0 otherwise.

;From (3.6), it can be seen that d}, is a monotone procedure.

Let (G, d2) and (G, d},) denote the conditional Bayes risks (conditional on the past
observations X, = (X1,...,Xn)) of the empirical Bayes procedures d;, and dj,, respec-

tively. That is, from (2.5),

fo ()
16,6 = [ d@Q@ai - /0 Lif(z)ds +C, 3.7)
and ,
G, d") = /0 4 (2)Q(2)a(z)dz — /0 L1f(z)ds +C. (3.8)

The following theorem provides the superiority of dj, to d,.

Theorem 3.1. The monotone empirical Bayes procedure d;, dominates the empirical

Bayes procedure d2, in the sense that r(G,d},) < r(G,d;) for all X, for all n.

Proof: Let C,, = (0,6p)\A,, the complement of A, relative to (0,60). Also, let A}, =
(0,A'(a,)) and C} = [A7Y(an),bp). Hence, Co U A, = C; U A}, = (0,6p). By the
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definitions of dS and d};, for 0 < z < by,

o [0 ifz€E Ap
dn(z) = { 1 ifzeCy; (3.9)
and
<~ JO ifze€A;
do(2) = { 1 ifceCh (3.10)

Therefore, from (3.7)—(3.10),
T(Ga d;) - T(Ga d:z)

9o 6o
- [ @@ - [ d@Ra()e

= [ Q@a(z)dz - / Q(z)a(z)de
Chn cs
= Q(z)a(z)dz + /C (3.11)

CanC

Q(z)a(z)dz]
A

n

1 Q@+ |

CcinCy

Q(z)a(z)dz]
An

-
n

_ /C - Q(z)a(c)dz — /C _ QE)ala)d

n n

Note that for each z; € C, N A% and each z3 € Cj; N Ay, by the definitions of a,,
A* and C?, we have z; < A7'(as) < z. Since Q(z) is nonincreasing in z, therefore,

Q(z1) > Q(A7(an)) 2 Q(z2)- Let g1 = eci‘nf e Q(z) and g2 = sup Q(z). We have
z€CNAG z€CENAR

Q1 2 g2 (3.12)

By the definition of a, and A7,

/ o(z)ds = an = /0 A e = /A a(a)da.

n n

Hence

/ a(z)dx +/ a(z)dz =/ a(z)dz +/ a(z)dz
AnnA A,OC* AnnA, A%NCh

which implies that
/ a(z)dz =/ a(z)dz. | (3.13)
AnnC?, A:NC,,
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Now combining (3.11)-(3.13) and by the definitions of ¢; and ¢2, we can obtain
r(G,d;) —r(G,dy,)
= [ Q@@ [ Q@a(e)ds
CnNAY, cs

nn"

2o a@de-n @i (314
CnnA* CinAn,
=(q¢ — qg)/ a(z)dz > 0.
CnnA?
Hence the proof of the theorem is completed. O

It should be noted that the idea of monotonizing the decision procedure in a monotone
decision problem so that to improve the performance of the decision procedure is known

in the literature; for example, see Berger (1985).

4. Asymptotic Optimality of d;,

For an empirical Bayes procedure dy, let (G, d,) denote the associated conditional
Bayes risk (conditional on the past observations X ) and E[r(G,d, )] the associated overall
Bayes risk. That is,

"G.dn) = [ °=° dn(=){ZoG(b0]7) — Ly(1 ~ G(Bo]2))] f(z)dz + C,

and
o0

E[r(G,dn)l = | Eldn(2)][LoG(bo|z) — L1(1 — G(bo|2))] f(z)dz + C,

z=0

where the expectation E[d,(z)] is taken with respect to X,. Since r(G) is the minimum
Bayes risk, (G, d,) —r(G) > 0 for all X, and for all n. Therefore, E[r(G,d,)] —r(G) >0
for all n. The nonnegative regret risks (G, d,) — r(G) and E[r(G,d,)] — r(G) can be used
as measures of the performance of the empirical Bayes procedure d,. In the following, we

are concerned only with the difference E[r(G, d,)] — r(G).

Definition 4.1. A sequence of empirical Bayes procedures {d,}32, is said to be asymp-
totically optimal of order {a,,}52, in F relative to the prior distribution G if E{r(G, d,)]—

r(G) = O(ay) where {a,}2, is a sequence of positive numbers such that a;,, = o(1).

8



In the following, we investigate the asymptotic optimality of the sequence of the
empirical Bayes procedures {d},}. Without loss of generality, we may assume that 0 < o,

sp < 6. It is also assumed that the prior distribution G satisfies the following conditions:

Condition A. There exist positive constants €, m and M where ¢ < min(%g, 8y — s0) and

m < M such that
2

v

m(to — x)s L ° A(e) dG(a) for z € [to S,to],

o mmss

——dG(0) for y € [so, S0 + €];

A(e)

/; A(lﬂ)dG( M(z—y)for0<y<w<oo

It should be noted that the constants g, m and M depend on the prior distribution G.
Also, under Condition A, Q(to) = Q(s0) = 0.

We also assume that the function a(z) has the following properties.

[P1] There is a positive constant k* such that a(z) < k* for all 0 < z < 6,.

[P2] There exists a positive constant k such that for each z in a neighborhood of 6, or in

a neighborhood of ¢, and for b > 0 being very small, A(z) + b < A(z + kb).

Though the requirement of the function a(z) to possess the properties [P1] and [P2]
is a restriction, the class of pdfs f(z|f) under consideration is still broad enough to cover

many plausible probability distributions.

The sequence of the empirical Bayes procedures {d}} has the following asymptotic
optimality.

Theorem 4.1. Suppose the prior distribution G satisfies Conditions [Al] and [A2] and
the function a(z) possesses the properties [P1] and [P2].

Then
E[r(G,d:)] — r(G) = O(b2) + O(exp(—7nbl)),
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where 7 = k2m2L2/{8{MA~1(6y) + 85" 1(Lo + L1)*}. Hence letting b, = [(£n n)18 /n]'/3,

where § > 0, we have

Elr(G,d3)] - r(G) = O(((¢n n)** [n)*1*).

To present a concise proof of the theorem, we introduce several useful lemmas. Since
lim b, = 0, in the following, we only consider the case where b, is sufficiently small such

n—oo
that éML—If’:'#)b—”max(l,k) < & where ¢ and k are the constants described in [Al] and

[P2], respectively.
Lemma 4.1. Let 0 < b < b, and the function a(z) possesses the property [P2]. Then,
(a) For each 0 < z < to — 2kbn, A(z) +b < A(to — kbn).

(b) A(60) +b < A(6g + kb).

Proof: (a) By the increasing property of A(-), for 0 <z <ty — 2kby,

A(z) + b < A(to — 2kbn) + b
< A(to — 2kby, + kb) (by property [P2])
< A(to — kby). (since b < by)

(b) By taking z = 6, then the result follows from [P2]. O

Lemma 4.2. Suppose that Conditions [A1] and [A2] hold. Then,

(a) imkLobn, < Q(to — ikb,) <1 MkLoby, for i =1,2;

(b) _2M2(L0;L1)kbn < Q(so + M) < —2Mk(Lo + L1)ba.

Lem

Proof: (a) Since Q(to) =0,
Q(to — ikbn) = Q(to — ikby) — Q(to)
[ “Lace
=50 [ 790

10



Under [Al], imkb, < fo kb A(o)dG(O) and under [A2], f to—ikbn A(lo)dG(G) < i Mkb,.

Hence the result follows directly.

(b) By noting that Q(s¢) =0,

2M(Lg+Lq)kb
30+ + n

Ly)kb, Lom 1
O | @

0

M(Lo+L))kbn
Under [A1], f:o"+2 Lom —7dG(0) > M and under [A2]

A(0)
2M(Lo+L1)kbp

f:oo+——‘—_Lom A(a)dG(G) < (L°";nL‘)kb . Hence the result follows. O

Let H(-) denote the distribution function of the random variable Y; = A(X;). For

each z > 0, define

Q1(z) = Lo[H(A(z) + bn) — H(A(2))] — (Lo + L1)[H(A(60) + bs) — H(A(60))]-

Lemma 4.3. Suppose that the function a(z) possesses the property [P2] and the Condi-
tions [Al] and [A2] hold. Then,

(a) for 0 < z < tg — 2kby, Q1(x) > mkLob’;

(b) for s¢ + W(L—:n-;f;l)k& <z < by, Ql(il,') < —Mk(Lo + Ll)bi

Proof: (a) Since Q(to) = 0 and ¥(z) = h(A(z)), Loh(A(to)) = (Lo + Ly)h(A(6)). For
each z € (0,t9 — 2kb,,), by the nonincreasing property of the pdf A(-)
Q1(z) 2 bn[Loh(A(x) + bn) — (Lo + L1)h(A(60))]
— buLolH(A(2) + ba) — h(A(t0))]
> b Lo[h(A(to — kba)) — h(A(to))]
to .
~ b, Lo / PORE0)

to—kby,

(b) By the nonincreasing property of the pdf A(-),
H(A(z) + bn) - H(A(®)) < buh(A(2))

11



and

H(A(6o) + bn) — H(A(60)) = buh(A(60) + bn).

Hence,
Q1(z) — 52 Q(z) < bn(Lo + L1)[(A(60)) — (A(fo) + br)]
< bu(Lo + L1)[h(A(60)) — h(A(6o + kbn))]
B 8o+kby, —1_ o
_bn(L0+L1)/go A(a)dG( )
< EM(Lo + L1)b2.

Then, from Lemma 4.2.b,

Q1(z) < b.Q(z) + kM(Lo + L1)b3,
< —2kM(L0 + Ll)bi + kM(Lo + Ll)bi
= —kM(Lo + L1)b. 0

For each 0 < z < 6y and j = 1,2,...,n, define

Tpi(z) = Lo{I a(z), A(s)+5,(¥i) — [H(A(z) + bn) — H(A(2))}
— (Lo + L ){T a(80), A6y +5,1(Y5) — [H(A(80) + bs) — H(A(6o))]},

and let Tp(z) = 1 Zn: Tyj(z). Then Tyj(z), j =1,...,n, are iid such that
Jj=1
|Tvj(z)| £2Lo + L1 = To, E[T,;(z)] =0.
Also,

Var (Tnj(z)) < LE[H(A(z) + bn) — H(A(2))} + (Lo + L1)*[H(A(60) + bn) — H(A(60))]
< 2(Lo + Ly)*[H(A(2) + ba) — H(A(2))] (4.1)
< (Lo + L1)*h(0)bn,

where the second and third inequalities in (4.1) are obtained due to the nonincreasing

property of the pdf h(:).

12



Note that under Condition [A2],

oo

A~1(80) 1 1
h(0) = / A—(a—)dG(H)+ /A _I(BO)X(O—)dG(G)

6=0

< MA™(86) + h(60)
< MA™Y(8y) + 6" < 0.

(4.2)

In (4.2), we use the inequality: h(y) <y~ for all y > 0, which is guaranteed by the fact
that h(y) is a nonincreasing pdf.

Therefore, for each integer s > 2,
E[T,;(z)] £ E|T, (=)
< Ty 2E|Toy(=)|
< %Tg-%! Var (Tnj(2))-

Then, by Bernstein’s inequality (see page 169 of Ibragimov and Linnik (1971)), we have

Lemma 4.4. Under Condition [A2], for 0 <t < \/n Var (Tn1(2))/(2T0),

(a) P{Tu(z) 2 2t1/Var (Tui(2))/n} < exp(~t*);

(b) P{Ta(z) < —2t1/Var (Tm(@))/n} < exp(~t?).

Lemma 4.5. Suppose the function a(z) possesses the property [P2] and the prior distri-
bution @ satisfies the Conditions [A1] and [A2]. Then for n being sufficiently large,

(a) for each z € (0,10 — 2kbr),
P{d%(z) = 1} < exp{—~m?LEk?nb/{8(Lo + L1)*[MA™ (60) + 65" 1}};

(b) for each = € (so + Mﬁ%:%%,eo),

P{d2(a) = 0} < exp{—M?knb}/{8MA™(60) + 65" 1})-

Proof: (a) For z € (0,tp — 2kb,), by Lemma 4.3a, Qi(z) = mkLob? = ca, where
cn < Var (Tn(2))T; ! for n being sufficiently large. By the definition of d},, Lemma 4.4,

13



(4.1) and (4.2), a straightforward computation leads to:

P{dy(z) = 1} = P{Ta(z) < —Qa(2)}
< P{Tu(z) < —cn}
< exp{—nc},/[4 Var (Tn1(z))]}
< exp{—nck/{8(Lo + L1)*[MA™" (60) + 65" 1bn}}
= exp{—m?k*Linb} /{8(Lo + L1)* [MA~"(60) + 65 '1}}.

Part (b) can be proved similarly. Hence the detail is omitted. O

Proof of Theorem 4.1: By theorem 3.1, E[r(G,d%)] < E[r(G,d;,)] for all n. Hence, it
suffices to consider E[r(G, d;)] — r(G). Note that

0 S E[T(G, d;)] - T(G) = Bl + Bg + B3 + B4, (4.3)
where
to—2kb,
B = / Q(z)a(z)P{d3,(z) = 1}da,
to
Ba= [ Q@a@)P(d () =1dz,
oso+2k';u(L%-,|-nL1)b,,
B, = / T —Q(o)]a(z)P{d () = 0}dz,
80
and Bi= [ sgesan FO@I@P(E(@) = 0},
sot——Tom

By the nonincreasing property of Q(-) and Lemma 4.2.a and [P1],

to
0 S B2 S / Q(to — 2kbn)a(:c)d:1:
to—2kb,
to

< 2MkLgb, a(z)dz (4.4)
to—2kby, '

< AME*Ek*Lob2

= O(b2).
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Similarly,

ot BT 2kM(Lo + L1)b
0< By < / Qoo + M A Lion g

s L,m
OM2(Lo + Ly)kb, [oor ™ iom s
< — a(z)dz) (4.5)
30
o AMPRE* (Lo + L1)*F

- m2Lg

= O(bfl).
It suffices to consider B; and Bj.

By Lemma 4.5.a,
to—2kb,
0< B = / Q(z)a(z)P{d, (z) = 1}dz
0

to—2kby
< exp{—Tnbi}/O a(z)Q(z)dz (4.6)
< Lo exp{—7nb}},

= O(exp(—Tnb2)).

and by Lemma 4.5.b,

2EM(Lo+Ly)on [-Q(z)]a(z)dz

Lom

8o
0<Bs < exp{-—’rnbf‘,}/
so+

< exp{—7nb3}(Lo + L1)h(A(60))A(60) (4.7)

= 0(exp(—7nb3)).

Combining (4.3)-(4.7) yields
E[r(G,d;)] - 7(G) = O(b}) + O(exp(~7nd})).
Since 7(¢n n)® — oo as n — oo, by letting b, = [(¢n n)'*®/n]'/3, we have,
E[r(G,d3)] — (@) = O(((6n)'+* /n)*/®).
Hence the proof of the theorem is completed.
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