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Abstract

Numerical integration of a multimodal integrand f(#) is approached by
Monte Carlo integration via Importance Sampling. A mixture of multivariate
t density functions is suggested as an importance function g(#), for its easy
random variate generation, thick tails, and high flexibility. The number of
components in the mixture is determined by the number of modes of f(#), and
the mixing weights and location and scale parameters of the component distri-
butions are determined by numerical minimization of a Monte Carlo estimate
of the squared variation coefficient of the weight function f(6)/g(8). Stratified
Importance Sampling and control variates are shown to be particularly effec-
tive variance reduction techniques in this case. The algorithm is applied to a
10-dimensional example and shown to yield significant improvement over usual

integration schemes.
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1 Introduction

Many statistical inference problems reduce to the calculation of integrals of the form

T eB)f(6)d0
Be = =T @

where § € RP, ©(f) is a measurable function, and f(6) is proportional to a density
function. In Bayesian analysis, E arises as posterior expectation with respect to
the posterior density proportional to f(8) = I(6;z)x(6), {(f;z) and =(f) being the
likelihood and prior for 8, respectively.

Among the many strategies developed for numerical integration of (1) are Monte
Carlo Integration via Importance Sampling, briefly, Importance Sampling, recent
references including Kloek and van Dijk (1978), Stewart (1979, 1983), van Dijk and
Kloek (1980, 1983), van Dijk, Kloek, and Boender (1985), Geweke (1988, 1989),
Evans (1989, 1991a, 1991b), Oh and Berger (1989); Quadrature methods, recent
references including Naylor and Smith (1982, 1988), Smith et al (1985); sampling-
based methods, recent references including Geman and Geman (1984), Tanner and
Wong (1987), Gelfand and Smith (1990a, 1990b); and approximation methods, recent
references including Tierney and Kadane (1986), Tierney, Kass and Kadane (1989).

Most of methods that have been developed are designed for a unimodal integrand
f. When fis multimodal there can be serious difficulties in finding a good numerical
scheme (see van Dijk and Kloek, 1978). In this paper, we approach the multimodal

problem via Importance Sampling with a mixture importance function.



Importance Sampling can be described as follows. Choose a density function g(8),

called the importance function, and estimate (1) by

Ep = Ll’-‘fl(f;)w,-()ei)

, (2)

(6
where the weight function w(8) is defined as f(6)/g(#) and 6;, i = 1,...,n, are iden-
tically distributed random samples from the density function g(#). Under mild con-
ditions, Ep converges to Ep with probability one, as n — oo, and has asymptotic
variance o%/n, where

o= TTleﬁé [vary(pw) — 2(Eg) - covg(pw, w) + (Ep)? -varg(w)];  (3)

the subscript ¢ in vary() and cov,y() indicates that the variances and covariances
are taken with respect to the density function ¢g(6). The efficiency and accuracy
of Importance Sampling clearly depends on the choice of g(6). Typically desira.ble
properties of g(8) are; (i) it is easy to generate random samples from, (ii) it has tails
that are heavier tha.n-those of f, (iii) it is a good approximation to f.

For a multimodal f, it is not easy to find a good importance function. There are
some studied multimodal density functions that have been utilized for Importance
Sampling, such as the poly-t density function (Bauens and Richard 1985), but it can
be difficult to generate random variates from these densities and hard to fit them to
the multimodal f. Dividing the region of integration into separate regions, each of
which contains a mode of f, and applying separate Monte Carlo integration schemes
to each region is sometimes used for multimodal f. However, this method has several
difficulties. First, it is difficult to divide the region appropriately in many cases.
Second, it can waste many of the generated random variates unless thermodes are very
well separated, not only because random variates outside of each region are “rejected”

but also because it is difficult to approximate f within each region for Monte Carlo



Importance Sampling and difficult to allocate the random variate generations among
the regions appropriately.

In the present paper, a mixture of multivariate ¢ density functions is suggested
as an importance function to deal with a multimodal integrand f, due to its easy
random variate generation, thick tails, and the high flexibility of mixtures in matching
multimodal f. (The basic algorithm could use mixtures of other densities if desired.)
The number of component density functions in the mixture is determined by the
number of modes of f(#). One of the chief advantages of a mixture importance
function is that one can then also use stratified Importance Sampling and control
variates, greatly improving the accuracy of the Monte Carlo estimate.

The heart of the algorithm that is developed, overcoming the key difficulty in using
a mixture importance function, is the development of a highly efficient method of
selecting the mi‘xin.g weights and the location and scale parameters of the component
t-densities so that the mixture importance function ”fits” the multimodal function
f(8). This will be done by minimizing a Monte Carlo estimate of the squared variation
coefficient of the weight function, which can be argued to be the correct measure of
" fit” for Importance Sampling.

The paper is organized as follows. Section 2 provides a brief description of a
mixture density function as a candidate for the importance function. Also, stratified
Importance Sampling, and use of control variates with the mixture importance func-
tion are described. The algorithm for matching the mixture to f is given in Section
3. A 10-dimensional example is presented in Section 4. Section 5 gives a summary

and conclusions.



2 Use of Stratification and Control Variates for

Mixture Importance Functions

2.1 Mixture Importance Functions

A mixture density function ¢g(6), 8 € ©, will be written as
9(60) = €101(8) + ... + emgm(6), 0 €O, (4)

where

g, >0, 1=1,....m; e1+4+...+em=1;

and ¢;(8), ¢ = 1, ...,m, are density functions. The parameters €4, ..., £, are the mixing
weights; g1(),...,gm(0) are the component density functions of the mixture; and m
is the number of components.

We will consider in this paper the case g; = g¢, € G = {g¢, £ € =}, G being .
the set of multivariate ¢ density functions. Here, ¢; = (o, pi, I;) where «; is the
degrees of freedom, y; is the location vector and T; is a lower triangular matrix such
that T;T; is the scale matrix of the multivariate ¢ density function g;. Any other
parametric family of density functions could be considered in the same framework,

but the ¢-family should typically suffice.

Generation of a random variate 8 from a mixture g(4) is easy;
o Generate a uniform random variate u in the interval (0, 1).

o If, defining o = 0,

i—-1 ) i
Zsj S u S Z&j,
=1 =1

then generate 6 from g¢;(9).



Thus, one needs to generate § from only one of gi(9), i = 1,...,m, plus generate
a uniform random variate u. This makes the generation of random variates from
a mixture very efficient compared with generation from other multimodal density
functions.

General discussion about finite mixtures of density functions is given in Everitt

and Hand (1981), Titterington, Smith, and Makov (1985).

2.2 Stratified Importance Sampling

With a mixture importance function, one may generate random samples from g(4)
as described in the previous section and estimate Ep by (2). However, a great im-
provement in the accuré,cy and efficiency of Monte Carlo estimation with a mix-
ture importance function can be made_using stratified Importance Sampling. With
g(0) = ¥ ,€:9i(6), Ep can be written as'

m .
i=1 i EQ:"pw

pony .
Ei:l & Eg,-w

Ep =

Stratified Importance Sampling approximates Ew by

- & (pw);
3 — L] 5
E'p BT (5)
where
— 1 & i i
(pw); = — 3 (6w (6)
ij=1
1o
w o= — w(b), (7)
g j=1 J
and 0?), .. .,0,(1".) are i.i.d. random samples from g;(#), for ¢ = 1,...,m. As can be

seen from Theorems A.1 and Corollary A.2 in the appendix, under some mild condi-

tions the stratified Importance Sampling estimate E*y is consistent for Ep and has
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asymptotic variance

>~ elot/m, (®)

where

o? =

1
Y (J£(6)d8)?

If n = Y™ n; is the total number of random samples that can be taken, the

(vars(ow) + (Bw) varg(w) — 2(Ep) - covg,(pw,w)) . (9)

optimal allocation of n;, which minimizes the variance among all possible allocations,

is n; o e;0;. The asymptotic variance of E*¢ is then o2/n, where
m
o = (D eioi)’. (10)
=1

While optimal, the dependence of n; on o? causes two difficulties. First, the o7 would
themselves need to be estimated. Second, different ¢ would yield different o7, while
in practice one typically wants to use the same importance sample to compute E¢

for a variety of . A pragmatic solution to this second problem is to replace o? by

o = vary,(w)/( [ f(6)d6)* (11)

Note that ¢¥? is the term of o2, when scaled by (E)?, which does not involve »(8),
and that the allocation n; x ¢;0% is optimal in estimating [ f(8)df. Since p(8) is
often more slowly varying than f(8), we have found that in practice use of the ¢} 1s
quite satisfactory.

To avoid estimation of the o; or 0¥, one could choose the proportional allocation

n; o €;. The asymptotic variance of E*p is then ol/n, where

af, = Ze;af. . (12)

i=1

It can be easily shown (Cochran, 1963) that

2
]

IA

o az < o
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Thus, this simple allocation has a larger variance than the optimal allocation but is

superior to ordinary (non-stratified) Importance Sampling for any »(8).

2.3 Use of Control Variates

When the mixture importance function is well matched to f (the algorithm achieving
this will be described in Section 3.1), one can consider using Egp = [¢(8)g(8)d8 as a
control variate to reduce the variance of the Importance Sampling estimate. Because
g(8) is a mixture of ¢ density functions, analytic evaluation of E,¢p is possible for

many ¢ of interest. In such cases, one may estimate F¢ by
EBro=Eo—Bio+ [o(6)g(0)a6, (13)

where E*p and ESL,O are the stratified Importance Sampling estimates of E¢ and Egp,
respectively. Obviously, Ecp converges to Ep with probability one as n — oo and

the variance of Ey is given by
vary(Ecp) = vary(E*p) + varg(Es’,cp) — 2covg(E*¢, Egcp). (14)

As is usual with control variates, E<p will have a smaller variance than Espif f and
g are similar in shape.

One can actually proceed quantitatively, using Cramer (1948), by noting that

. 1 m T Eyp —
E'p~ Ep+ W ( ,-=16;(L,9w),-) - (W) (@:)
and that the covariance term in (14) is
Al s 1 m 512
covg(E°p, Egp) & TFOdI =" n, [covg, (pw, ) — (Ew) - covg, (w, )] (15)

Therefore one can estimate var,( E°p) and compare it with vary(E*p) and select the

one among E°p and E*p with the smaller variance as a final estimate of E. Note also
g Eop @

8



that the extra computation of Eg’go and estimation of varg(E;cp) and cov,(E*y, E;go)

involve only some additional summations and multiplications, and therefore are often
inexpensive.
General discussion about control variates is given in Rubinstein (1981). See also

Tew and Wilson (1988) and Swain and Schmeiser (1988, 1989).

3 Selection of the Mixture Importance Function

3.1 The Algorithm

A brief description of the algorithm for selecting the parameters of the mixture im-
portance function is presented in this section. More details of and justification for
the algorithm will be given in next section.

Define A = {(ei, pi, Ti), ¢ = 1,...,m}. It is convenient from here on to write
g(8,)) instead of g(f) and w(h,)) = f(6)/g(8,)) instead of w(#). The notation
T,.(0, I) will be used to denote the standard multivariate ¢ distribution with o; degrees

of freedom.

e Step 1 (Initialization). Choose an initial g(§,)) by selecting m, the «a;, and
and an initial A\. Also specify N, [, and 7, three computational constants. See

Section 3.2.2 for details of this initialization.

o Step 2. Generate N random samples, {2}/, from 7;,(0,), and store them

in the 2-th column of a table, for : = 1,...,m.

e Step 3 Minimize C’AVQ(w; A,z, N) with respect to A, where

£ & virg (w) 15)

. 2
CV (w;\,z,N) = — )
( (Zi=l € u}i)‘2
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LS a0
w o= — 3y w(8”, ), (18)
N‘. j:l !
varg(w) = —Zw (657, %) = (m:)?, (19)
l j=1
89 = Tzl +pis j=1,.,N,i=1,..,m, (20)
z = {zﬁ-i), j=1,.,N, i=1,..,m}, (21)

but monitor the minimization after each [ steps, and stop if the relative reduc-
. ~2 . . .
tion in CV " (w; A,z, N) from the previous to current monitored values is smaller

than a desired accuracy 7.

3.2 Justification for the Algorithm

3.2.1 The Criterion for Matching the Mixture to f and its Implementa-
tion

For the mixture importance function, it is desirable to choose the parameters, m,
ai &, pi,Ti, i = 1,...,m, to satisfy the desirable properties (i)-(iii) described in
Section 1. Property (i) is automatically satisfied by the mixture form and (ii) can
be easily obtained by appropriate choice of the «a; (see Section 3.2.2). As previously
mentioned, the number of components, m, will be chosen to be the number of modes
of f(8). The most crucial and difficult problem is thus the selection of ¢;, ui,T;,
i=1,...,m, for given m and a;’s.

In Importance Sampling, the degree of mimicry of g to f is well reflected by the

inverse of the squared variation coefficient of the weight function w(f, ) (see Evans

10



1991b), namely

N -var(E,w)

Ew)? (22)

CV¥w;A) = N - CVHEqw;\) =

In stratified Importance Sampling, Eyw = Y7, &W; and Egw = Y% eiEgw, so that

(22) becomes
N - T e? varg (w)/Ni
(L8 Egw)?

Of course, we cannot calculate CV?(w; \) exactly, much less minimize it over the

(23)

CViw; ) =

parameters of ¢, but we can minimize a Monte Carlo estimate of it, using g(6,A) it-
self as the importance function in the Monte Carlo estimation. (Using a Monte Carlo
estimate based on generation from g is needed for efficiency.) Considerable care must |
be taken, however, in constructing the Monte Carlo estimates. In particular, for effi-
ciency and numerical stability in the minimization, the random variates used in the
Monte Carlo estimates must be fixed for all A. Fixing the random variates is straight-
forward; generate and table a random set z from the 7, (0, I) initially, and keep using
it to compute the estimate of CV?(w; ) in each step of the minimization. Note that
these variates are transformed in Step 3 so that they are effectively generated by the
importance function g(6,A). Thus one simultaneously has the efficiency of Monte
Carlo sampling and yet is essentially minimizing a fixed (non-random) function of A.
The optimal allocation described in Section 2.2 is impractical to use here because,
given ) in each step of minimization, one would need a Monte Carlo run to estimate
o¥ and then, with N; o £;,0%, another Monte Carlo run to compute CAVQ(w; Az, N).
(In each étep of minimization, one will get a different A, hence a different o/*.) Hence
we adopted the proportional allocation N; o e;. Thus the choice N; = [e;V], the
integer part of ;N for simplicity, is used in the algorithm, and the estimate of (23)

becomes (16).

11



Control variates cannot be used here since assuming g o« f leads to a constant
CV?*(w; )), independent of §. Note, however, that it will be used for the actual
Importance Sampling to compute E¢ after g(#) is obtained from the algorithm in
Section 3.1.

A possible theoretical concern is whether the minimum of CAV2(w; A,z,N) con-
verges to the minimum of CV?(w;\) as N — oo. Conditions under which this can

be assured are given in Theorem A.3 in the appendix.

3.2.2 Initialization

e Initialization of A\: Because CAVZ(w; \,z, N) may well have local minima, good ini-
tialization of A is important. Fortunately, the maximum likelihood method seems to
work well for initialization of p; and T;. Assume that f has k modes, by, ..., B, and
minus inverse Hessians, —f{l, vy —f,;'l, at the modes. It is reasonable to choose k
components for the mixture importance function, i.e., m = k (this will be discussed
later). Most crucial to avoiding a bad local minimum is choice of a good starting
location u? for the u;. The modes, ;, 1=1,.... k, seem to work very well, and even
if the procedure gets stuck in a local minimum with y; near 6;,1=1,..., k, it is likely
to be a good approximation to f. The positive definite lower triangular matrix 77
such that (TP)(T?) = —I7! seems to be a reasonable starting value for T;. This
choice of T? roughly minimizes the variance of w(f) around §;, assuming that f has
approximately normal shape around §;. Also, it seems to be a good compromise be-
tween matching the variance of ¢; to that of f around 9; (assuming that the latter
is well approximated by —I7') and matching the Hessian of g; to that of f at 4;.
(See Oh, 1991, for more details.) Finally, e¥ o f(é,-)|T,-0|af-’/21"(a,-/2)/f‘((a,- + p)/2)
(simply €? o f(8;)|T?|, if the c;s are equal), where TP is the determinant of T, is a

12



reasonable initial value for ¢;, essentially matching the heights of g; and f at 6;.

e Selection of m: An obvious choice for m would be the number of modes, k, of
f(8). Of course, it might be possible to obtain a better approximation to f using
a number larger than k, especia]ly when f is skewed. Thus, after the algorithm
in Section 3.1 is run with m = k, one could increase m by one, initialize the new
parameters €, = 1,..,Mm, fm, Im, add another column of random variates to the
table, and repeat Step 3. One could continue increasing m in this manner until
C’AVZ(w; A,z, N) is stabilized, hopefully at some overall mixture minimum. This has
proven to be difficult to implement because of the lack of any natural initial values
for these extra components.

e Selection of a;: The degrees of freedom, «;, can be chosen from a preliminary.

study of the tail rates of f(#). If information about the tail rates of f(6) is not
available, rather low degrees of freedom should be used for safety.

" o Selection of N: The total number of random samples, N, should be moderate
since coﬁputation of CAV2(w; A,z, N) is needed at each step éf the minimization over
A. Also, highly accurate C’AV2(w; A,2,N) is not necessary here because the purpose
of the minimization routine is only to find a good importance function to be used in
the actual Importance Sampling. In practice, we simply run several Monte Caﬂos to
compute CAVZ(w; \,z, N), with the initial A and several different random seeds (i.e.,
different sets z), and choose N so that the resulting values of C’AV2(w;/\,z,N) are
roughly stable.

e Selection of I: There is no clear rule to determine the number of steps between
the monitorings of the progress of the minimization. From our experience, letting !
equal about 5 ~ 10 times the number of elements in A, i.e., the numbér of variables

in the minimization, seems to work well.
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o Selection of 7: Note that it is not necessary to actually find the g which min-
imizes (16), since we are only going to use it as an importance function and any g
for which CAVZ(w; ), 2, N) is close to its minimum will serve well. Thus, we do not
need to carry out the minimization of C'AV2(w; A, z, N) to high precision; indeed, all
that is practically necessary is to have a g for which CAVZ(w; A,z, N) is within a small
fraction of optimum. Therefore, 7 = 0.1 or 0.2 will typically be satisfactory. (Note
that the resulting g, when used in the actual Importance Sampling run, will only be

sacrificing roughly 10% to 20% efficiency.)

3.2.3 Parameter Reductions

There are m(p+p(p+1)/2+1) —1 =~ m(p+3/2)*/2 elements in A = (e;, pi, Tiy 1 =
1,...,m). Thus, minimization with respect to A can be very expensive when p is large.
A solution to this problem is to remove unimportant parameters of the mixture from
the minimization, essentially by fixing their values. Oh (1991) indicates that the
covariance matrices have less effect on the accuracy of the Importance Sampling
estimates than the location p;’s. Thus, when p is large it would be reasonable to fix
some elements of the T;’s and exclude them from the minimization.

An obvious possibility is to let T; = T?D;, where D; is a variable diagonal matrix
and TP is as given in Section 3.2.2, and minimize with respect to D, instead of T;,
ie.,let A = (&, i, Ds, ¢ = 1,...,m). The initial value of D; would be chosen to be the
p X p identity matrix I,. This reduces the number of variables in the minimization
to m(2p + 1). Our experience indicates that the resulting importance function is

virtually as good as that resulting from unconstrained T;.
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4 An Example

"m —n” poly-t density functions have posterior kernels which are ratios of m multi-
variate ¢ density kernels to n multivariate ¢ density kernels. They arise as posterior
densities in econometric problems (Dreze and Richard 1983, Bauens and Richard
1985), and can be multimodal. Because the integration of poly-t density functions is
analytically intractable, numerical integration is necessary to obtain desired charac-
teristics (moments, univariate marginal density functions, etc.).

For illustration, assume that f(6) has the form

£(0) = IL£(6), (24)

where 6 € R, and the f;(f) are the density functions of the 77(&;, X;) distributions

specified by

(0.00) 1 (—1.34) 1 (—1.34) 15 (0.00) 1
61 = y §2.7 ) 63 = 3 €4 = . )
(0.00) 15 (0.45) 15 (—1.56) 15 (—1.56) 1
1 1
S = Ny = T, T =S5 =—To;
1 4 1.7 10: 2 3 7 10

here 1, is the n-vector of 1’s and I, is the n X n identity matrix. Maximizations of

f(8), with each £; above as a starting point, showed two modes,

((—0.122) 1j, (—0.109) 1), (25)

Qs
S
It

b, = ((~0.134) 15, (—1.413) 15)". (26)

The corresponding minus inverse Hessians, — 71, are omitted to save space, but their
diagonal elements are only about 0.06. Therefore, a multimodal importance function
seems to be necessary.

e Selection of the mixture importance function

15



Since f has two modes, we chose m = 2. From (24), f() can be seen to have
tail rates of (§'9)~4(1+10/2 Because thicker (but not-too-thick) tails are preferable for
g(8) to ensure convergence in Importance Sampling and to handle possible skewness,
we chose a; = ap = 4 so that the g;(6) have tail rates of (8'9)~(4+10)/2 Because p
is large, we set T; = TP?D;, where T? is a positive definite lower triangular matrix
such that T°T® = —I;7! and D; is a variable diagonal matrix. For initialization,
FBNITO) £y F(B)IT?), 6i, and Iio were chosen for ¢, ui and D, respectively, as
described in Section 3.2.2. From a few preliminary calculations of CAVz(w; Az, N),
N = 300 seemed to give a roughly stable CAVz(w; A, 2, N) for different random sets z.
Thus N = 300 was chosen. Also we set [ = 210, about 5 times the number of variables
in the minimization. Finally we set n = 0.2, completing Step 1 of the algorithm in
Section 3.1.

At Step 2 of the algorithm, 600 ranaom samples were generated from 74(0, I)
and stored in a table of 2 columns and 300 rows. At Step 3, the NAG minimization
routine E04JAF with | = 210 was run and the resulting CAV2(w; A, 2z, N) was 3.967
(before the minimization, CAV2(w; A, z, N) was 13.139). Another [ = 210 steps of the
minimization were performed, resulting in CAV2(w; A, 2z, N) =2.325. Since 3.139/2.325
is not less than 1 + 7 = 1.2, we continued the minimization. The algorithm stopped
after a total of 6 x 210 steps of the minimization, and the final CAV2(w; Az, N) was
0.533, about 25 times smaller than the initial CAV2(w; A,z, N). The total computing
time for this matching algorithm was about 600 seconds. (All computations in this
article were done on a SunOS 4.1 workstation with floating point accelerator at the
University of California, Berkeley.)

e Actual Importance Sampling

With this ”matched” mixture importance function it is now possible to run the

16



actual Importance Sampling. Suppose that we are interested in the posterior mean
of § and the posterior marginal distribution functions of §; and 6,0, so that the ¢ of
interest are the vector # and the indicator functions I(f; < z) and (6o < z) for
various z’s.

Table 1 shows the estimated posterior means and standard deviations of the esti-
mates resulting from stratified Importance Sampling with the proportional allocation
n; < ¢; and a total Monte Carlo sample size of n = 10,000. (One could, of course,
estimate o from a preliminary run with the given mixture and use the optimal allo-
cation. Note that the matching process provides an estimate of o, but this estimate
does not seem to be accurate enough for use in the actual Importance Sampling.) For
comparison, results with and without [ ©(8)g(8)df as a control variate are shown.

To indicate the value of the matching algorithm, Table 1 also gives the results
when the mixture importance function without the matching process, i.e., the mixture
importance function with the initial value of A, is used. Use of a control variate gave
very little improvement in this case, so only the results from stratified Importance
Sampling without control variates are presented in Table 1.

Clearly the matching algorithm greatly improves the accuracy. For illustrative
comparison of the efficiencies, suppose that one wants the estimated posterior means
to have relative Monte Carlo accuracy of 1% with probability 0.95, i.e.,

|E6; — E6;]

<0.01) > 0.95 | 27

P(

for all : = 1,...,m (here 8; is the i-th element of #). Then from the approximate
normality of the stratified Importance Sampling estimate E*8; (see Corollary A.2 in

the appendix), the standard deviation of the estimate should satisfy

SD(E*6;)

< 0.01/2 = 0.005. 28
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To achieve the desired accuracy, (28), the algorithm proposed here would require
about 7 x 10,000 Monte Carlo observations so that the total computing time required
would be about 600 + 7 x 35 = 845 seconds (600 seconds for the matching algorithm
and 35 seconds for each 10,000 observations). Using the mixture without the matching
process would require about 240 x 10,000 observations, hence about 240 x 35 = 8,408
seconds of computing time.

Finally, we also considered basic Importance Sampling with a unimodal mul-
tivariate ¢t importance function, using the adaptive scheme described in Oh and
Berger (1989) (non-adaptive Importance Sampling would be worse because of the
well-separated modes). In the adaptive scheme, the location and scale matrix of the |
importance function were updated every 1,000 iterations. It appears that the uni-
modal importance function is yielding spuriously small standard errors; for instance
the ” mizture with control’ and " unimodal’ estimates for §; differ by over 3.6 standard
errors. This is probably caused by the unimodal importance function being centered
in the "wvalley” between two modes, resulting in very ina.c.cura,te estimated Monte
Carlo variances.

The posterior marginal distribution functions of §; and 6,0 were also computed
for 20 equally spaced points. Their graphs are given as solid lines in Figures 1 and
2. As a graphical demonstration of the performance of the matching algorithm, the
marginal distribution functions of §; and 6,0 from the unmatched mixture importance
function (i.e., the initialization mixture) are given as the dashed lines, and from the
matched mixture importance function as the dotted lines, in Figures 1 and 2. The
NAG subroutine G01ABF was used to compute the marginal distribution function of

a t-distribution. The matching algorithm seems to give a very good fit.
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5 Summary and Conclusions

Dealing with high-dimensional multimodal integrands is notoriously difficult; numeri-
cal methods that are in common use today can easily break down with such integrands
(without it being realized that there is a problem), as was partially indicated in Sec-
tion 4 for even a sophisticated adaptive Importance Sampling scheme. To attack the
problem we have combined a number of standard and nonstandard techniques.

Basing analysis on Importance Sampling with a mixture importance function is
rather natural, and has the advantages that easy random variable generation is pos-
sible and that stratified Importance Sampling and control variates can be easily em-
ployed. We have adopted the rather simple scheme of simply choosing the number
of components in the mixture to be the number of modes of the integrand. Note
that, at a minimum, we thus assume a capability to identify the modes (or at least
the important modes) of the integrand; t'his can, of course, itself be a difficult task
but any method of dealing with multimodal integrands will probably be based on the
assumption that the modes have been located. Our algorithm readily accommodates
the possibility of adding additional components to the mixture, which can for instance
be valuable in dealing with skewness. Unfortunately, we experienced difficulties in
attempting to add such additional components, primarily because of the need to find
a good starting point for the matching algorithm; modes are the only natural starting
points.

To match the mixture importance function to the integrand, we started with the
simple idea of using the modes and respective Hessians as initial location and scale
parameters for the components of the mixture. The mixing weights of the components

of this initial mixture were computed using the Hessians, degrees of freedom, and
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the relative heights of the integrand at the modes. These choices provided good
starting values for the ensuing matching algorithm; good starting values were found
to typically be necessary for successful implementation of the algorithm.

At this point, one could use the mixture determined in this initialization as the
importance function for the desired Monte Carlo integration, but we found that this
initial mixture is frequently quite inefficient as an importance function. This led to
the major development in the paper, the algorithm for matching the mixture to the
integrand. In developing a matching algorithm, analytic methods seemed to hold little
promise, since analytic matching methods typically involve an integral measuring fit.
Hence we considered simulation-based methods of fitting.

The first problem was to define a reasonable measure of fit of the mixture impor-
tance function to f(6), the important part of the integrand. Drawing on experience
obtained in Oh and Berger (1989), we settled on CV?*(w; ) as a good generic mea-
sure of the fit. (CV?(w;)\) measures how well the importance function works in the
Monte Carlo computation of the integral.) Thus the goal is to minimize CV2(w;\)
over the parameters, A, of the mixture. The diﬁ'iculty in doing so is that computa-
tion of CV?(w; \) itself must be done by Importance Sampling; we did so using the
mixture as an importance function. But for efficiency and numerical sta.bi].ity, the
random variates used in the simulation must be fixed for the minimization over A.
Implementation of this idea became Step 3 of the algorithm.

The details of implementation were based on the realization that obtaining an
optimal fit of the mixture to f(f) is not necessary, since a fit that is only slightly
better means that the final Importance Sampling will be only slightly more efficient.
Hence the rule used to stop the matching algorithm is to stop when additional steps

in the minimization are leading to only slight improvement in fit.
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Appendix
Theorem A.1 If (i) the support of g contains the support of f, (1) Eg;w and Eg,(ow)

ezist for each i = 1,...,m, and (iii) n; — 00 asn — oo, for each i1 = 1,...,m, then

Eso converges to Ep with probability one as n — oo.
Proof: Straightforward. O

Corollary A.1 Suppose the conditions of the above theorem are satisfied with ¢ = 1,
| n; = N; andn = N, where N; is given in (17), and E,,(w?) ezists for eachi = 1,...,m.
Then CAVZ(w;/\,z,N), given in (16), converges to CV?(w; A) in (28) with probability
one, as N — o0.
Theorem A.2 In addition to conditions (i), (%), (iii) of Theorem A.1, suppose (iv)
E,(w?) and E,[(pw)?] ezist for each i = 1,...,m, (v) limp.o (ni/n) ezists and is
nonzero for all i = 1,...,m. Let X, = Y0 &:Xn,, b = Lini€ifti, Ln = S m . eVi/n;,
wﬁere
%, = ( (_L,D—LT)i ) o= ( E, (pw) ) Cv- ( varg,(pw)  covg(pw,w) ) |
w; Eg(w) covg, (pw,w)  varg(w)

(29)

where Wl and W; are defined in (6) and (7). Then, for a continuous differentiable

function h whose first partial derivative Ah is continuous at p,
[(AR(p)) Ea(AR(p))TA(R(X0) — A1) — N(0, 1), (30)
where Ah(p) and [Ah(p)]* are values of Ah at u and its transpose.

Proof: From the Central Limit Theorem, for each 7, \/ni(Xn, — ui) — N(0,V) as

n — oo. Because of the condition (v), im,_(Z;1/%/\/n;) exists. Therefore,

S X —p) = TRE(EP V) - Vi X — )
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— Yrellim (5712 vm)] N0, V),
by Slutsky’s Theorem (Bickel and Doksum 1977, A.14.9),
= N0, SRe? [lim (5712 /m)] Vi [lim (5712 v/7d)))
= N(0, nlLr&[Z;I/2(Z?;1€?W/n;)2;1/2]), by Bartle (1976, Thm 15.6),

= N(0,I).
By the mean-value theorem,

where | Xz — u| < |X, — u|. Obviously, from Theorem A.1 and the assumption on A,
Ah(X?) — Ah(p) with probability one. Also, if welet o, = [(Ah(p)) Sa(AR(1))]M?,

then limn—co £Y/2/0, exists because of the condition (v). Using Slutsky’s Theorem

and Theorem 15.6 of Bartle again,

LR —hw) = —S(ARXD)SYR (SR, — p)

On On
1

— [lim —(AR(X))EY?] N(0,1), as n — oo,

= (ngn;z'h(x;»t lim (212 /) N(0, 1)
= (Ah(w)" lim (Z}/%/0n)N(0, 1)

= N(0, lim [(Ah(g))'Sa(Ah(1))/02),
= N(0,I). O

Corollary A.2 If conditions (i)-(v) of Theorems A.1 and A.2 are satisfied,

VIR 20 /ni (B2 — Ep) — N(0,1)

asn — oo, where E*p and o? are given in (5) and (9), respectively.
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Theorem A.3 Suppose that

(i) A is a compact subset of RY, where q is the number of elements in A,
(i) w(B,\) is continuous in both § and A,

(i1i) there ezists a measurable function h(8) such that

supw(8,)) < h(8) and /h(a)f(a)de < oo.

A€EA

Then
lim CV*(w;Aw(2),2,N) = min CV2(w; ). (31)

n—oo

where An(2) minimizes C'AV2(w; A,z,N) over A € A.

Proof: From Corollary A.1 and assumptions (i)-(iii) above, for almost every

sequence 1z,

CVi(w A, 2, N) =% CV3(w;A), (32)

uniformly in A (refer to Jenrich 1969). The result can be proved in a manner similar

to that of Theorem 1 of Shao (1989). O
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Table 1: Posterior Mean of 4

mixture with

matching process

mixture without

matching process

unimodal with

adaptive scheme

n 10000 10000 10000
time(sec) 35 35 31
VvV (w; ) z, N) 1.129 x 10~ 3.295 x 10-3 2.88 x 10-*
w/o control var. | w/ control var.
-0.4588 (0.0068) | -0.4632 (0.0059) || -0.4476 (0.0347 -0.4428 (0.0081)

E# (SD(E6)))

-0.4600
-0.4687 (0.0068

0.0067

)

0.0073)

)

-0.4576 )

-0.4673 (0.0078)

(

(

(

(

(

-0.6935 (0.0082)

-0.6972 (0.0077)

-0.7027 (0.0084)

-0.6949 (0.0078)
(

-0.7054 (0.0084)

-0.4639 (0.0061)
-0.4703 (0.0058
-0.4692 (0.0057
-0.4592 (0.0064
-0.6943
-0.6999 (0.0072

9

(
(
(

-0.6955 (0.0071
(
(0
-0.6906 (0
(

)
)
)
)
0.0074)
)
)
)

.006
-0.7015 (0.0072

-0.4192 (0.0257

-0.4159 (0.0292
-0.4404 (0.0272
-0.4562
-0.7196 (0.0249
-0.6709 (0.0268

0.0224

)

)

)

)

0.0327)

)

)

)

-0.6793 )
)

(
(
(
(
(
-0.6459 (0.0277
(
(
(
(

-0.6997 (0.0259

-0.4514 (0.0088)
-0.4404 (0.00

-0.4471 (0.0078)
-0.4659 (0.0097)
-0.6478 (0.0110)
-0.6746 (0.0106)

-0.6634

(

(

(
-0.6567 (0.0104)

(

(0.0112)

(

-0.6741 (0.0113)
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Fig 1: Marginal Distribution Function of theta_1
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