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Abstract

In the usual linear model y = ' f(z) we consider the E-optimal design problem. A
sequence of generalized Elfving sets Ry C R™*F (where n is the number of regression
functions) is introduced and the corresponding inball radii are investigated. It is shown
that the E-optimal design is an optimal design for A’ where A € R®*" is any inball vector
of a generalized Elfving set R,, € R"*". The minimum eigenvalue of the E-optimal design
can be identified as the corresponding squared inball radius of R,. A necessary condition
for the support points of the E-optimal design is given by a consideration of the supporting
hyperplanes corresponding to the inball vectors of R,,.

The results presented allow the determination of E-optimal designs by an investiga-
tion of the geometric properties of a convex symmetric subset R,, of R®*" without using
any equivalence theorems. The application is demonstrated in several examples solving
elementary geometric problems for the determination of the E-optimal design. In partic-
ular we give a new proof of the E-optimal spring balance and chemical balance weighing
(approximate) designs.
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1. Introduction. Let f(z) = (fi(z),..., fo(z))' denote n linearly independent regression
functions on a compact set A which contains at least n points and let 8 = (64,...,6,)
denote a vector of parameters. We will consider the usual linear regression model in which
for every z € X a random variable Y(z) with mean ¢’ f(z) and variance 02 > 0 can be
observed. An experimental design is a probability measure £ defined on a o-field of sets of

A which include the one point sets. The information matrix of the design £ is given by
M(©) = [ f@f @)de(o).

If € concentrates mass n;/N at the points z; (i = 1,...,r, Er)l n; = N) the experimenter
takes n; uncorrelated observations at each z; (: = 1,...,7) aria the covariance matrix of the
least squares estimator for § is proportional to M~1(¢). An optimal design maximizes or
minimizes an appropriate functional of the information matrix or its inverse. In this paper
we will investigate the F-optimality criterion which maximizes the minimum eigenvalue
of M(¢) with respect to the design {. The E-optimal design minimizes the worst possible
variance of the least squares estimators for all possible linear combinations ¢'6 where ¢ € R”
has euclidean norm 1. For this reason the E-optimal design problem is intimately related
to the problem of optimal design for linear combinations of the unknown parameter vector

which is considered next.

Let k < n and A € R™** denote a real valued matrix. A design ¢ is called optimal for
A'6 if it minimizes tr(M ™ ({)AA") where M~ (€) denotes a generalized inverse of M(£) and
tr(B) the trace of a matrix B. An optimal design for A'6 can be used if the experimenter
is interested in certain linear combinations @}, ..., a}d of the unknown parameter vector

where ay,...,ar denote the columns of the matrix A.

If the minimum eigenvalue of the E-optimal moment matrix has multiplicity one there
1s a nice geometric interpretation of the minimum eigenvalue Apin and its corresponding
normalized eigenvector a; (||a1||z = 1) (see Pukelsheim and Studden (1991)). In this case
the design £ is F-optimal if and only if it is optimal for a! 6. Moreover, the vector v/Amina1

is an inball vector of the Elfving set
(L.1) Ri= conv ({ef(2)la € X,e = F1}) CR",

where conv (§) denotes the convex hull of S. This means that the ball {z| [|z||? < Amia}is

the largest ball which is included in the set Ry (here || - || denotes the euclidean norm on
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R™) and the vector v/ Amina is on the boundary of R;. The set R; is due to Elfving (1952)
and is very useful in discussing optimal designs for ¢'6 where ¢ € R™ (see also Pukelsheim
(1981) or Studden (1971)). The above result suggests the following procedure for finding
E-optimal designs. At first the inball radius r; and a corresponding inball vector a; are
determined and then using the results on scalar-optimality the optimal design for a}6 is
found. Under the assumption that the minimum eigenvalue of the E-optimal design has
multiplicity 1 the resulting design is the F-optimal one. An obvious drawback of this
procedure is that the multiplicity of the minimum eigenvalue is unknown because the E-
optimal design (which has to be determined by it) is not known. A simple striking example
in which F-optimality is obtained without any scalar optimality was given by Pukelsheim

(1981), Example 5.

It is the purpose of this paper to develop a characterization of F-optimality without
any assumption on the multiplicity of the minimum eigenvalue of the E-optimal design.
After stating some preliminary results from the literature in section 2 we will show in
section 3 that every E-optimal design is optimal for a set of parameters A’ where the
matrix A essentially contains some of the eigenvectors corresponding to the minimum
eigenvalue of the E-optimal moment matrix. We will introduce generalized Elfving sets
Ri and give a similar geometric characterization of the minimum eigenvalue of the E-
optimal design (with an arbitrary multiplicity) as an inball radius of one of these sets. This
result provides a procedure for the geometric determination of E-optimal designs without
any prior knowledge of the multiplicity of the minimum eigenvalue. The application of
the results is illustrated by several examples in section 4. In particular we present an
elementary (geometric) derivation of the E-optimal spring balance weighing designs which

were considered (among other things) by Cheng (1987).

2. Preliminaries. In this section we will discuss some important tools used in deter-
mining F-optimal designs and optimal designs for A'6 where A € R"** is a given matrix.

The following two equivalence theorems enjoy particular popularity and can be found in

Pukelsheim (1980).

Theorem 2.1 (E-optimality). A design {g is E-optimal (i.e. it maximizes the minimum
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eigenvalue of M(¢)) if and only if there exists a matrix £ € conv (9) such that
(2.1) F(2)Ef(z) € Amin for all z € X.

Here Amin denotes the minimum eigenvalue of the matrix M(£g) € R**™ and conv (S5) is
the convex hull of the set S of all n X n matrices of the form 22', with [|z||s = 1, such that

z is an eigenvector of M(€g) corresponding to Amix.

Theorem 2.2 (Optimality for A'6). Let A € R"** denote a given matrix of rank % and
€4 denote a design for which range (A) C range (M(€4)). The design £4 is optimal for
A'6 if and only if there exists a generalized inverse G of M(£4) such that

tr(A'Gf(z)f'(z)G'A) < tr(A' M~ (£4)A) for all z € X.

The following theorem was proved by Studden (1971) and is a generalization of the famous
theorem of Elfving (1952) for scalar optimality. If provides a geometric characterization of
the optimal design for A’6 by considering boundary points of a symmetric convex subset

of R™"*¥, Define
(22) R = conv ({f(e)e'|e € X, € R, [[ello = 1}) C R,

(note that this definition corresponds to (1.1) for & = 1); we have the following result.

m

Theorem 2.3 (Elfving’s Theorem for A'6). A design £ = {;f} is optimal for A’ if
1] z=

and only if there exists a number 4 > 0 and vectors ¢3,...,enm € R* with euclidean norm

1 such that the point
(2.3) vA = g;‘l pif(z:)e}

is a boundary point of the set Ry.

For the application of this result we will need an appropriate characterization of the
boundary points of R;. For convex subsets of R® boundary points can be characterized
by supporting hyperplanes. The same is still true for (convex) subsets of R®*** when the
_ vectors are replaced by matrices. More precisely we have the following result (see Studden

(1971), Lemma 3.2).



Lemma 2.4. A matrix vA of the form (2.3) is a boundary point of Ry if and only if there
exists a “supporting hyperplane” D € R*** such that

(i) tr(yA'D) =1
(i) ||D'f(2)|2 = f'(z)DD'f(z) < 1forall z € X

and equality holds in (ii) for each z; with p; > 0. Moreover we have ¢; = D' f(z;) (1 =

1,...,m) in the representation (2.3).

For our later investigations it is useful to identify the supporting hyperplane of the
boundary point 7A in (2.1) of Theorem 2.3. It follows from the proof of this theorem (see
Studden (1971)) that

(2.4) A = M(£4)D

where M({4) is the information matrix of the optimal design for A'6. Moreover we have

for the number 4 in this theorem’
(2.5) Y72 =tr(A' M~ (€a)A)
for any generalized inverse of M(£4) and for the supporting hyperplane D we obtain

trD'M(€4)D = 1.

3. Main results. In this section we will investigate the relationship between the E-
optimal design and the optimal designs for A’§. In what follows Anin always denote the
minimum eigenvalue of the information matrix of the E-optimal design {5 and Ayin(B)
denotes the minimum eigenvalue of a matrix B. By Theorem 2.1 the design g is E-optimal

if and only if there exists a matrix F which satisfies (2.1) and has the representation

ko /
(3.1) E= % aiziz
=0
where 21,..., 21, are normalized eigenvectors (||z;||2 = 1) corresponding to the minimum

eigenvalue Apin of M({g) and the «; are positive numbers with sum 1. The following
auxiliary result shows that we can always assume that the vectors zj,..., 2k, in this rep-

resentation are linearly independent.



Lemma 3.1. Let (g denote the E-optimal design and let E denote a matrix which satisfies
the conditions of the equivalence Theorem 2.1. There exists a representation of E of the

form (3.1) such that the vectors zi, ..., 2z, are linearly independent.

Proof: Letting k¢ = rank (E) we obtain for F the representations

k ' ko '
E =3 a;ziz;y and E =3 pip;
: i=1

i=1
where the first one follows from Theorem 2.1 and the second from the eigenvalue decompo-
sition of the non-negative definite matrix E (note that py,. .., px, are linearly independent).
Let = denote a vector with z{z =0 (¢ = 1,...,k). From the identity
0= izkjl a;i(z'z)(ziz) = o' Ex = igl(pgx)z
we conclude

nullspace {z1,...,2:} € nullspace {p1,...,pk, }

or equivalently
span {p1,..., Pk} C span {z1,...,2k}.

This shows that py,...,pr, are eigenvectors of M({g) corresponding to Apmjn. From The-

k
orem 2.1 we have ||z;|]2 =1 and ¥ «; = 1 which implies
i=1

ko k
X lpill; =trB = T aillz]l; = 1.
=1 =1

== B et (727) (725)

is a representation of E of the form (3.1) with linearly independent eigenvectors of M(£g)

Therefore

corrseponding to the minimum eigenvalue Ay;y,.

In what follows we will always assume a representation of E by linearly independent

eigenvectors z1,...,2,. Note that kg is not necessary the multiplicity of Apin and that

0°

ko < n. For these representations we have the following result.

Theorem 3.2. Let (g denote the F-optimal design and E denote the matrix in the
equivalence Theorem 2.1 with a linearly independent representation of the form (3.1).

Then the design {g is optimal for A’ where A = (\/a121,...,/0k, 2k, ) € R™*¥0,
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Proof: Let F = Eo a;z;z; denote a representation of the matrix E where z1,..., 2k, are
=1

linearly independent eigenvectors of M({g) corresponding to Amin. From Theorem 2.1 we

obtain for all 2 € X
ko
Amin 2> f'(2)Ef(2z) = f'(z) 2 (Vaazi)( a;z;) f(z) = tr(f'(z)AA" f(z))
where A = ({/oqz1,. ..,/ Ak 2k,) € R™*ko has rank ko. Because we are interested in the

E-optimal design for the whole parameter vector we may assume that M(£g) is positive

definite which yields (note that M(¢g)zi = Amin2:)
Amin 2 tr(A' f(2)f'(2)4) = Agintr(A' M (€)f(2)f' ()M (¢5)A)-
Therefore we have for all z € X (note ||zi||2 = 1)

tr(A' M~} (£5) f(2) f'(2) M~ (€m)A) < —

)\min

= 3 aitr(M(En)zi) = r(M™ (€5)AA)

k
= Z(}) oz,-zéM—1 (€g)zi
=1 :

and it follows from Theorem 2.2 that the design £ is optimal for A’ where A = (\/az 21, .. .,

A /akozko )

Remark: Reversing the above steps one can easily obtain a converse to Theorem 3.2. That
is, suppose that the design {4 is optimal for A’ where A = (\/a121,...,/@k, 2k, ) for some
set {ai}fél kz? o = \1) and z1,..., 2k, are linearly independent normalized eigenvectors
correspondingz—ti) Amin(M(€4)) > 0. Then the design £4 is also E-optimal and a matrix F

k
in the representation (2.1) of Theorem 2.1 is given by E = 3 o;ziz).
i=1

The above result is the basic step for a discussion of the geometric characterization of
E-optimality according to Elfving’s Theorem 2.3. Recalling the definition of the Elfving
set in (2.2) we obtain that there exists a number v > 0 and vectors &},...,&"  such that

for the E-optimal design ¢ = {;'} the point
=1

m
(3.2) 1A= 3 pif(@i)e;
1=
lies on the boundary of the set Ry, where k¢ is the number of eigenvectors in the rep-

resentation (3.1) and A = (\/@121,--.,/0kg2k,) € R™***0 is the matrix of Theorem 3.2.

Moreover we have for the number v from (2.5)
1

Amin

(3.3) 7 =tr(M7(Ep)AA") =



and for the supporting hyperplane D at the point YA = v/Anin A from Lemma 2.4 and
(2.4)

(3.4)

, { D=yM7'(p)A= =4

ei=D'f(z;) = \/ﬁAf(x,) i=1,...,m.

The equations (3.2) and (3.4) show that the boundary point v/AmindA € ORj, and its
supporting hyperplane D at Ry, have the same direction. This suggests that the boundary
point v/ AmiaA is an inball vector of the Elfving set Rk, € R™**o which means that the
norm of v/Anin A attains the minimum distance to the origin

Tk, = min{||z||2|z € ORk, }
among all boundary points of Ry, .
Theorem 3.3. Let £g denote the E-optimal design, F a matrix which satisfies the
conditions of Theorem 2.1 with a linearly independent representation (3.1) and define the
matrix Ax = (\/Q121,-- -, +/Cke Zko, 0, - - -,0) € R®*¥ (kg < k < n) where the last k — ko

columns of Ay contain only zeros. Then the point \/Amin Ax is an inball vector of the set
Ry for any k > ko and we have ri = Amin for all k£ > k.

Proof: From (3.2) and (3.3) we have that the matrix v/Amin4k, is a boundary point of
R, with supporting hyperplane D given by (3.4). By Lemma 2.4 \/Apin A is a boundary
point of Ry with supporting hyperplane Dy = (D,0,...,0) € R"** for any k > k. For

the norm of Ax we obtain
ko
[4xll; = tr(AkA}) = 3 aizizi =1
i=1
which implies (v/AminAr € ORE)
(3.5) r: < ||V Aminde||% = Amin for all k& > k.

On the other hand we have for every D € R™** with ||D'f(z)||2 < 1 (for all z € X) that
tr(D'M(€)D) < 1 for every design £ on X. This implies that

L B(MTNOFR) L 4GF) 1
Mmin & R @FF ¢ R @\ (G MEG) tr(FFY)
2 ! 2 !
> inf sup tr(D'F) ! tr’(D'F) = tr(D'D).

¢ § tr(D'M(E)D) tr(FF) = "F tr(FF")
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Here we have used the identity tr(M~'FF') = sup(tr’G'F/tr(G'MG)) (see Studden
G

(1971) p. 1614) which follows from the Cauchy Schwarz inequality, as does the last step.

Because the distance from the hyperplane D to the origin is given by 1/tr(D'D) we obtain

for the squared inball radius the representation

D eR™F |ID'f(z)|l <1 Vze X} :

1
2 _: -
(3.6) Ty = mf{tr(D’D)
Thus we have r% > Amin(k > ko) which in combination with (3.5) proves the assertion of

the theorem.

Theorem 3.3 can roughly be summarized in the following way. Considering the Elfving
sets Ry, Rz, R3, ... there exists a number ko such that all squared inball radii rZ are equal
to the minimum eigenvalue of the E-optimal design for k > ko. In every set Ri(k > ko)
there exists at least one inball vector v/ AminA € R™** for which the E-optimal design
is also optimal for A’6. From the linear independence of the vectors zi,...,zx, in the
representation (3.1) we obtain that k¢ < n. This suggests the following procedure for the
determination of E-optimal designs. Look at the inball vectors A of the set R, (because
we do not know the number ko < n in the representation (3.1)) and determine the optimal
designs for A'6 by known results for this optimality criterion. However, some caution is
appropriate in the application of this procedure for the determination of E-optimal designs

as indicated in the following example.

Example Let n = 2, f(z) = (z1,22), X = {(}), (_11), (1{2), (_11/2)}, it can easily be shown

that r =r2 = 1 = A (note that n = 2 implies r2 = Amin ). Because A = <(1) 8) is a
boundary point of R, with supporting hyperplane D = (1) g) we see that A is an inball
vector of Rz. By the representation (note that ¢} = f'(z;)D by Lemma 2.4)

HEOTEIE

we obtain from the (Elfving) Theorem 2.3 that the design which puts equal mass at the
points (%) and ("1'12‘) is optimal for A'@ where A is an inball vector of R,. Its information

matrix and its minimum eigenvalue are given by

MED = (§ %) un(M(E) = T <
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and therefore the design £4 is not the E-optimal one. On the other hand, we have for A

4= (2 9)- 3000 +3(H)no

which shows that the design {g which puts equal mass at (i) and (_11) is also optimal for
A'6. Tt is easily verified that this design is the E-optimal one.

the representation

The above example shows that not every optimal design for A’'0 (where A is an inball
vector of R,,) is necessarily an E-optimal design. However, by Theorem 3.3 there always
exists an inball vector A of Ry such that the corresponding optimal design for A'd is E-
optimal. The following theorem shows that the E-optimal design is optimal for A’ for
every inball vector A of the set Ri(k > ko).

Theorem 3.4. Let {g denote the E-optimal design and E the corresponding matrix
of Theorem 2.1 with a representation (3.1) of ko linearly independent vectors zy,. .., z,.
Whenever n > k > ko and v/Anin A is any inball vector of Ry the E-optimal design is also
optimal for A'6 (or equivalently for v/ AninA'6).

Moreover, if D € R™** is a supporting hyperplane of Ry at /AminA, we have
[|1D' f(z:)]|2 =1 for all support points z; of the E-optimal design.

Proof: Because v/AninA4 is an inball vector of Ry and k > ky we have from Theorem 3.3

Amin = 7‘% = tr(\//\minAA' \//\min) = AmintrAA’

which implies trAA" = 1. Let €4 denote an optimal design for A'#, then we obtain from
(Elfving’s) Theorem 2.3 and (2.5)

L = (A M (E4)A) = inf ¢r(A'M~(£)4).

/\mm

On the other hand it follows for the E-optimal design {5 that

— = inftr(4'M(€)4) < tr(4' M7 (€p)4)

A]fIllIl

_ (M ER)A) tr(AM N ER)A) 1
T A4y 0T w(A4Y T e
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which shows that g is also optimal for A'6 (because tr(A'M~1(£g)A) attains the optimal
value 1/Amin)-

If D is a supporting hyperplane of Ry at v/ AminA it follows from || D’ f(z)||z < 1 that
tr(D'M(€)D) < 1 for any design £ on X’ and we obtain

1 L tri(F'A)
o~ AM T (¢p)4) = sup tr(F'M(€5)F)
tr’(D'A) ot 4y L
- tT(D'M(fE)D) 2 (D A) B Amin

Thus we have 1 = tr(D'M({g)D) = § pitr(D' f(z:)f'(2:)D) < 1 which shows || D’ f(z;)]|2
1=1
= 1 for all support points z; of the E-optimal design.

The results derived so far suggest the following procedure for the determination of
the E-optimal design. First the inball radius of Ry, an inball vector A and its supporting
hyperplane D have to be found. From Theorem 3.3 we know the existence of ky < n
such that r2 = A\yin for all £ > ko which shows that the squared inball radius of R,, is
given by the minimum eigenvalue of the E-optimal design. In a second step we have to
find the designs which are optimal for A'6 and calculate the minimum eigenvalue of the
corresponding moment matrices. Any design whose minimum eigenvalue is equal to the
inball radius of R, is, of course, E-optimal. Theorem 3.4 says that the E-optimal design
~ has to be among these designs and that all support points z; satisfy ||D'f(z;)|]z = 1.
Moreover if there are several inball vectors Aj(j € I) of R, with supporting hyperplanes
D; we have for the support of the E-optimal design

supp (¢p) = 0 {z] ||Djell2 = 1}.

(There actually may be more than one supporting hyperplane D; for a given inball vector
A;.) We will demonstrate this procedure in some examples in section 4. The main step is
the determination of the inball radius of R,. The following result gives estimates of the

inball radius r, by the inball radius r¢(m < k) and is often very useful for the calculation
of the inball radii of R.

Theorem 3.5. Let r; denote the inball radius of Ri(k =1,...,n) and Ania denote the

minimum eigenvalue of the E-optimal design.
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a) The sequence r1,72,73,... is decreasing
b) r2 > Apin forall 1 <k <n
¢) For all m < k < n we have mrZ, < kr?
Proof: Let A; € R"** denote an inball vector of Ry with supporting hyperplane Dy,

then the point Az4; = (Ax,0) € R™**+1 i5 also a boundary point of Ry with supporting
hyperplane Di11 = (Dg,0) € R***¥+1 (by Lemma 2.4). This implies

Tapr S tr(Apg1dhy) = tr(Agdy) = i

which proves part a). By Theorem 3.3 we find r2 = Amin and thus a) implies b). To prove
c) let D = (di,...,dr) € R®** be a matrix such that ||D'f(z)||; < 1 for all z € X, then
we have for any subset I C {1,...,k} with #I =m <k

1an7@m§=§gﬁﬂ@fzggwﬁ@»?

Therefore Dr = (di,,...,d;,) € R™™ fulfills [[D}f(z)|]s < 1 for all z € X and all
I = {i1,...,im} C {1,...,k}. Thus Dy is a supporting hyperplane of R,, and (3.6)

implies

/\

1 -1
d;d; .
t?"(DID ) (z?[ )

From this inequality we obtain

ko 1 , 1
ST el &) ST el 7
_ (w1 k1
)R mrh

which proves part c) of the theorem.

We should mention at this point that the bounds of b) and ¢) are sharp. More precisely
we will present two examples in section 4 for which Ay, has multiplicity n and we have

equality in b) or ¢).

Although the calculation of the inball radii r is not always possible in general we can

usually find upper bounds for r by identifying some boundary points of Rx. These bounds.
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can be used as bounds in the E-efficiency calculation of a given design. For example if

¢ 2 r for some k we obtain for the E-efficiency Eff (§) of a design ¢ from Theorem 3.5 b)

Amin(M(ﬁ)) > )\min(Jzu(E)) > )‘mln(M(é))

(3.7) Bff (¢) =

We will finish this section by giving a bound of the multiplicity of the minimum
eigenvalue of the E-optimal design which can be determined from the sequence of inball

radii (r1,72,...,7n)-

Corollary 3.6 Let ry denote the inball radius of Ry and f = max{i|r; < ri—;} (if
ry =Ty = ... =1, define f = 1) then the multiplicity of the minimum eigenvalue of the

E-optimal design is greater or equal f.

Proof: Let E denote the matrix of the equivalence Theorem 2.1 with a linearly inde-
pendent representation (3.1). From Theorem 3.3 we have r¢, = rg,41 = ... = r, which

implies f < ko < multiplicity of Ayin-

4. Examples.

1) Spring balance weighing designs. In a recent paper Cheng (1987) investigated ®,-
optimal designs for the following regression setup f(z) =z = (z1,22,...,2,), X = {0,1}".
These designs are called spring balance weighing designs (see Raghavarao (1971), chapter
17). Cheng (1987) applied an equivalence theorem of Kiefer (1974) and determined the
®,-optimal approximate designs. For p = oo he found the E-optimal spring balance
weighing design. By the application of our results we can present an elementary (geometric)
solution of this E-optimal design problem. To this end let R¥ denote the Elfving set of
Theorem 2.3 and ri(n) the corresponding inball radius (here the index n represents the
number of regression functions). Let D' = (dy,...,d,) € R¥*™ denote a matrix satisfying
||D' f(z)]|z < 1for allz € X (note that in contrast to section 3 the vectors dy, . . ., d, denote
here the columns of D'). For the determination of the inball radius ri(n) of R2(k < n)
we have to solve the problem (see (3.6))

1
(5.1) _ Minimize m subject to [|D'z]]s <1 Vz € X.
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Inserting all possible points £ € & = {0,1}" in the constraint (5.1) is equivalent to the

problem
Maximize 3, ||d;||2 subject to || D dilla < 1forall IC {1,...,n}
i=1 i€
which has the following nice geometric interpretation: “In the set of n vectors {d,...,d,}

in the unit ball B of R* such that the sum of any of these vectors is also contained in B
maximize the sum of the squared norms of all n vectors”. For the solution of this problem
it is convenient to distinguish the case n = 2m and n = 2m 4 1. We consider at first
the even case and k¥ = 2m which is the interesting case for E-optimality. The matrix

D' = (di,...,dy) has to satisfy the conditions

5.2 d;||? did; = 2 <1
(5.2) 22631_” ”2+i§IJ§;,’ i0j ”ng |5 <

for all subsets I C {1,...,2m}. Considering only the subsets I with exactly m elements
and adding the inequalities of (5.2) corresponding to these sets we obtain

2m\ /m '
(5.3) (2: _1) 3 [l + GG mam o (2m).

—1 (2;n) =1 ;:} J

2m
From || © d;]|2 > 0 it follows that
=1

2m 2m ' 2m 2
¥ 5 did; 2 - 3 [ldil;
= = =

and (5.3) reduces after some algebra to

2m 2(2m -1
(5.4 w(DD') =¥ [l < 220D,
=
On the other hand it is easy to verify that the matrix
2m — 1 -1 ... -1
Do = 1 —1 2Zm—1 ... —1 c R2m><2m
‘ 2m3 . .. :
-1 -1 . 2m—1

satisfies ||Dgz||3 < 1 for all z € {0,1} and that trDyD} = %22—_1) This shows that
Dy is a solution of the problem (5.1) and that the inball radius ro, (2m) of R2™ and the

minimum eigenvalue of the E-optimal design are given by (see Theorem 3.3)

m
Amin = 15,,(2m) = 2@m—1)
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The inball vector of R2™ is given by v/Amind = 2(2m l)D() with supporting hyperplane
Dy and by Theorem 3.4 we obtain that the support of the E-optimal design is included in
the set

{z| ||Dyz||2 = 1} = {z € {0,1}*™| z has exactly m components equal 1}.

Let {v;} denote the set of vectors in R?™ with m components 0 and m components 1,
then it is straight forward to show that the design {g which puts uniform mass on the
(2;’) vectors v; has information matrix M(¢g) = mr%:l_)I?m + 5(%’"-:_}—1)]2", with minimum
eigenvalue Apin = 2(2::—_1) (here I, denotes the identity matrix and Jy,, the matrix with
all elements equal 1). Therefore {g is the E-optimal spring balance weighing (approximate)
design (for n = 2m) and the minimum eigenvalue Ayix has multiplicity 2m — 1. By the
same reasoning it can be shown that for n = 2m + 1 the E-optimal design puts equal mass
at the (*™F1) vertices of [0, 1]>™+! with m+1 coordinates equal 1 and m coordinates equal

0. The minimum eigenvalue is r3,, ., (2m + 1) = Apin = ﬂ%n% and has multiplicity 2m.

For the determination of the E-optimal design it is sufficient to look at the set R” and
its corresponding inball radius r,(n). However for the illustration of the theorems of section
3 it might be useful to investigate also the inball radii rg(n) for k < n in this example. At
first we will show that the inball radius of the set RZ_; is the same as for R”. For this
purpose we consider again only the case of n = 2m even. Because the derivation of (5.4)
does not depend on the dimension of the vectors d; we still have r3,,_,(2m) > TEmD)
Let Dy = (Jl, e ,JZm—l) € R2mx2m=1 where

L VI EmeT 1 1

= 0,...,0,1, ———— ... —
\/—\/2m—z—l— ( \2m—z’ 2m —1

—_ N

) € R*™

2m—1

(i = 1,...,2m — 1) then its straightforward to check that Dy fulfills ||D}z||, < 1 for all
z € X and

This shows that the lower bound for r3,,_;(2m) is attained and we have r2,_,(2m) =
r (2m) = Amin. In the same way we can prove the case n = 2m+1 and obtain ra-1(n) =

rn(n) for all n > 2. In the next step we will show that rg(n) = rg(k+1) for all n > k + 1.
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The inequality rx(n) < ri(k + 1) is obvious (by the same reasoning as in the proof of
Theorem 3.5 a)); for the converse inequality consider at first the case k = 2m + 1. We

have from the first part

m+1
Pom1(2m +2) =155 (2m +2) = mtl) ram+1(2m + 1).
Now we consider the case n = 2m + 3 and let D' = (dy,... ydamt3) € REMHIX2m+3 iph

|D'z||]s <1 Vz € {0,1}>™+3. It can easily be proved (by looking at the signs of the inner
products) that the minimum of the angles between n + 2 vectors in R™ is less or equal 90°.
Therefore D' contains at leaét two vectors, say d; and dy with d{ds > 0. For the matrix
D’ =’(d1 + ds,ds, ..., dam+3,0) € RZMHIX2m+3 we verify that ||l~)’:z:||2 < 1 (because all
sums of the vectors of D' are in the unit ball of R2™*1 this is also fulfilled for the vectors

of D') and obtain

~, o~ 2m—+3 2m+43
wD'D="5"|ldl} +2didy > |l = trD'D.

The matrix Dy = (dy + da,ds, . .., dam+3) € RZ™HIX2m+2 can also be used for the calcula-
tion of r2m41(2m + 2) and we obtain from (3.6)
1 1 1

rma1(2m +2) < =— <
7‘2m+1( m + )— tT‘(DaDo) tT(D'D) - tr(D’D)

for all matrices D € R*™+3*2m+1 satisfying ||[D'z|]; < 1 (z € {0,1}2™+3). This shows
rem+1(2m + 2) < romy1(2m + 3) and because the converse inequality is obvious we have
rom+1(2m + 3) = rom11(2m + 2) = ropy1(2m + 1). Repeating these arguments gives the

desired result

(5.5) rom+1(n) = ram41(2m + 1) for all n > 2m + 1.

For the case k = 2m we apply Theorem 3.5 a) and obtain using (5.5)
ram+1(2m + 1) = ram(2m + 1) 2 ram(n) > remy1(n) = rome1(2m + 1)

which shows rym(n) = rom(2m + 1) whenever n > 2m + 1. Summarizing all results
obtained so far we have for the squared inball radii r(n) in the spring balance weighing

design example

nt1
sE(mT] ) = e fork=n—1n
2 —
riv(n) = ri(n) = Amin forallk>n
ri(k+1) foralln > k+1
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The squared inball radii are illustrated in Table 4.1 for n < 7,k < 7.

k\n
1

2 3 4 5 6 7
172 | 172 | 12 | 1/2 1/2 1/2
12 | 1/3 | 1/3 | 1/3 1/3 1/3
12 | 1/3 | 1/3 | 1/3 1/3 1/3
1/2 | 1/3 | 1/3 | 3/10 | 3/10 | 8/10
172 | 1/3 | 1/3 | 3/10 | 3/10 | 3/10
1/2 | 1/3 | 1/3 | 3/10 | 3/10 | 2/7
172 | 1/3 | 1/3 | 3/10 | 3/10 | 2/7

~J[ | ] WD
= o= Yoy iy rumy

Table 4.1: The squared inball radii of the sets R}
(n <7,k <7) for the spring balance weighing designs

We see that for fixed n the sequence of inball radii (ry,72,73,...) is not strictly de-

creasing.

2) Chemical balance weighing design. Let f(z) = = = (21,...,2,),X = {-1,0,1}™
These designs are called chemical balance weighing designs because they often occur in
chemical weighing operations (see Raghavarao (1971)). We will use the results of section
3 and determine the F-optimal chemical balance weighing (approximate) design. To this
endlet D' = (dy,...,d,) € R¥*" be a matrix satisfying ||D'z||2 < 1for all z € {—~1,0,1}".
Inserting in this inequalities all 2" 7! vectors of the form (1, ¢€5,...,6,) € {~1,0,1}™ where

i =F1 (: =2,...,n) and adding these inequalities we obtain
271 § did; <27
i=1

which gives the lower bound 1 for the inball radius rz(n) of R}. For n > k define the matrix
Djy = ($Ix,0) € R¥*", then we have || Djz||2 = %i§1 z? < lforallz € X and ¢rD) Dy = 1.
Therefore Dy attains the lower bound and we find rg(n) = 1 for all kK and n € N. The
E-optimal chemical balance weighing design is obtained by an application of the necessary
condition of Theorem 3.4 and puts equal masses at the 2" points (F1,...,F1) € R®. The
minimum eigenvalue is 1 and has multiplicity n. This example shows that the bound in
Theorem 3.5 b) cannot be improved. All squared inball radii rgx(n)(k < n) are already

equal to the minimum eigenvalue of the E-optimal design. The following example shows

that equality can also occur in part ¢) of Theorem 3.5.
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) Linear regression without intercept on the n-ball. Let f(z) = z = (z1,...,2,) and
X = {z € R"| ||z||]2 < 1}. It is obvious that for all n € N the “first” inball radius is given
by r1(n) = 1. From Theorem 3.5 part c¢) we thus obtain (m = 1) r2(n) > ﬁ% = ¢ for all
1 <k <n as a lower bound for the (squared) inball radius r2(n). It is easy to verify that
the matrix D' = (I;,0) € R**™ satisfies ||[D'z||2 < 1 for all z € X and that it attains the
lower bound %. This shows that r?(n) = 1 for all 1 < k < n. For k = n we obtain the
minimum eigenvalue of the E-optimal design Amin = + with multiplicity n (by Corollary
3.6). It is straightforward that the design which puts uniform mass at the unit vectors
ei = (0,...,0,1,0,...,0)" is a E-optimal design. In this example we have mr2, = kr? =1

for all m < k < n, i.e. equality in Theorem 3.5, part c).

4) Linear regression regression without intercept on the n-ball in the £,-norm. The follow-
ing example is more of mathematical interest than of practical interest compared to the

previous examples which arise in various applications of linear regression. Let f(z) = z =
1/p

(z1,...,2n)', the design space is X = {z] ||z||, < 1} where ||z]||, = (E} |z:|? denotes

=1

the £,-norm on R™ (1 < p < o0). In the previous example we have found the F-optimal
design and all inball radii rx(n) for p = 2,p = co. We will now determine the E-optimal
design for any p > 1. It is convenient to distinguish the cases 1 < p<2and2<p < o
and we will begin with the first one. Let D' = (dy,...,d,) € R®*" such that ||D'z||; < 1
for all z € X. Inserting the unit vectors e; = (0,...,0,1,0,...,0) € R® in this inequality
and adding these inequalities we obtain E‘, d;d; < n which shows that 1/n is a lower bound
for the (squared) inball vector r2(n), i.efzr:'li(n) > L. For the matrix D = I,, we have (note
that p < 2)
1

1Dallz = llellz < llall, < 1 and trD'D = =

which shows that r2(n) = % From Theorem 3.3 and 3.4 we conclude that A\mj, = % and
by straightforward arguments it can be shown that the E-optimal design puts equal masses

at the points e; (: =1,...,n).

The case p > 2 is treated similar to example 2. We consider the 2"~ ! vectors of
the form y = n—l/f’(l,qil, ...,F1) € X. By a summation of all inequalities of the form
HD'y||3 < 1 we obtain

2" 1n~F 3 did; < 2"
i=1
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which shows r2(n) > n=2/?. To prove equality we have to find a matrix D with ||D'z||, < 1
and trDD' = n?/?, The last equation is obviously fulfilled for the matrix Dy = nt/P~1/2],.
On the other hand we see from (11—, + % = 1)

2_ 2_1 2
IDgallf = n )3 = n3 " § 22

1 1
n ? n q
<nil (.Ellwilp) (_Ellwil") <llall; <1
1= =

that Dy satisfies also the other condition. Here we have used the inequality n%—1||x||q <

=

l|z{]p for p > 2 which is an elementary consequence of the Holder inequality. Therefore
the minimum eigenvalue of the E-optimal design is given by Amin = r2(n) = n=2/?. To
identify the design itself we apply Theorem 3.4 and obtain that the design which puts
equal masses at the points n“l/f’(qil, F1,...,¥F1) is E-optimal if p > 2. Note that in the
case p = 2 there may exist E-optimal designs with different support points than the points
given above. This is a consequence of the fact, that for p = 2 the necessary condition
[|[Doz||z = 1 of Theorem 3.4 reduces to ||z|]; = 1. An example for another E-optimal

design is given in Example 3.

5) Cubic regression on the interval [—b,b]. Let f(z) = (1,z,2%,2%), X = [~b,8],b > 1.
In a recent paper Pukelsheim and Studden (1991) showed for the interval [-1, 1] that the
minimum eigenvalue of the E-optimal design is given by ||c||;? where ¢/f(z) = T3(z) =
42® — 3z denotes the third Chebyshev polynomial of the first kind (these authors proved
this statement for arbitrary degree and also identified the support of the E-optimal design
on [-1, 1]). By an application of the results of section 3 we will show that this is not true on
[-b, b] if b is sufficiently large. To this end we give estimates for the inball radii of the first
two Elfving sets R; and Ry. Let d = (0, —%—, 0, ,;%)I, denote the vector of the coefficients
of the third Chebyshev polynomial on [—b, 8], then we have for all = € [—b, b]

[LHOIE (—3% +4 (-”5)3)2 = (5 (3)) <1

which gives the upper bound (see (3.6))

65 Amin <7 < [(%)2 ; (1;13)2]



For the determination of an upper bound for r; we remark, that it follows from the results

of Dette (1992) that for any « € [0, 1] the matrix

DI:(—\/a(2-—a) 0 2Z+va2-a) 0)

—_ 2(2—a
0 _3_6' 0 (ba )

satisfies the inequality

2

1D @B = a(2 - a) |-1+2 (%)2]2 +|-e-afr2e-a ()] <1

for all z € [—b,b] (this can also be verified directly checking that the above expression
attains its maximum in [—b,b] at the points Fb and F, /ﬁb and that this maximum

is equal 1). Therefore we have

(5.6) % > g(a):=tr(DD') = a(2 — a) (1 + 1;14) + 3 ;20‘) n 4(2 I; a)

for all & € [0,1]. By elementary calculations it can be shown that g(«) attains its maximum

in [0, 1] at (note that f"(a) = —&(b? — 1)(b* +4) < 0 for all b > 1)

b —3b%44b2— .
{ DD 102t

0 if b < by

Umax =

where by = 1.62307279 and the maximum value is given by

b34+3p54+80% 1262412 -
52(62—1) (b2 +42) if b > bo

f(amaX) = { 9 9
)" + (%) if b < bo.

Here we have to distinguish the cases b > by and b < by because the solution of f'(a) =0

is not contained in the interval [0, 1] if b < by. From (5.6) we obtain the upper bound for

T2

b2(b2—1)(b%*+44) .
mrsererisiariys 10 = bo

(57) >\min < T% < -1
@+ @7 r<t

Because f(amax) > f(0) = (%)2 + (,:1—3)2 whenever b > by we see from (5.7) that for
b > by the minimum eigenvalue of the E-optimal design is not given by ||d||;? where

d = (0, —%, 0, 1:1—3) denotes the vector of the coefficients of the third Chebyshev polynomial
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on [—b,8] (d'f(z) = Ty (%)) The same arguments will hold for polynomial regression of
arbitrary degree n > 2 on [—b, b].

The calculation of the inball radii for the cubic model on [—b,b] (or general for the
model of degree n) seems to be difficult because this problem is equivalent to a problem in
nonlinear approximation theory. However, as mentioned in section 3 upper bounds of the
inball radii rx are very useful for the calculation of E-efficiences for a given design. As an

illustration we consider the case b = 3 and obtain from (5.7)

which gives the lower bound for the E-efficiency of a given design ¢ (see (3.7))

min (M(€)) . 798
Amin — 510

Eff ({) = Amin (M (£))-

As an example we take the design n which puts masses proportional to 1:4:4:1 at the
points -3, -1, 1, 3. The minimum eigenvalue of M(n) is Amin(M(n)) = 0.5881 and its
E-efficiency Eff () > 91.44%. If we put masses proportional to 1:9:9:1 at the same points

we obtain a minimum eigenvalue 0.6137 and a E-efficiency greater or equal 95.42%.
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