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Abstract

This article presents an exposition of some recent developments in the smoothing spline ap-
proach to multivariate nonparametric regression. The essence of the methodology is highlighted
via the detailed descriptions of a few mathematically simplest members of the spline family.
Data analytical tools are presented, and their use in data analysis is illustrated via simulated
and real-life data examples. To demonstrate the pros and the cons of a nonparametric analysis
versus a parametric analysis, a comparative study is also presented.
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1 Introduction

Regression analysis, analysis of variance (ANOVA), and analysis of covariance are among the most

commonly used statistical methods in applications. The common structure of the problems is
?li=f(ti)+€i, i=17"'7n

where y; are observed responses, t; are predictors or covariates, and ¢; are zero-mean common
variance uncorrelated noise. Here we only consider the fixed effect models for ANOVA and analysis
of covariance. Our primary interest is to estimate the systematic part f of the response.

In classical parametric analysis, f(t) is assumed to be of certain parametric form f(t,3) where
the only unknowns are the values of the parameter 3 to be estimated from the data. The dimension

of the model space is the dimension of 3, presumably much smaller than n. When f(t, B) is linear



in B, i.e., f(t,8) = 7B where & = 2(t) is a vector of known functions of ¢, f is just a standard
linear model. Dozens of standard textbooks are available on linear models, see, e.g., Draper and
Smith (1981). When f(¢,3) is nonlinear in 3, nonlinear regression methods are available; see, e.g.,
Bates and Watts (1988). The parametric form f(t) = f(t,0) is a rigid constraint on f and should
in principle be derived from the subject area knowledge of the problem. Sometimes, however, a
parametric form might be imposed simply for the lack of alternatives. In such circumstances, the
analysis is subject to potential model bias, in the sense that possibly no member of the specified
parametric family is close to the underlying “true” systematic part.

To avoid possibly serious model bias in a parametric analysis, an alternative approach is to
allow f to vary in a high (possibly infinite) dimensional function space, which leads to various
nonparametric or semiparametric methods. Since the data are noisy, however, one needs to impose
certain soft constraints on f to regulate its behavior and to effectively achieve noise reduction in
the estimate. The most natural soft constraint, which is adopted by most if not all of the nonpara-
metric methods, is that f is “smooth”. Consequently, nonparametric/semiparametric modeling is
also called smoothing. All smoothing methods are equivalent, to various extents, to locally aver-
aging the data — local to control the bias and average to reduce the noise. Among the classical
smoothing methods are the kernel method, the nearest neighbor method, and penalty smoothing
(smoothing splines). Because of the curse of dimensionality (Huber 1985), many successful univari-
ate smoothing methods (e.g., kernel method) face serious operational difficulties when extended to
high dimensional space. Consequently, almost all practical multivariate smoothing methods impose
appropriate constraints and/or have convenient schemes to control the model complexity. Some of
the methods available are projection pursuit regression (Friedman and Stuetzle 1981; Huber 1985),
additive models (Hastie and Tibshirani 1986, 1990; Buja et al. 1989), regression splines (Stone
1985), multivariate adaptive regression splines (MARS) (Friedman 1991), the []-method (Breiman
1991), and various multivariate smoothing splines (Wahba 1990).

In this article, we pursue an exposition of the smoothing spline approach to nonparametric
regression for technically nonsophisticated readers. We try to highlight the essence of the method-
ology as well as to cover some recent developments in the multivariate setup. We shall describe
the available modeling tools and illustrate their use and effectiveness via simulated and real data

examples. We shall also compare nonparametric analysis with parametric analysis to demonstrate



the pros and cons of the methodology.

The rest of the article is organized as follows. Section 2 introduces the basic idea, explains
the essential ingredients of the methodology, and examines a few simple examples. Section 3
discusses ANOVA decomposition on product domains and describes the construction of tensor
product smoothing splines by relatively simple examples. The materials in Sections 2 and 3 could
be treated more generally, but we choose not to do so due to the expository nature of this article.
Section 4 collects a few data analytical tools for a nonparametric analysis via the models described
in Sections 2 and 3. Section 5 illustrates the methodology by data examples. Section 6 demonstrates
the plus and minus sides of the methodology compared with parametric modeling. Section 7 collects

a few remarks.

2 Smoothing Splines

2.1 Penalty smoothing

Smoothing spline is an instance of penalty smoothing. What follows is a classical example. Consider
yi = f(ti)+e,i=1,---,n, where ¢; € [0,1] and ¢ ~ N(0,0%). Since one has only finite number
of data to estimate the entire function f, it is necessary to assume certain soft constraint such as

smoothness for f. A good estimate of f can be obtained as the minimizer of
1 & 2 1oae
D IUESONEPY NG (2.1)
n iz 0

where the first term measures the goodness-of-fit, the second term penalizes the roughness of the
estimate, and the smoothing parameter A controls the tradeoff between the two conflicting goals.
The minimization of (2.1) is implicitly over functions with square integrable second derivatives.
The minimizer of (2.1) defines the famous cubic spline. As A — 0, the minimizer approaches the
minimum curvature interpolator. As A — oo, the minimizer approaches the simple linear regression
line. Note that the linear polynomials form the null space of the roughness penalty fol ( f)2

A simpler example of penalty smoothing is related to the classical shrinkage estimators. Con-
sider y; = f(t;) + €;, where t; € {1,---, K} is a discrete covariate and ¢; are i.i.d. normal. f is now
a vector f € RX. The standard setup for shrinkage estimators is a special case of this setup where

one observes exactly one sample at each of the K points. Following the standard empirical Bayes



construction, one may assume a prior f ~ N(0,7%I), and the Bayes estimator under such a prior
is a shrinkage estimator shrinking towards 0. It is easy to check that such an estimator is just the
minimizer of

13 o2 K
— 2 = fE)* + — > (1), (2.2)
Jj=1 t=1

where YK | f2(t) is the roughness penalty and o2/nr? is the smoothing parameter. A smooth
vector in this case is simply one with small Euclidean norm. Note that this roughness penalty has
a nil null space.

Elaborating a bit further on the above example, one may write f = p1 + a, 1Ta =0, as in a
one-way ANOVA with the standard side-condition. The prior f ~ N(0,72I) could be decomposed
accordingly as u ~ N(0,7%2/K) and a ~ N(0,72{I — 11T/K}). Note that the 72 in the decoupled
priors could vary separately. Letting 7'3 — 00 generates an improper prior for the constant u.
The resulting Bayes estimator is a shrinkage estimator shrinking towards the constant, which can
equivalently be defined as the minimizer of

1o o2 K _
n 2 = FE) + 5 3 (F@) - 7%, (2.3)

@ =1

where the roughness penalty "X (£(¢) — f)? has 1 as its null space. A smooth vector in this case

is one with small variance.

2.2 Smoothing Splines and Reproducing Kernel Hilbert Spaces

Consider y; = f(%;) + €;, where ¢; are as before and t; € 7, a generic domain. A reproducing kernel
Hilbert space (RKHS) H of functions on 7 is a Hilbert space in which evaluation is continuous. A

smoothing spline is defined as the minimizer of
1 n
~ > (i = f()))* + I(f) (2.4)
i=1

in a RKHS H on 7, where J(f) is the roughness penalty, taken as a square (semi) norm in H
with a finite dimensional null space J,. A Hilbert space carries a metric and a geometry, which are
indispensable for almost all statistical calculations. Continuous evaluation ensures the continuity of
the goodness-of-fit part of the criterion, which makes it possible to define, analyze and calculate a

minimizer. A finite dimensional J, prevents interpolation when the sample size is reasonably large.



These requirements are necessary for a sensible development under the framework. The choice that
J(f) be a quadratic form leads to relative numerical simplicity and a Bayesian interpretation of
the method, if desired.

An equivalent defining property of a RKHS H, from which the terminology is coined, is that it
possesses a reproducing kernel (RK) R(:,-), a positive definite bivariate function on 7", such that
R(t,-) = R(-,t) € H, ¥t € T, and < R(t,-), f(-) >= f(t) (the reproducing property), Vf € H,
where < .,- > denotes the inner product in H. As a matter of fact, starting from any positive
definite function R(-,-) on the domain 7, one can construct a RKHS H = span{R(t,-),Vt € T}
with an inner product satisfying < R(s,-), R(t,-) >= R(s,t), which has R(.,-) as its RK. Further,
if H = Ho ® My with the RK R, then M and H; are both RKHS, and R = Ry + R; where R,is
the RK of H,, v = 0,1. We remark that the norm and the RK determine each other uniquely, but
explicit expressions are not always available for both. Details are to be found in Aronszajn (1950).

Now look at the examples in Subsection 2.1. They are all specializations of the smoothing
spline defined in (2.4). For the cubic spline example, J(f) = fol f? is a square seminorm in
H = {f: [f? < 0}. There are many ways of supplementing J(f) to deduce a norm in H.
Two rather standard configurations follow. The first one takes ||f||? = f2(0) + f2(0) + J(§)
with the RK R(s,t) = [1 + st] + [fy(s — u)4(t — u)4du], where (-) is the positive part of (.).
This configuration yields a decomposition H = Ho @ H; where Hy = 7y, the linear polynomials,
and Hy = {f : f € H,f(0) = f(0) = 0}, and the corresponding Ry and R; are bracketed
in the expression of R. The second one takes ||f||2 = (fy f)? + (Jy £)? + J(f) with the RK
R(s,t) = [1+ k1(s)k1 ()] + [k2(s)k2(t) — ka(]s - t|)], where ky = (- — .5), kg = (k2 — 1/12)/2, and
kq = (k} — k}/2 + 7/240)/24; see, e.g., Craven and Wahba (1979). This configuration has Ho = 7
andHy ={f: feN,[f= ff = 0} with the RK’s as bracketed. Note that the norm in J, plays
no role in the definition of smoothing spline, so these different configurations all lead to the same
final result. Different (marginal) configurations do matter, however, in the construction of tensor
product splines; see Section 3.2.

A RK on {1,-.:,K} can be written as a matrix. For the second example, H = RK and
J(f) = fTf, the standard Euclidean space, and the RK is simply the identity matrix I. For
the third example, R¥ = {1} & {1}, J(f) = fT(I - 1aT/K)f is a norm in {1}*, and T =

[12T/K] + [I — 11T/K] is the RK decomposition. In general, any nonnegative-definite matrix J



can define a roughness penalty J(f) = FTJf with the complement of its column space as the null
space. For example, for an ordinal discrete covariate, J(f) = Y E71(f(¢ + 1) — f(¢))? might be a
more natural penalty than the one defined in the third example above. A norm in RX can then be
defined as || f||> = fT(L +J)f where LJ = 0 and L + J is positive-definite. It is easy to verify that
the RK is simply (L + J)™! = [L*] + [J*], where the superscript + indicates the Moore-Penrose
inverse and the brackets indicate the RK decomposition. Again the choice of L does not affect the
final result.

Before closing this section, we remark that a smoothing spline as defined in (2.4) is a Bayes
estimator under a mean zero Gaussian process prior on 7. The prior process has two independent
components, one is diffuse on J,, and the other has covariance function proportional to Ry, the
RK in H © Ji. In the discrete case Ry = J*. The third example above might be the simplest
yet complete illustration of this classical result due to Kimeldorf and Wahba (1970) and Wahba
(1978).

3 ANOVA in Function Spaces

3.1 Function decomposition on product domains

An important aspect of statistical modeling, which distinguishes it from mere function approxi-
mation, is the interpretability of the results. Among the most interpretable notions in classical
modeling are the notions of main effects and interactions in ANOVA. We describe below a simple
generic operation to generalize these notions to a generic setup.

In a standard two-way ANOVA on {1,---, K1} x {1,---, K2}, f(t1,82) = p+ oz, + Bty + V13,85
where the main effects oy, , B¢,, and the interaction 7;, 4+, have to satisfy certain side conditions to

make the decomposition unique. Two sets of commonly used side conditions are

Zah = Zﬂtz = Z7ilyt2 = 27t17t2 =0 (3'1)
tH t2 5] ta

and
o1 =01 =7 =Y,1=0, (3.2)

where (3.1) are the standard ones. In both cases one can write

f = (Ba+1-E)E:+1-E)f



E\Exf + (I — E )Eof + EA(I - E3)f + (I - By)(I — Ep)f
B+ oy + By + Y14 8 (3.3)

where E; are marginalization (or averaging) operators acting on {1,---, K;}. For (3.1) Ef = f.
For (3.2) Ef = f(1).

Consider functions f(ta,---,tr) on a generic product domain ]'[,Iy‘=1 7,. Define E, to be a
marginalization operator acting on the argument t.,, which “averages” out ¢, from the argument

list of the function and satisfies E2 = E,. An ANOVA decomposition can be defined as

r
[I1(7 - B+ E))f

f =
=1
= Y ([Iu-E) ] Bif
AC{1,.-,T'} veA YEAS
= > fa (3.4)
Ag{l,---,[‘}

where A is the active argument list in a component. f; = [H,l;=1 E,\f is the constant term,
fv = iy = [(I = E4) Tlapy Eolf is the ¢, main effect, f, 5 = ftv6y = [(I— Ey)(I - Ey) Masgq.s Eolf
is the t,-ts interaction, and so on. The terms of such a decomposition satisfy the side conditions
E,fa=0,YA 3 v. The choice of E,, or the side conditions on each axis, is open to specialization.

The ANOVA decomposition of functions on a product domain not only makes the functions more
interpretable, it also automatically provides a means of model simplification by selectively trimming
off certain terms in the decomposition. Interactions of three or more variables are usually trimmed
as in the classical ANOVA, for they are less perceivable and are more “expensive” to estimate.
Such simplifications are almost necessary for a nonparametric multivariate fit since the data are
scarce. The flexibility in the choice of E, can also be employed to facilitate the incorporation of
certain constraints; for example, to enforce f(1,t;) = 0 in a two-way ANOVA one could simply

take Eq f = f(1,%2) and trim off the constant and the t3 main effect from the model.

3.2 Tensor product splines

Based on RKHS H” on domain 7, with RK R, a RKHS M on the product domain [], 7, can be
constructed from a RK R((s1,---,sr),(t1,--,tr)) = [I, R"(8y,1y), Where s,,%, € T,; see Aron-

szajn (1950). A tensor product smoothing spline, also called an interaction spline, is a specialization



of (2.4) on a product domain with H as a tensor product RKHS. An ANOVA decomposition with
selective term trimming can be built into a tensor product spline by construction. We present a few
bivariate examples in the remaining of the section. General theory and more complicated examples
can be found in, e.g., Wahba (1986) and Gu and Wahba (1990, 1991 a, b).

First consider the pure discrete case. We adopt the standard side conditions of (3.1). A
N(0,72I) prior on a K;K,-dimensional vector f can then be decomposed accordingly to p ~
N(0,7?/K1K3), & ~ N(O,7H{I — 11T /K }/K3), B ~ N(0,7%{I — 11T/K;}/K;), and v ~
N(0,7{[I-11T [ K1]®[I —11T / K,]}) where ® denotes the Kronecker product. Again the four 72’
may vary separately and hence shall be denoted differently. The Bayes solution under such a prior
is seen to be a smoothing spline with J(f) = (¢?/n)[r72Ju(f) + 752 Ja(f) + 752 I5(F) + 77202 ()],
where J,(f) = K1 Kyu? with the RK R, = 117 /K K, Jo(f) = KeaT(I - 11T/K1)a with
the RK Ry = (I — 127/Ky) ® (11T/K>), Js(f) = K:187(I - 11T/K,)B with the RK Rp =
(117/K1) ® (I - 11T/ K3), and J,(f) = 4T[(I - 117/ K1) ® (I - 11T/ K,)ly with the RK R, =
(I —127/Ky) ® (I — 117/T;). These four RK’s are actually based on the decomposed RK’s
RY = [11T/K,) + [I - 12T /K,], v = 1,2, on the two marginal domains. A 72 = oo puts the
component into the null space (improper prior), 0 < 72 < oo shrinks the component (proper prior),
and a 72 = 0 trims the component (degenerate prior). For example, setting T2=1k= Tg = oo and
72 = ( yields the classical additive model.

Now look at a continuous case on the domain [0, 1]2. We adopt the side conditions

/Olfl=/01f2=/01f1,2dt1=/01f1’2dt2=0,

ie, Ef = fol f. Using the second configuration of the cubic spline in Section 2 on both axes,
H' = H? = {1} @ {- — .5} ® Hy, where H; has been further decomposed and {- — .5} & H, is
the null space of the marginalization operator E. The RK decomposition on [0,1] is R(s,t) =
[1] + [k1(s)ka()] + [ka(s)k2(t) — ka(|s — t|)] = R. + Ry + R, say, which results in a decomposition
of nine product RK’s on the product domain [0,1]%. The RK R.R. = 1 generates the constant
term. The sum of two RK’s (R, + R;)R,. generates the ¢; main effect. The sum of four RK’s
(Br + Rs)(Rx + R;) generates the interaction. These RK’s are bivariate functions on [0,1]?, e.g.,
(BrRs)((31582): (t1,82)) = Ra(s1,t1)Ra(s2,%2) = ki(s1)ka(t1)(ka(s2)k2(t2) — Ea(|s2 — t2])). The
penalty in this setup can in general be written as J(f) = P 0',}J s(f), 7,6 = ¢,7,s, where
Jy,5(f) are square norms in the space generated by the RK R, R;s and 8,5 € [0,00]. A 8 = 0o puts

8



Table 3.1: RK and J for a Tensor Product Spline on [0, 1]?

RK J 0€
RcRc (f()1 fol fdtldtZ)2 [0’ OO]
ReRe  (Jo Jo fudtidta)* [0, 00]
RrRy (fOl fol ff}tzdtldt2)2 [0700]
RsR.  [o(fo ftﬁdtz) déy  [0,00)
R.R, fo (fo dt2)2dt1 [0, 00)

R,R, fo fo (ftztz )2dtidt; [0, 00)

Table 3.2: RK and J for a Tensor Product Spline on {1,---, K} x [0, 1]

RK J 0€
R.R. (Etl_.l fo fdt2)2/K [0, 0]
Ry R, Et1—1 (fo (f- Zt,_l fIK)dt;)?*  [0,00]
RMRW (Z =1 fo ftzdt2)2/‘K [07 00]
RoRx Ztl-—l (fo (ftz Ztl—l ftz)dtZ) [0, 00]
R.R, Jo (Ztl_l fa)tdtz/ K [0,00)

RoR, JiSK_(Fs - TK_, fal/K)dts [0,00)

the term into the null space. A 6 = 0 eliminates the term from the model. Explicit expressions of
some of the J’s and possible s are listed in Table 3.1. Setting 8.c = 0y = 0.» = 0r,r = 00 makes
the linear interaction model the null space of the penalty. Setting 6z, = 05 = 6,5 = 0s5s =0
yields the main-effect-only (additive) model.

Finally we look at a mixed model on {1,.--,K} x [0,1]. Let E;f = Eff‘ f(t1,t2) and Eof =
3 f(t1,t2)dts. From the RK decompositions R (s1,t1) = [11T /K] + [I — 11T /K] = R, + R, and
R?(s2,t3) = [1]+[k1(s2)k1(22)] + [k2(s2)k2(t2) — ka(|s2 —t2])] = Re+ Ry + R, six RK’s can be easily
constructed on the product domain. Similar to the previous example, R, R, generates the constant,
Ro R, generates the t; main effect, R,(R. + R,) generates the ¢; main effect, and R,(Rr + R,)
generates the intera,ction'. Again the penalty can be written as a sum of §~1J’s. Explicit expressions
of the J’s and possible 8’s are given in Table 3.2. By convention the constant is usually unpenalized,
ie., 0, =00. RoRc, R Ry, and Ry R, are all of finite dimension (actually 1), to which one can
afford to attach § = oo without interpolating the data. 8,, = oo means that Ff’s at different



1) levels are not shrunk towards each other, 8, = oo means that (E;f)(1) — (E1f)(0) is not
shrunk towards 0, and 6, = co means that f(¢,,1) — f(¢1,0)’s are not shrunk towards each other.
Similarly, setting 6’s to 0 enforces rigid constraints. For example, setting 0, = 04,5 = 0 yields
a main-effect-only model, which amounts to parallel cubic splines. Some more insights are in the
following observations. Take 8,. = 04 = 0,5 = 04 = 00. Note that IR, = R,R, + R,R,.
So the current setup actually attaches two separate smoothing parameters to the above split. If
one enforces 8, ; = 0, ;, the formulation is equivalent to K separate cubic splines with a common
smoothing parameter. By attaching K different smoothing parameters to the K terms in the split
IR, = (E{fﬂ et1e¥; )R, where e; is the ith unit vector, one obtains separate cubic splines with

individual smoothing parameters, which are basically K separate problems.

4 Modeling Tools

Sections 2 and 3 concern the (conceptual) construction of nonparametric models via the smoothing
spline approach. To make the approach applicable in data analysis, further tools are needed.
In this section, we briefly describe a few modeling tools for model fitting, model checking, and
precision assessment. These tools are considerably different from their counterparts in a parametric
statistical analysis, as we will see shortly, and that is not surprising because the basic principle of
a nonparametric analysis is sufficiently different from that of a parametric analysis. We remark
that the development of modeling tools, especially for model checking and precision assessment,
is by and large immature at the present time, and the reader will see that there are many open

problems.

4.1 Calculation of cross-validated fit

This subsection is about model fitting. Consider the following problem.
.1 2 SN
min — D= FE)+ XD 051 Ts(S), (4.1)
=1 B=1

where f = Y8_ fo(t:) € H = @f_oHp, fs € Hp, and Jg(f) = Jp(fs) is a square norm on Hg with
the associated RK Rg. It is easily seen that all our examples in Sections 2 and 3 are specializations

of (4.1), with p = 1 for the examples of Section 2. Without loss of generality, 65 € (0, 00) in (4.1).

10



The solution of (4.1) has an expression

M n P
f= z_: b (Ydy + 3 (D" 0sRs(ti,))ei = &7 (d + €7 (e, (4.2)

=1 fB=1

where {¢,}M, span Ho, £7(-) = (&1(-), -+, &(")), &) = h=108Rs(t;,-), and ¢ and d are the

minimizers of

(y - Sd - Qc)F(y — 5d — Qe) + nAcTQe, (4.3)

where § is n X M with (¢, v)th entry ¢,(%;), Q = Z’E:l 053Qp, and Qp is a n X n matrix with (4, 7)th
entry Rp(ti,t;). See, e.g., Kimeldorf and Wahba (1971) and Gu and Wahba (1991 a). It can be
shown that (4.2) is unique as the solution of (4.1) provided that § is of full column rank, while
(4.3) could have multiple numerical solutions of ¢. All we need, however, is one solution of (4.3),

which can be obtained by solving the well-behaving surrogate linear system

(@+nA\ec+S5d = y
sTd = o. (4.4)

The choice of smoothing parameters A and 6 in (4.1) has direct impact on the behavior of a
smoothing spline estimator. A good choice is via the generalized cross-validation of Craven and
Wahba (1979), which delivers an asymptotically minimum mean square error and behaves satisfac-
torily in numerous finite sample examples. Generic algorithms for solving (4.4) with cross-validated
smoothing parameters appear in Gu et al. (1989) and Gu and Wahba (1991 a), where further details
can be found. The algorithms are implemented in a collection of Ratfor subroutines available from
the netlib under the name RKPACK (Gu 1989). To use the software, the user has to construct the
§ and @p matrices and input them together with the response vector y into one of the drivers, and
the driver will return the cross-validated fit in terms of nA, g, ¢, and d. The drivers also return a

variance estimate 62 recommended by Wahba (1983).

4.2 Cosine diagnostics

This subsection is about model checking. Similar to the fact that the rigid constraint in a parametric
analysis makes lack of fit the main concern there, the flexibility in a nonparametric analysis makes

overinterpretation the prime target of the current development. More precisely, we consider a

11



interpretable decomposition of the fit f = Eg=0 fa, such as the ANOVA decomposition of Section 3,
and check for the identifiability and the nontriviality of the terms in such a decomposition. By
convention fo is taken as the constant function. Note that this decomposition is in general different
from the computation-oriented decomposition in (4.1). Also note that such checks are not necessary
if the sole purpose of the analysis is for prediction.

Assume that the decomposition f = Zg=0 fg is well-defined on the domain 7. When a fit is
calculated from the data, however, information comes from the design points ¢;, and the credibility
of the decomposition depends on how well it is supported on the design points. Evaluating the fit

at t;, one gets a retrospective linear model
y=Jot -+ Fpté (4.5)

where ]"ﬁ are fg evaluated at ¢; and & is the residual vector. Removing the constant by projecting
(4.5) onto {1}1, one gets
z=Ffi+.-+f,+e. (4.6)

The collinearity indices kg’s of (£, -, f,) (Stewart 1987), which can be calculated from the cosines
between the fj3’s, measure the identifiability of the terms in the decomposition Zfa=1 fs, and in
turn the identifiability of the terms in the decomposed fit f = Eﬁ.:(, fs- The f;’s are supposed to
predict the “response” z so a near orthogonal angle between a fs and z indicates a noise term.
Signal terms should be reasonably orthogonal to the residuals hence a large cosine between a f 8
and e makes a term suspect. cos(z,e) and R? = ||z —e||?/||z]|? are informative ad hoc measures for
the signal to noise ratio in the data. A very small norm of a f; compared to that of z disqualifies
the cosines as reliable measures, but it itself indicates a negligible term. We will treat the cosine
diagnostics as absolute measures for cross-validated fits. Qur limited experience suggests that a
term with cos(z, f) < .25 can be discarded and a term with cos(z, f) > .4 and with a reasonable
magnitude is not likely all noise. More discussion can be found in Gu (1990). These measures are
intuitively reasonable and have been used successfully in examples. It would be nice to have further

understanding of their operating properties.

12



4.3 Bayesian confidence intervals

This subsection is about precision assessment. As noted at the end of Section 2, a smoothing spline
is an empirical Bayes estimator under a Gaussian prior. More precisely, it can be verified that the

solution of (4.1) is just the posterior mean of a model

v=1

M p
vi=y )+ ) gs(ti) + e, (4.7)
p=1

where g3 are independent mean zero Gaussian processes on 7 with covariance functions Cov(gs(s), gs(s')) =
bisRs(s,s’) where b = a?/n), ¢, = d,¢, where d, have uniform improper prior on (—oo, 00), and
& ~ N(0,0%). Let S and Qg be as defined in (4.3) and M = Y h=105Qp + nAI. The posterior

distributions are summarized in the following theorem.

Theorem 4.1 Fiz n), 0, and o? in (4.7).

EWus)ly) = ¢u(s)el(STMS) ST My (48)
E(gs(ly) = BsRo(s,&7) (M~ — M1S(STM15)" ST M)y (49)
Cov(bu(s), BulNB)/b = u()8u(s)eL(STM15) e, (4.10)
Cov(t(s), go()W)/b = —4,()eT(STM1S) ST M-85 Ry(t, ) (4.11)

Cov(ga(s), g(Nw)/b = —0gRo(s, FY (M — M~1S(STM 18" ST M), R (8, '
+6pﬁ€ng(s,s') (4.12)

where t is the vector of the design points, e, is the vth unit vector, and 0g .~ is the Kronecker delta.

A proof of the theorem can be found in Gu and Wahba (1991 c). Based on (4.8) - (4.12), posteriors
of all linear combinations of 1, and gg, specifically those of the terms in an ANOVA decomposition
on a product domain, can be readily derived. Happily, the calculations of these quantities can
be conveniently conducted using the RKPACK facilities; see Gu and Wahba (1991 c). One may
plug in the cross-validation estimates for the smoothing parameters appearing in the formulas and
use b = 62/n), where the 62 is the variance estimate recommended by Wahba (1983). Based on
the posterior analysis, point-wise Bayesian confidence intervals can be easily constructed for any
linear combination of 9, and gg, including terms in an ANOVA decomposition and f itself. These

confidence intervals were studied in Wahba (1983). See also Wecker and Ansley (1983). Operating
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Table 5.1: Diagnostics for Pure Noise

f1 f2 f1,2 € z
K 1.07 1.02 1.05| R? =0.044

cos(e,-) [ 0.00 0.00 0.02 1 0.98
cos(z,:) [ 0.07 0.01 0.20 098 1
|-l |116 010 208 9.98 10.26

properties of such intervals with plug-in cross-validated smoothing parameters are discussed in

Wahba (1983), Nychka (1988), and Gu and Wahba (1991 c), where details are to be found.

5 Examples

We will analyze three data sets in this section using the techniques presented in the previous

sections.

5.1 Pure noise

The first example is a trivial exercise. We generated n = 100 design points from U/(0,1)? and
attached 100 pseudo N (0, 1) deviates as y; to these points. We used the tensor product cubic spline
of Subsection 3.2 to fit the data. The fit was calculated with 8, . = Ocr = Orc = Or r = 00 and with
the other five smoothing parameters cross-validated. The nine fitted terms were then collapsed
into one constant, two main effects, and one interaction terms. The diagnostics are summarized in

Table 5.1. The conclusion is self-evident.

5.2 NOX data

The data were from an experiment in which a single-cylinder engine was run with ethanol. There
were 88 measurements of compression ratio (C'), equivalence ratio (£), and NO, in the exhaust.
The purpose of the analysis was to see how NO, depends on E and C. Cleveland and Devlin
(1988) have more details about the data and an analysis using the multivariate loess. Breiman
(1991) analyzed the same data using the [] method. We followed Cleveland and Devlin (1988) by
taking the cube root transformation of NO,. Since C only varied on 5 distinct values, we could

treat it both as a continuous covariate and as a discrete covariate, which we did in different analyses.
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Table 5.2: Diagnostics for NOX Model: Continuous C.

I1 f2 f12 € z
K 1.08 1.07 1.02[ R? = 971

cos(e,-) | 0.04 0.00 007 1 0.18
cos(z,:) | 0.96 -0.02 0.04 0.18 1
- |10.80 243 1.70 1.31 10.57

Table 5.3: Diagnostics for NOX Model: Discrete C.

f1 T2 fio € z
K 1.06 1.08 1.02 | R*=.974
cos(e,-) | 0.04 -0.00 006 1 0.17
cos(z,-) | 0.96 -0.02 0.12 0.17 1
Il -l 10.65 245 1.68 1.28 10.57

The covariate E was translated into [0,1] by ¢; = (E — .535)/.697. First we treated C as
continuous and translated it by ¢ = (C'— 7.5)/10.5 € [0,1]. A tensor product cubic spline fit was
calculated the same way as in the pure noise example. The diagnostics are summarized in Table 5.2.
f2 and f, , were basically orthogonal to z. Clearly, there wasn’t enough evidence in the data to
support the C' main effect and the interaction.

Treating C' as a nominal discrete covariate, we also calculated a tensor product spline model
using the terms in Table 3.2 (with ¢, and ¢; switched) with 6, = 6o = 0, , = 0ro = co. The
diagnostics are summarized in Table 5.3. The conclusion remains unchanged. To exercise extra
caution to protect the interaction which was declared eminent by both Cleveland and Devlin (1988)
and Breiman (1991) in their analyses, we further attached five separate smoothing parameters to
the slices at the five different C' values so the five curves are not shrunk towards each other, and
calculated the cross-validated fit and evaluated the ANOVA decomposition with the side conditions
fol fdty = Yo f = 0 at the design points. The diagnostics are summarized in Table 5.4. Despite
the special protection, the C main effect and the interaction are still beyond our sights.

We finally calculated a cubic spline fit of N 031,/ % on E, which is plotted in Figure 5.1 together

with the point-wise 1.960 Bayesian confidence intervals.
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Table 5.4: Diagnostics for NOX Model: Separate 8 for Different C.

f1 f2 f12 € z
K 1.05 1.06 1.01 l R?2 = 979
cos(e,-) | 0.06 0.00 0.12 1 0.17
cos(z,-) | 0.96 -0.02 0.19 0.17 1
Il-1 10.55 231 1.84 0.91 10.57
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Figure 5.1: The NOX Model. The dashed line is the cross-validated cubic spline fit. The dotted
lines are point-wise 1.960° Bayesian confidence intervals. The data are superimposed as stars.
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5.3 Ozone data

The data are 330 daily measurements of ozone concentration and eight other meteorological vari-
ables in the Los Angles basin in 1976. The purpose of the analysis is to build a predictive model of
the ozone concentration on the other variables. The data were analyzed by Breiman and Friedman
(1985) using ACE and by Buja et al. (1989) using additive regression models. A data description, a
scatter plot matrix of the data, and a comparative study of various modeling techniques applied on
the data can be found in Section 10.3 of Hastie and Tibshirani (1990). We used the variable code
of Hastie and Tibshirani (1990) in our analysis (except that humidity is shortened as hum), and
followed their suggestion in taking the log transform of the ozone concentration as the response.
From the scatter plot matrix, the three variables vh, temp, and ibt are highly linearly correlated,
and we picked vh and discarded the other two in our analysis. We also discarded the variable wind
which showed no relation with any of the other variables. A square root transform is applied to
the variable vis to make it more uniformly scattered on its range.

Our first attempt was to fit a model on the variables vh, hum, ibh, dpg, and vis. The translation
(- — min)/(max — min) was applied to all the variables to map the data into [0,1]%. Instead of the
cubic spline marginals, we first used the linear spline marginals with the penalty J(f) = fol f2
and the RK decomposition R = R. + R, = 1 + [k1(s)k1(t) + k2(|s — t|)] under the side condition
fol f = 0. Linear splines give rougher looking fits but the main features of the fits are the same as
those of cubic spline fits; see Gu and Wahba (1991 a). A term in the ANOVA decomposition with a
tensor product spline on [0, 1]° with linear spline marginals has exactly one smoothing parameter,
while a two-factor interaction with cubic spline marginals can have as many as four. This is a
computational advantage of linear splines over cubic splines in a multivariate setup since the cost
of computing is proportional to the number of free smoothing parameters; see Gu and Wahba -
(1991 a). We included the five main effects and the ten pairwise two-factor interactions of the five
variables, altogether 16 terms (including the unpenalized constant). The cross-validated fit has a
R? = 0.741. The 7 terms with small cos(z, f) and very small ||f|| are listed in Table 5.5. Note
that these are all the pairwise interactions except those among the three variables vh, ibh, and
vis. A refit was calculated with the terms in Table 5.5 deleted. The diagnostics are summarized in
Table 5.6, where the last line records the maximum ratio (in absolute value) on the design points

of the posterior mean over the posterior standard deviation of each term. It can be seen that
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Table 5.5: Diagnostics for Ozone Data: Noise Interactions.

bj vh hum I vh,dpg b hum,ibh I hum dpg ¥ hum,vis bj ibh,dpg b dpg,vis € o
cos(z, -) 0.59 0.57 0.21 0.38 0.20 0.16 0.18 0.53 1
H-1l 0.03 0.00 2.32 0.00 0.00 1.28 0.00 5.23 13.57
Table 5.6: Diagnostics for Ozone Data: Linear Spline Fit.
Fon  Sfoum  STioh  Fapg  Fvis  Fvhibh  Fvhyis  Fibhyis € z
K 1.78 292 480 2.73 238 2.33 1.86 2.30 R* = .667
cos(e, ) 0.05 0.09 0.06 0.08 0.06 0.11 0.13 0.14 1 0.59
cos(z, ) 063 037 0.67 042 0.48 0.48 0.41 0.50 0.59 1
-1l 6.35 062 127 3.70 273 1.02 057 214 655 13.57
max(f/a'f) 8.67 127 1.89 452 3.95 1.84 1.07 3.53

Soum, fibh, fyh,ibh, and fyh,vis are very weak, both in that their norms are small and in that their
point-wise 1.960 Bayesian confidence intervals completely cover zero. Four of the five estimated
main effects and their point-wise 1.960 Bayesian confidence intervals are plotted in Figure 5.2.

A five term cubic spline refit was then calculated, including fih, fibh, fapg, fviss and fibh,vis,
where fin was included because that cos(z, f;,y,) in Table 5.6 is big and that the interaction fibh,vis
was included. The diagnostics of the refit are summarized in Table 5.7. fibhvis became the next
target of deletion. We finally fit a cubic spline main-effect-only model with fin, fibh, fapg, and fyis.
The diagnostics of the refit are summarized in Table 5.8. Everything looks normal. The terms in

the final model are plotted in Figure 5.3.

Table 5.7: Diagnostics for Ozone Data: Cubic Spline Fit.

Fvh  Fioh Tape Fvis Fibhyis  © z
K 1.47 1.83 1.15 1.35 1.37 | R? = .712
COS(e, ) 0.00 0.02 0.02 0.03 0.04 1 0.54
cos(z,-) 0.61 0.68 042 0.42 0.38 0.54 1
-1l 500 321 479 279 222  6.97 13.57
max(f/o;) | 11.84 156 6.47 2.69 1.62
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Figure 5.2: The Linear Spline Ozone Model: Main Effects. The dashed lines are the posterior
means. The dotted lines are point-wise 1.960 Bayesian confidence intervals.
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Table 5.8: Diagnostics for Ozone Data: Final Model.

.fvh fibh fdpg fvis € o
K 1.46 158 1.11 1.17| R? = 694

cos(e,-) 0.00 0.01 0.02 0.04 1 0.55
cos(z,-) | 0.61 0.67 042 0.45 055 1

-1 6.04 422 4.96 202 7.27 13.57
max(f/o;) | 1152 7.70 6.90 4.09

6 A Comparison of Parametric and Nonparametric Analyses

Data analysis does not produce information. The amount of information in the output of an
analysis can not exceed the amount of information contained in its input, namely the data and
the assumptions. In a nonparametric analysis one assumes less, so naturally the conclusions of a
nonparametric analysis shall be weaker than those of a parametric analysis based on the same data.
In this section, we present simulated examples to illustrate some implications of this simple fact.

Consider f(t1,12) = 1.5+ .5(e** — 1) + 3sin(27t; — 7) on [0,1]%. We generated n = 50 design
points (#y,4,%2,:) from U(0,1)? and calculated y; = f(t1,4,t2:) + €, where ¢; were generated from
N(0,1). We then conducted analyses using the ordinary linear regression technique, the parametric
nonlinear regression technique, and the smoothing spline technique under decreasing amount of
assumptions. Note that the function f is written as f = fy+ f1(t1)+ f2(t2), where f1(0) = [ fo = 0.
We shall compare the point-wise confidence intervals of f; and f, from the three analyses. Note that
the standard confidence intervals in a parametric analysis could be viewed as Bayesian confidence
intervals under a uniform improper prior in the parametric space. Also, the simulation results of Gu
and Wahba (1991 c) indicates that the coverage frequency of the Bayesian confidence intervals of
Subsection 4.3, when averaged over the design points, roughly follows the nominal level in repeated
experiments. Hence, these intervals are, at least remotely, comparable to each other.

In the first analysis, we fitted a linear model
y = P1+ P2’ ~ 1) + Basin(2rt, — 1) + €.
The least square fit gives BT = (1.691,.468,2.826) The estimated fi(¢1) and fp(ty) are simply

Ba(€* — 1) and fBasin(2rt; — 7) with standard deviations 3,13 — 1| and 85,1 sin(2mty — ).
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In the second analysis, we fitted a nonlinear model

Y= ,31 + ﬂz(eﬂatl — 1) -|- ,34 sin(27rt2 — ﬂ5) + €.

The least square fit gives BT = (1.771,.394,3.170,2.812,3.142). To make inferences concerning a
nonlinear model, a natural approach is to calculate the linear approximation of the model at the

fit, which we did. The approximating linear model in this case is

7+ 72(eﬁ3t1 -1+ ‘ygeﬂat‘tl + v4sin(27ty — ,35) + 75 cos(2mts — ,35) +¢

@
I

= 71+ 71221(%1) + v322(t1) + Yaz3(t2) + v524(t2) + €,

where e%t1t; = d(efstt — 1)/df3 and cos(27ty — B5) = —d(sin(2nty — Bs))/dBs. As expected, the
least square fit gives 47 = (1.771,.394,.000,2.812,.000). Note that z1(0) = z2(0) = fol z3 =
JYz4 = 0. The estimated fi(t1) is Ba(efott — 1) = Jom1(ty) + 43z2(t1) with an approximate
standard deviation (s2,23(t1) + 255,85, 7(52, ¥3)z1(t1)22(t1) + s,%aazg(tl))lﬂ. The estimated f5(t2)
is Bysin(27ty — Bs) = 4a2a(t2) + Jsz4(t2) with an approximate standard deviation (s%izg(tz) +
285,835 7 (74, ¥5)3(t2)za(t2) + 53, 23 (2))"/2.

In the third analysis, we used the two different configurations of cubic splines in Section 2 on
the two axes to comply with the two different side conditions f;(0) = 0 and fol f2 = 0. We assumed
the truth has only main effects so the interaction was eliminated. The penalty on the remaining
components is J(f) = 67 fo fidt1 +65* J3 fadts. The null space basis is {1,%;, ¢, — .5}, from which
the matrix S was generated. Rj(s1,t1) = fol(sl —u)+(t1 — u)y4du = (3t; — 51)s2/6 for s, < 11, and
Ra(s2,t2) = ka(s2)k2(t2) — ka(|sz — t2]), from which @, and @Q, were constructed. The fit has an
expression

flti,t2) = di+dats +ds(ta — 5)+ > ci(B1R1(t15,11) + 01 Ro(ta,3, 1))

=1

= [di] + [dzty + 61 ) c;Ra(t1i,t1)] + [da(tz — .5) + 6, > eiRa(tay, t2)),

i=1 =1
where the brackets indicate the decomposition f = f3 + fi + f2. Cross-validated fit and the related
posterior standard deviations were calculated using RKPACK facilities as described in Section 4.
The results of the analyses are summarized in Figure 6.1. The two columns of Figure 6.1
correspond to the results for f; and f, respectively. The first three rows of Figure 6.1 correspond

to the linear model analysis, the nonlinear model analysis, and the smoothing spline analysis
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respectively, where the solid lines are the truth, the dashed lines are the fitted, and the dotted lines
are the point-wise 1.960 Bayesian confidence intervals. The last row of Figure 6.1 compares the
point-wise standard deviations in the three analyses, with o indicating the ordinary linear model,
n indicating the nonlinear model, and s indicating the smoothing spline. As expected, the fewer
the assumptions, the wider the intervals. For f;, it can be seen that the impact of f;(0) = 0 fades
out much faster in the spline case than in the parametric cases. For f;, the smoothing spline is less
sure about its estimate near the boundaries of the data region.

Now consider a function f(t,%3) = 1.5 + [4(e3® — 1) + 2(1 — e~241)] + [2.75sin(27ty — 7) —
bsin(4rty—7)] = fo+ fi+ fo. Note that both f; and f are just slight modifications of the previous
ones. We generated new y; by evaluating this function on the same 50 design points and adding the
same 50 pseudo N (0, 1) perturbations. The maximum pairwise difference between the two sets of y;
is 1.545. The same three analyses conducted above were repeated on the new data set. The results
of the analyses are summarized in Figure 6.2 with further details omitted. Based on the inaccurate
assumptions, the 1.960 confidence intervals in the linear model analysis missed f; almost entirely
and missed f; over more than half of the [0,1] interval. The nonlinear parametric analysis gave a
better estimate for f; because of the extra flexibility. However, the nonlinear f, point estimates
are almost the same as in the linear model since the phase flexibility didn’t help, although the
interval estimates are more honest because of the extra uncertainty in the assumptions. In contrast
to the parametric analyses, the performance of the smoothing spline analysis stays the same, and
is comparatively better than the parametric analyses on the new data set. The conclusion is clear.
More assumptions yield stronger claims, which are honest (hence better) when the assumptions are

accurate, but could be misleading when the assumptions are inaccurate.

7 Discussion

With the materials presented in Sections 2 through 6, we hope to bring to our readers’ attention
some of the latest developments in spline smoothing, their usefulness in data analysis, and the pros
and cons of a nonparametric analysis versus a parametric analysis. We omitted several important
topics in our exposition, such as the thin plate splines and the smoothing of non Gaussian data. A
thorough treatment can be found in Wahba (1990).

In Sections 2 and 3, discrete domain smoothing splines are described in some detail for the
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Figure 6.1: A Comparison of Nonparametric Analysis and Parametric Analyses with Correct Para-
metric Families. (a-b): Linear; (c-d): Nonlinear; (e-f): Nonparametric; (g-h): Comparison of
Standard Deviations.

24



10

00 02 04 06 08 1.0 00 02 04 06 08 10

00 02 04 06 08 1.0 00 02 04 06 08 10
(e) M
Q] <
- . -
o O gy ©
o] 4 S ]
¢
" Ty,
g h ‘“n‘" *'lmo g T ]
s n,qf‘ .n° 1
g a" ' bR .
e ) " / e e % s gt ® Sumt newt'
N " & C\!_m""s L] nmamn T8WPN o qn
o n o o w o o
*n wu@& o’ ° l °

=R LA st~

00 02 04 06 -08 10 00 02 04 06 O 1.0

(9) (h)

Figure 6.2: A Comparison of Nonparametric Analysis and Parametric Analyses with Incorrect
Parametric Families. (a-b): Linear; (c-d): Nonlinear; (e-f): Nonparametric; (g-h): Comparison of
Standard Deviations.

25



first time, and are used as primary examples in our exposition. Although mathematically the
simplest, these models are probably the least understood from a nonparametric perspective. The
pure discrete models are potentially useful in handling large sparse tables, and the mixed-covariate
models provide a means of conducting nonparametric analysis of covariance. Further study is

needed before routine use of these models can be recommended.
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