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Abstract

This paper deals with the problem of selecting the best from among K (> 2) location
parameter models having cdf G(z — 6;),¢ = 1,...,k, respectively. A population m; is

said to be the best if §; = max g;. For a specified positive constant 6*, a population
<j

m; is said to be good if lrélaéck Gj_— 0; < 6*, and bad otherwise. We assume that there is
<L

no prior information about the possible configurations of the parameters 6;,...,8;. Our
goal is to select a subset so that the best population is included in the selected subset,
and only good populations are selected. A selection procedure achieving the P*-condition
for the general location-parameter models is proposed. We then specialize it for normal
distribution models N(6;,0?). Some modified selection rules are also investigated. These
modified selection rules will achieve the P*-condition as well as control the expected value
of the number of bad populations selected. Finally, an example is presented to illustrate
the implementation of the selection rules.
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1. Introduction

Consider k(> 2) independent location-parameter models 71, ..., 7k, which have ab-
solutely continuous cumulative distribution functions (cdf) G(z — 61),...,G(z — 6x), re-
spectively, where —co < 6; < 00,2 =1,...,k. Let § = (61,...,6;) and let ;) < ... < G
denote the ordered values of 6y,...,0;. It is assumed that the exact pairing between the
ordered parameters and the unordered parameters is unknown. The population associated
with the largest location parameter ) is called the best population. In many practical

situations, the experimenter is interested in the selection of the best population.

The problem of selecting the best population from among &k populations has been
studied extensively in the literature. A lot of selection procedures have been derived for
different selection goals by several authors. When the underlying populations have normal
distributions N(6;,0?%), Bechhofer (1954) introduced the indifference zone approach by
assuming the restriction 8y — fr—1;) = A for some specified positive constant A, and
used a natural selection rule which selects the population yielding the largest sample mean
value, based on a common sample of size n, as the best population. In this formulation,
the sample size n should be determined so that the probability of a correct selection (PCS)
will be at least P* for a prespecified probability level P*(k~! < P* < 1), for all values of
the specified A. Gupta (1956, 1965) imposed no restriction on the configurations of the
parameters §, and proposed the subset selection approach to select a subset containing the
best population with PCS > P*, over all the possible configurations of the parameters 6,
where CS denotes the event that the best population is included in the selected subset.
In this approach, the size of the selected subset is a random number, determined by the
outcome of the experiment. In this approach no probability assessment is made regarding
the quality of the other populations in the selected subsets. Later, Gupta and Santner
(1973) and Santner (1975) introduced restricted subset selection procedures, in which the
size of the selected subset is at most m, where 1 < m < k — 1. On the other hand, for the
specified constants §; > 6; > 0, Desu (1970) called a population 7; good if G[k] —6; < 61,
and bad if Oz} — 0; > 62. He studied the problem of selecting a subset of the populations
so that none of the selected populations is bad. Lam (1986) studied this problem with a
different dual selection goal, in which all the good populations should be included in the

_selected subset. For many other selection goals and formulation of the related selection



problems, the reader is referred to Gupta and Panchapakesan (1979).

In this paper, our aim is to control the quality of the selected populations. It is
assumed that there is no prior information about the configurations of the parameter 6.
Hence, subset selection approach will be applied here. We desire that the best population
be included in the selected subset, as well as, that each selected population be within some

specified fixed distance from the best population.

This paper is organized as follows. We first formulate this selection problem in Section
2. Then we propose a restricted subset selection rule for general location-parameter models
in Section 3. We also prove that this subset selection rule achieves the P*-condition in the
sense that the best is included in the selected subset as well as none of bad populations
is selected. Special results regarding the normal distributions N(6;,0?) are presented in
Section 4. In Section 5, modified subset selection rules are investigated. These modified
selection rules will achieve the P*-condition as well as control the expected value of the
number of bad populations included in the selected subset. Finally, an example is used to

illustrate the implementation of the selection rules.

2. Formulation of the Selection Problem

Let my,..., 7 denote k(> 2) independent location-parameter models which have ab-
solutely continuous cdf G(z — 6;) with unknown location parameters 6;, —oo < 6; < 00, =
1,...,k. Let § = (61,...,0¢) and let 6};) < ... < 6}y denote the ordered values of the pa-
rameters 8q,...,0;. It is assumed that the exact pairing between the ordered parameters
and the unordered parameters is unknown. The population associated with the largest lo-
cation parameter [ is called the best population. Let 6* be a specified positive constant.
Population 7; is said to be good if G[k] — 6; < 6* and bad otherwise. Let CS denote the
event that the best population is included in the selected subset and only good populations

are selected. Our goal is to derive a subset selection rule, say R, such that
Py{CS|R} > P* forall§cQ, (2.1)

where P*(k™! < P* < 1) is a prespecified probability level and @ = {8 = (61,...,6})]

—00 < 0; < 00,1 =1,...,k} is the whole parameter space.
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Let X;;,7 =1,...,n be a sample of size n from population 7;, and let ¥; = Y (X;,.. .,
Xin) be an appropriate statistic for the parameter #;. For example, in the normal distri-
bution case, we let V; = X; = -11; .gl Xi;, the sample mean based on (Xj1,...,Xin). It is
assumed that Y; also has an abs;l:ltely continuous cdf F(y — 6;),2 = 1,...,k. Also, let
Yj) < ... £ Y} denote the order statistics of Y1,..., Yy and let 6(;) be the location param-
eter associated with the population 7(;) which yields Y};, and let Y{;) be the (unknown)
statistic associated with the population 7[; having 8[; as its corresponding location pa-
rameter, ¢ = 1,...,k. Furthermore, we assume that the distribution function Fj,(-) has

the following property.

Assumption A: For each ¢ > 0 and each fixed positive integer m, [ _[Fn(y+c)]™dFa(y)

is strictly increasing in n and tends to one as n — oo.
3. A Restricted Subset Selection Rule

For the given value 6* and the prespecified probability level P* let
o0
no = min{n > 1|/ [Fo(y + 6*/2))*'dF,(y) > P*}. (3.1)

Under Assumption A, ng is well-defined and ny < 0.

Let V; = Y(Xi1,-.., Xiny),2 = 1,..., k. We propose a selection rule R; as follows:

R;: Select population m; if ¥; > Yy — 6%/2. (3.2)

Let S denote the selected subset applying the selection rule R;. That is, S = {m;|Y; >
Yi) — 6%/2}. Then, according to the selection goal under study,

CSZ{TFUC] € S and 9[k] —0; < §* for all 7; ES} (3.3)

Note that the form of the selection rule R; is similar to that of Gupta-type subset
selection rule; see Gupta (1965). However, the problem involved here is to determine the
sample size n to meet the P*-condition; while in Gupta’s subset selection rule, one is asked

to determine the related critical value for the given P* and sample size n.



Probability of a Correct Selection

Let Z¢iy = Y5 — 0p1,¢ = 1,...,k. Then Z(y),..., Z) are iid, having the cdf F, ().
By the definition of ng, analogous to Theorem 2.1 of Hsu (1981), one can obtain, for all
§ € 2, that

P < / T Py + 8 /2P dF (3)

=P{Zuy > Z;y— 6*/2,§ =1,...,k—1}
= Pg{¥) 2 Y(j) + 0y — 05y — 8% /2,5 = 1,...,k— 1} (3.4)

SPy{Yuy2Yy) —6"/2,j=1,...,k—1, and ) — 6};) < Dj,j =1,...,k}
< Pg{w[k] € S and Oy — 6; < Dj,7; € S}.
where D; = max(ng;;ch -Y; +6*/2,0).
Note that
7; € S iff I?%?CY,'—Yj-I-(S*/2§5*. (3.5)

Combining (3.4) and (3.5) leads to the following: For all § € 2,

pP*< Pe{ﬂ'[k] € Sand by —8; <Dj,mj € S}
< Pg{ﬂ'[k] € S and H[k] —0; < 6*,71']' € S} . (3.6)
— Py{CS|R1}.

Least Favorable Configurations

For the given 6™, let Q;(6*) = {6 € Q|fjx—i) < Oy — 6" < Ok—iy1)}, ¢ = 1,...,k, where
0o = —oo. That is, for 8 € ;(6*), there are exact i good populations (including the best
k
population). It is clear that £2;(6*),...,Q%(6*) are mutually exclusive and _91 Q:(6%) = Q.
For § € Qk(6*), all the k populations are good. Hence,
Py{OSIRs) = Py{Yg 2 max: ¥; — 5*/2)
= Po{Y() — Oy = Y(j) — O] + 0y — Oy — 67/2,5 # &}
2 P{Zx) 2 Z(j)) — 8 /2,5 # k}

-/ " [Faalz o+ 8/ Py (2)

—o0

(3.7)



for all § € Qi(6*). In (3.7), the inequality can be replaced by an equality when § €

Q5(6*) = {8 € Qi(6%)|6; = ... = 6r}. Therefore,
inf Pg{CS|Ri}= inf Pp{CS|R:}
fear(s*) ~ fez(sr) -~
co (3.8)
- / (Fag(z + 8% /2)]F1dFny (2).
For 8 € §,(6*), all non-best populations are bad. Hence,
Py{CS|R1} = Pg{Y(s) <Yy —67/2,0 # k}
= PQ{Z(k) > Zy + 6 — O + §*/2,1 # k}
(3.9)

> PQ{Z(k) > Z(iy — §*/2,1 # k}

_ /w [Fro(z + 6% /2)]F 7 dFp, (2),

-0

since O — O > 6* for all 7 # k. In (3.9), the inequality can be replaced by an equality
(k] — Y4

when § € Q7(6*) ={0 € Q) = ... = Or—1) = Ojgy — 6*}. Thus,
inf Pg{CS|R;} = inf Py{CS|R:}
feq.(s*) ~ fes(s*) ~
oo (3.10)
= [ [l + 8 /2 dF ().

Foreachi=2,...,k—1, on £;(6*), it is hard to find the corresponding least favorable

configurations. However, we have the following result.

For each § € Q;(6*),: =2,...,k -1,

Py{CS|R:)
= Pg{¥iy) > Y(j) — 6%/2,5 # k and Yip) < Yigy — 6°/2,1 <L < k 3}
> Pp{Yiy > Yjy — 6*/2,j # k and Y(p) < Y(sy — 6"/2,1 S €< k)
= Pg{Yey > Y5y — 6%/2,k—i+1<j <k—1, and Yy > Yoy + 6/2,1 < £ < k — )
—P {Yuc)—f’[k] 2 Y = O — 8 /2+ 0 — O, k—i+1<j < k-1 and}
- Yoy = 0wy > Yio — b +67/2+ Opg — b, 1 S E< b~
> Pg{Zay > 2y — 8" /2 k—i+1< j <k—1, and Zgy > Z(ey — 6*/2,1 S £ <k —1}

/oo [Fry(z + 6*/2))*1dF,,(2). (3.11)

— o0



In (3.11), the second inequality is obtained from the fact that for § € Q;(6*), 05— 0y <0
fork—i+1<j<k—1and b —0 <—6"for1 <L < k—i Thesecond inequality can
be replaced by an equality when § = (64, ...,0%) is such that O =0, k—1+1<j <k,
and O = Oy — 6%, 1 <L <k —u.

Based on the preceding discussions, we conclude that

inf Pg{CS|R1} = inf Py{CS|R;}
fea ~ feqr -~

N /oo [Fag (2 + 6% /2)]* 7 dFry (2),

—0o0

(3.12)

where ' = Q3(6*) U Qg (6*).

4. Selection of the Best Normal Population

Let X;ij,7 = 1,...,n, be a sample of size n from N(6;,0%),7 = 1,...,k, where the

2

common variance ¢ may be either known or unknown. The best population is the one

associated with the largest 6jx). We consider two situations according to whether the

common variance o2 is known or unknown.

4.1 Selection Rule for ¢? Known Case

Let Z1,..., 2k denote k iid random variables, having N(0,1) distribution. For the
given P*, let d* be the solution such that

P{Zy > Z; — d*,i # k} = P*. (4.1)

Note that the value of d* should be positive since P* > k~!. Also, for certain given k
and P* values, the corresponding d* values have been tabulated by Gupta, Nagel and
Panchapakesan (1973), and Gupta, Panchapakesan and Sohn (1985), among many others.

For given values of 6*,0 and P*, we determine the sample size ng by
ng =<4d*?o?/§** > (4.2)

where < z > denotes the smallest integer not less than z. Let V; = X; = nLo %) Xi; be
Jj=1
the sample mean based in a sample of size ng taken from population 7;,7 = 1,..., k. We

propose the selection rule R, given as follows:

—_— _— d*
Ry: Select population m; if X; > max X;— 7

. 4.
1<5<k V1o (4:3)



Let S = {m|X; > maxicj<k X; — d*0/\/fo}, the selected subset employing the

selection rule Ry. Then, according to the selection goal,

CS = {my) € S and Oy — 6; < 6* for all m; € S}.

Following (2.9) of Hsu (1981), for all § € £, one can obtain

— — d*o

* <L > ;—
P* < PQ{X(k) > lrél;mska] e
< Pg{ﬁ[k] € S and G[k] —0; < D;,m €S},

ande[k]—eiSD,‘,i:L...,k} (4.9)

where D; = max(max#ifj - X + %, 0).

Note that =; € S iff D; < 2d*0/./ng. Also, 2d*c/\/ng < &*, which is obtained from
(4.2). Therefore, for all 8 € ,

P* < Pg{”[k] € S and e[k] —6; < D;,m €S}
< PH{T"[k] € S and Q[k] —6; <6, me S} (4.5)
= Py{CS|Ra}.

4.2 Selection Rule for the Unknown o¢? Case

2

When the value of the common variance o is unknown, we propose a two-stage

selection rule as follows.
First, take no(> 2) observations from each of the k populations. Compute X;(1) =

”L"j?i X;; and W = [k(T:—T)‘ é}l EI(XU —7,-(1))2} 1/2. Note that X;(1),...,X(1) and
W are mutually independent and k(no — 1)W?2/o? follows a chi-square distribution having
degrees of freedom k(ng — 1). For the given P*, let ¢* be the solution of the following
equation:

P{Zy > Z; — c*V,i # k} = P*, (4.6)

where k(ng — 1)V? has a chi-square distribution with k(ng — 1) degrees of freedom, and
is independent of (Zi,...,Z;). The value of c* should be positive since P* > k™! and
V' > 0. For certain given P*, k and ng values, the corresponding c¢* values can be found in

Gupta, Panchapakesan and Sohn (1985). Let

4 *2W2
No = max{no, < ~— >}, (4.7)



Secondly, take Ny — ng additional observations from each of the k populations if

— N,
necessary. Compute X; = -1\1,—0 .291 Xij,t = 1,...,k. Then, the two-stage subset selection

]=
rule Rz is defined by

— _ W
R3: Select population 7; if X; > max X; —

Zax e (4.8)

Let S denote the selected subset applying the selection rule R3. Then, S = {m;|X; >

[pax, X; — c*W/+/Np}, and

CS = {7r[k] € S and H[k] —-0; < m e S}

Following (2.12) of Hus (1981), for all § € 2, we can obtain

— = W
P*<Pp{X(x)> max X; — ——=, and O3 — 0; < D;,s=1,...,k
< Ppliw 2 max X~ Um; (4 ) (4.9)
< Pg{ﬂ[k] € S and 9[k] —6; < D! m €S},
— _— *W
where D} = max <n]r_1£chj —Xi+ cﬁ,()) . (4.10)

Since 7; € S iff Df < 2¢*W/+/Ny < 6*, where the second inequality is obtained from
the definition of Ny, see (4.7), we can conclude that for all § € Q,
P* < Pp{my € S and O — 6; < D}, m; € S}
< Pg{nx € S and Oy — 6; < 6%, 7; € S} (4.11)
= PQ{C'S|R3}.

5. A Modified Selection Goal

Even though one can choose high probability P* to guarantee that all the selected
populations are good, there is still some possibility that some bad populations may be
included in the selected subset. Let T denote the number of bad populations included in
the selected subset. Then 0 < T < k— 1. We desire that the expected value of T be small.
That is, additional to the P*-condition, we would like to impose the following requirement

on the selection rules:

max Fy[T] < g, (5.1)
bea 0
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where ¢ is a specified value such that 0 < ¢ < k¥ — 1. Usually, the value of ¢ is chosen to
be small. Note that

max Eg|T| = max max Fpy|T|. 5.2

Before we go further to derive selection rules satisfying both the P*-condition and

the requirement of (5.1), we first give a representation for Iémx Eg[T]. In the following, all
EQ ~

discussions and results pertain to the normal distribution models.

5.1 The Case When o¢? is Known

When o2 is known, we let Rs(n) be a subset selection rule which has the same form

as that of Ry, and is based on a sample of size n from each of the k& populations. That is,

— _ d*
Ry(n): Select population m; if X; > max X; — 7

1<j<k vn' (53)

where X; = % §) Xi; and d* is the solution of (4.1).
=1

let Eg[T|Rz(n)] denote the expected value of T' when selection rule Rz(n) is applied.
Then, for each § € 2;(6*),1 <:<k—1,

oo

\/ﬁ(%; - 9[j1)) b()dz, (5.4)

BglTIRa(w)] =5, [

— OO

K
II <I>(z+d*~
o

where ®(-) and ¢(-) denote, respectively, the cdf and pdf of a standard normal distribution.

We ahve the following lemma.

Lemma 5.1 sup Eg[T|Ry(n)] = (k—14)H(d*,6%,n,0), where
feqi(s*) ~

H(d*,6%,n,0) = / T 100 + ) 20(z + d — \/’Z‘s* )dd(z). (5.5)

Proof: First for any § € Q:(6*), keep 0[3,...,0k—; and 6 being fixed. From (5.4), we
see that Fg[T|Ry(n)] is decreasing in fj_i1q),. .., Ok—1]-

Next, let Ox_it1},-..,0) be fixed. Suppose that the 2(1 < h < k — 4) smallest
parameters 6;)(1 < j < h) are equal and the common value is denoted by §. We want to

show that Eg[T|Rz(n)] is increasing in 8 for 6 < min(6}p4.1y, g — 6*).

10



When 9[1] =...= G[h] = 9, from (5.4),

B = [ (0G4 T a4 a- Ym0

_; oo 0—-0)\1" & O — O
s / [cp <z+d_M)] k (I)(Hd_ﬁ([ ) m)> (),
j=h+1 J_ o m::é;.l-l o

b
where 5 =0if a > b. Then for § < min(Gj41, b — 6*),

dEg[T|Rz(n))]
a9
Jrh k[ 1| K V0m — 9)
=Y 5, [ eGrap m:%#@(wd-———[;—)}

¢ <z+d vn( [J] )> dd(z)

VLS, /oo [cb(z+d—M)]h_l¢(z+d————ﬁ(9~gm)>

0 j=h+1J_s o g
A
[ I <I><z-|—d— VOl [J]))]dcb(z)
ot 7
00 Oy — 0
_ Vo4 / [B(z + )" { 5 o (z-l—d—— )] )ﬂ
0 j=k—i+1J_ m:;;j—l g

¢ (z +d- \/_(9“] )> d(z)

+\/—h k—i / [3(z + )] [m=§h+1¢<z+d_w>}

g h 1 (o2
j=h+ gt

X [¢ <z +d— \/—(6“] )) $(z) — ¢(z + d) <z + M)} dz

2> 0,
since ¢ (z +d— @E]-—Q)> #(z)— ¢(z+d)é (z + \/_E(_i—_ewl) > 0 for 0 < min(fjp41], Opx) —
§*) for all j > h + 1. Hence,

sup Eg[T|Ry(n)] = | lim _ Ep[T|Ry(n))
fea(s) LN

= (k —¢)H(d*,8%,n,0),

where 6* = (67,...,6;) is such that Oli—i <Okcizn) = =0y = Oy — 6" O

11



By Lemma 5.1 and (5.2),

max Bg[T|Ry(m)] = (k ~ DH(d", 8, 0). (5.6)
fea ~

For a given ¢,(0 < ¢ < k — 1), let
n* = min{n > no|(k — 1)H(d*,6*,n,0) < ¢}. (5.7)

Since H(d*,6*,n,0) is decreasing in n and tends to zero as n — oo, n* is well-defined and

n* < oo.

Based on the preceding discussions, one can see that the subset selection rule R;(n*)

satisfies both the P*-condition and the requirement of (5.1).

5.2 The Case When ¢? Is Unknown

For any given P*, let ¢* be the solution of (4.6). For any given ¢, let
b* = inf{b|G(b) < ¢/(k — 1)} (5.8)

where

Gb)=P{Z:1>Z;—c'V,2<j<k—-1, and Z1 > Zx + (b— ")V}, (5.9)

where Zq,...,Zy and V are those defined in Section 4. Note that G(0) = P*,G(b) is
decreasing in b and blim G(b) = 0. Hence, for ¢ being small enough, b* is well-defined and

c* < b < 0.

To satisfy the additional requirement of (5.1), we modify the selection rule R3 by
redetermining the sample size Ny by

WZ
N* = max {no, <3 max(4c*?, b*?) >} . (5.10)
That is, at the second stage, we take N* — ng additional observations from each of the &

— N*
populations if necessary. Compute X; = ]\}* ¥ Xij,t=1,...,k. Then,include population
=1

7; in the selected subset if X; > 1rélj_asxk —Xj - \c/*]% We note this modifed two-stage subset

selection rule by R3. Since N* > Ny, the P*-condition is always satisfied. It suffices to
show that I’éla.X E[T}|Rj;] < q for small q.
fea

12



Let Cp, = {N* =n},n > no. For each § € Q;(6*),1 <i <k -1,

Eg[T| R3]
k—i S — W
= Y P {X‘ > Xy — m }
j=1 Q J \/—' 7é ]
i VN Oy —
_ ’“g P{Z]>Z + ([ 1= [’])—c*v,m7éj} (5.11)
oo Oty — 65
= / / ﬁ (z +cv — V1 0m) Ul)) d®(z)dFy(v)
J= ln no z; g
- 3 / Ey[T\(v,m)dFv (v),
n=ng Cn ~
where Eg[T|(v,n)] 2 & (7 + cv — YLUm1=0) d®(z), V = W/o, which is
0 o

m#J

independent of (Zl,...,Zk),k(no — 1)V? has a chi-square distribution with k(ng — 1)

degrees of freedom, and Fy(-) denotes the distribution function of V.

Analogous to the proof of Lemma 5.1, one can obtain that

EQ[T|(v,n)] < (k—1) /_°° [®(z + c*v)]* 2@ (z + c*v — \/Za*> d®(z).

Therefore,

Eg[T|R;]

= (k—i)P{Zl>Zj——c*V,2§j§k—~1, and Zy > Zy — 'V +

%

0 ) d®(z)dFy(v)
VN*6* }

IN

S (k=9)P{Z1>Z;—c*'V,2<j<k—1, and Z1 > Zy + (b* — ")V},
where the last inequality is obtained due to the definition of N*, see (5.10).

Hence,

max Fg[T|R%] = max max  Ep|T|R:
e Q[ | 5] 1Gi<k-1 geqq(se) Q[ | 5]
S(k-1)P{Z1>Z; —c'V,2<j<k—-1,Zy > Zp + (b* —= )V}

<q
which is guaranteed by (5.8).
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6. An Illustrative Example (The data is taken from Example 3, page 506, of Gupta
and Panchapakesan (1979)).

An experimenter wants to compare the glowing time of five different types of phospho-
rescent coatings of airplane instrument dials. Assume that the distributions of the glowing
time for each type of phosphorescent coatings are normal with a common unknown vari-
ance 0. The experimenter is interested in the selection of the best among the five types of
phosphorescent coatings of airplane instruments dials. However, he has no idea about the
possible configurations of the parameters. Hence subset selection approach is displayed
here. He desires that not just the best will be selected, but also each selected population

should be within the §* = 10 distance from the unknown best.

He chooses P* = 0.90 and ng = 5. The coated dials were then excited with an
ultraviolet light. The upper part of Table 1 shows the number of minutes each dial glows

after the light source was turned off.

Table 1. Glowing Time of Five Types of Phosphorescent Coatings

Coatings

1 2 3 4 5
45.7 51.7 45.9 54.8 65.9
observations 48.4 46.4 54.8 55.6 65.4
taken at the 51.9 49.8 62.9 63.5 60.0
first-stage 57.0 52.7 64.7 61.6 70.1
41.0 48.1 54.3 55.7 69.5

no 5 5 5 5 5
X;(1) 48.8  49.74  56.52  58.24 66.18

k  mno —
W2 = ooy B B (Xij — Xu(1))? = 26.7305
=1 j=1

observations 61.4 54.8 97.9 59.2 64.0
taken at the 47.0 54.0 53.9 53.2 56.0
second-stage 56.9 44.7 47.9 66.7 61.4
Ny 8 8 8 8 8
X; 51.1625 50.275 55.2875 58.7875 64.0375

For k = 5,no = 5,P* = 0.90, from Gupta, Panchapakesan and Sohn (1985), ¢* =
1.92727v/2. Therefore Ny = max {no, < %Z—E >} = 8. Hence Ny — ng = 3 additional
observations should be taken from each population. The observations taken at the second-

stage are given in the lower part of Table 1.

14



According to the selection rule R3, we include populations 7; in the selected subset if

52 B * * .92727/2%~/26.7305
X; > max X; — % where S — 1.927
P agics T VNG VN, V3

s is selected. From (4.10), D¥ = 0. Hence, we can state with at least 90% confidence

= 5.0149. Hence only population

that population 75 is the best population, since O — 05 < Df =0.
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