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E-optimal designs for the full mean parameter vector, and for many subsets
in univariate polynomial regression models are determined. The derivation is based
on the ihterplay between E-optimality and scalar optimality. The scalar parameter
systems are obtained as transformations of the coeflicient vector ¢ of the Chebyshev

polynomial.

1. Introduction. In a linear model for polynomial regression of degree d on the
interval [—1,1], we show that the E-optimal design for all d + 1 parameters and for many
parameter subsets are supported by the Chebyshev points s; = cos %W, for: =0,1,...,d.
This result was conjectured by Preitschopf (1989), page 148, on the ground of an extensive

numerical study. In addition, we present on explicit formula for the weights w; of s;.

Whereas generally results on E-optimality appear to be less explicit than those for D-
and A-optimality, the present paper provides an instance testifying to the contrary. The
D-optimal polynomial regression design has the extreme points of the Legendre polynomial
for its support, with constant weight 1/(d + 1), as established by Hoel (1958). A similar
characterization for the support of the A-optimal design is not known, but knowledge
of the support points permits an easy way to compute the weights, see Pukelsheim and

Torsney (1991).

In Section 2 we start out by investigating the relationship between E- and c-optimality.
There is a certain duality, but the kernel which relates the two problems to each other is
convex in both variables. Hence duality gaps cannot be ruled out. Theorem 2.2 essentially

states that duality holds true provided there exists a saddle-point.

In Section 3, we therefore first turn to c-optimality. The work of Studden (1968)
suggests that the Chebyshev polynomial Ty(z) = E?:o ¢;z* plays a central role. Theo-
rem 3.1 introduces the designs £; that are optimal for ¢/K K 'f, where c is the Chebyshev
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2 F. PUKELSHEIM AND W.J. STUDDEN

coeflicient vector ¢ = (cop,c1,...,¢q)’ and the matrix D = KK ' is diagonal, with d;; being
one or zero according as ¢ is in the index set I or not. The proof relies on changing the
polynomial basis from the power basis to the one provided by the Lagrange interpolating

polynomials, with nodes given by the Chebyshev points.

Section 4 takes up FE-optimality. Our main result, Theorem 4.1, establishes E-
optimality for the subsystem 6; = K'6 of the design &7 that is optimal for the scalar
system ¢'KK'6. To do so we make the assumption that the index set I contains at least
one index for which the Chebyshev coefficient is nonzero. The proof concentrates on show-
ing that the information matrix C of the design ¢7 has 1/|| K ‘c||? for its smallest eigenvalue.

For degree d > 1 this eigenvalue is shown to be simple.

Section 5 concludes the paper with a discussion of the results. There are interest-
ing interrelations with the theory of polynomials, strengthening a result that flows from
Erdés (1947), and rederiving a theorem on the extremum properties of Chebyshev poly-
nomials that is due to Markoff (1916). We comment on the asymptotic behaviour of £; as

the degree d tends to infinity, and on the transition to an arbitrary interval [a, b].

Independently Heiligers (1991) has apparently obtained results of a similar nature,
with differences in the approach to the problem and differences in the outlook towards

possible generalizations.

2. E-optimality and c-optimality. We consider the usual linear model in which
the experimenter chooses experimental conditions z from a compact experimental do-
main X and then observes a real-valued response ¥ with expectation f(z)'6, where the
continuous regression function f : X — RF is known while § € R¥ is an unknown
mean parameter vector. Responses under different experimental conditions, or replicated
responses under identical experimental conditions are taken to be uncorrelated, with con-

stant variance o2. This set-up for the design of experiments is standard, cf. Kiefer (1974).

An experimental design £ on X is a probability measure with finite support z1, ..., z,
and corresponding weights wy, . .., wy, directing the experimenter to realize a proportion w;
of all observations under experimental conditions z;. The performance of a design ¢ is
evaluated through its moment matrix M(£) = Ef___o wif(z:)f(z:)'.

Let the parameter system of interest be K '8 where the k x s matrix K has full column

rank s. With a design { we associate the information matrix Cx (M (¢ )) for K'8, given by

CK(M(E)) = minLe]Raxk:LKzfa LM(E)LI,
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see Gaffke (1987). A design is called E-optimal for K '8 when it maximizes the smallest

eigenvalue of the information matrices Cx (M(¢ )) among all possible designs.

Given a coefficient vector ¢ € IR ¥, a design is called optimal for ¢’ when it minimizes
the standardized variance ¢'M(£)c of the least squares estimator among all designs ¢

under which the scalar parameter function ¢’ is estimable.

The following two theorems point towards some intricate relations between E-opti-
mality for K'6 and optimality for z/K'6. The first theorem considers the case when the

smallest eigenvalue of the F-optimal information matrix is simple.

THEOREM 2.1. Let £ be a design that has a positive definite information matrix C
for K'6, and let £z € IR® be an eigenvector corresponding to the smallest eigenvalue of C.

If the smallest eigenvalue of C has multiplicity one then ¢ is E-optimal for K '8 if and only
if € is optimal for z'K'6.

PROOF. By Theorem 8 of Pukelsheim (1980), if the smallest eigenvalue of C is simple,
then ¢ is E-optimal for K '0 if and only if there exists a generalized inverse G of M(£) such
that

2
(zIK’Gf(q;))z < :\%, for all z € X.

By the same theorem, the condition is necessary and sufficient for optimality for z'K 4. [

In general, E-optimality may obtain without any scalar optimality property. For
K = I} and f(z) = (sinz,cosz)’, with € (0, 2], the only E-optimal design for 6 has
moment matrix I5/2. But for every vector 0 # ¢ € R¥ the unique optimal design for ¢'6

has moment matrix cc’/||¢||?. See Example 5 of Pukelsheim (1981).

Following Elfving (1952) an important tool to discuss optimality for ¢’ is the convex
and compact set R C IR* which is the convex hull of the vectors + f(z), with z € X. We

introduce
p(c) =inf{g > 0:c€ uR}, r = min{|[c|| > 0: c € IRk, plc) =1}.

We assume that there are k linearly independent vectors f(z1),..., f(zx); then R has
nonempty interior, and p is a norm on R*. The quantity r is the in-ball radius of R, that

is, the radius of the largest Euclidean ball inscribed in R.
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In Example 5 of Pukelsheim (1981) the E-optimal value for 6, v = 1/2, is strictly
smaller than the squared in-ball radius, r? = 1. In other instances, the two are equal. The

following theorem implies the general inequality v < r2.

THEOREM 2.2. Every design £ with information matrix C' for K'6 and every vector
0+#2z¢€ R fulfill

Anin(C) < (p(”T”)) 1)

If a design £ and a vector z # 0 satisfy (1) with equality then ¢ is E-optimal for K'8 and
every E-optimal design £ for K'6 is also optimal for z'K'6.

PROOF. Maximization of the smallest eigenvalue of C is the same as minimization of

the largest eigenvalue of C~1. We have the trivial inequalities

- . -1
)\max(C 1) > MiNy: M(5)>0 MaX||z||=1 ZICK (M(T')) z
> maxX| =1 Infy. (>0 2" K 'M(n) ' Kz (2)
2
= max| ;=1 (p(K2))".
The last equality follows from the Elfving (1952) result that generally the optimal value

for ¢'6 is (p(c))?, cf. Studden (1968), Theorem 2.1, or Pukelsheim (1981), Theorem 1.

The final expression in (2) may be written in various ways,

max|zy=1 (0(K2))? = max,o (%iﬁ)z _ min' # <1ﬁ)2.
7O\ p(Kz)

This proves (1).

Now assume that { and z satisfy (1) with equality. Attaining the upper bound
(||z||/p(Kz))2, the design ¢ is E-optimal for K 'd. For every E-optimal design & for K'6

we get

(52 < e MO Kz e (€ 01) ™) = (BE2)' .
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Hence (p(Kz))? = 2'K'M(£)™ Kz, showing that £ is optimal for 2'K'6. d

COROLLARY 2.3. Let { be an E-optimal design for K'6 such that the smallest eigen-
value of its information matrix C' for K '6 has multiplicity one, and let z be a corresponding

eigenvector. Then C and z jointly satisfy (1) with equality.

PROOF. The design ¢ is also optimal for 2/ K '8, by Theorem 2.1. Hence we have
(p(K2))? =2'K'M(&)" Kz = ||2]|?/ Ain(C). 0

If £ and z satisfy (1) with equality then (3) implies, for all vectors d € R*® with
||| = 1 and for all designs n with M(n) >0,

1
L 2'K'M(¢&) 'Kz < 2'K'M(n) 'Ka.

d'K'M(6)"'Kd < <
(©) R ER

That is, the pair (z/||z|, M(¢)) is a saddle-point of the kernel (d, M) — d'K'M~1Kd that
underlies (2). Notice, however, that this kernel is convex in both variables, see 16.E.7.f in

Marshall and Olkin (1979), page 469.

Theorem 2.2 applies to polynomial regression of degree 2, see Kiefer (1974), page 868,
or Pukelsheim (1980), Example 6.2.2. There, the vector ¢ = (—1,0,2)" fulfills ||c||/p(c) =
1/+/5. The moment matrix of the optimal design ¢ for ¢’6 has smallest eigenvalue 1/5.
Hence £ and c satisfy equality in (1), and ¢ is E-optimal for 6.

Thus Theorem 2.2 suggests a reverse approach to the problem, to begin with a vector
z # 0. Next find an optimal design ¢ for z'K ', the minimum variance provides the norm
p(Kz). Finally check whether for ¢ and z equality holds in (1). If so, ¢ is E-optimal
for K'6.

This poses the question with which vector z to begin. For K = I, the minimum of
the right hand side in (1) is given by the squared in-ball radius, mincx (f|c||/p(c))? = r2.
The minimum is attained by a vector ¢ which defines a direction where the in-ball touches
the boundary of the Elfving set R.
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3. c-Optimal polynomial regression designs. In a polynomial regression model
of degree d > 1 the regression function is f(z) = (1,z,...,2%)’. The experimental domain
is taken to be X' = [-1,1]. It is evident from Studden (1968) and the references given
there that the Chebyshev polynomial Ty(z) = Z?:o ciz' = ¢'f(z) plays a central role in
the discussion. We call ¢ = (¢, €1,...,¢4)" € R the Chebyshev coefficient vector, and

$; = COS d;iw, for: =0,1,...,d, the Chebyshev points.

The Lagrange polynomials with nodes sg, s1,...,s4 are

(z — d .
Li(z) = - = Zj:o vijz? = v} f(z), for all: =0,1,...,d,
say. The two (d + 1) x (d + 1) matrices

A = (vo, v1,-.. ,’Ud), B = (f(So),f(Sl)a- . 7f(3d))’

are inverse to each other, see Karlin and Studden (1966), page 336.
Any polynomial P(z) = E?:o ajz? satisfies P(z) = z;i:o P(s;)Li(z). A comparison

of coefficients yields
d
a; = zi:o P(s;)v;j, forall j =0,1,...,d. (4)

For the Chebyshev polynomial T; we obtain cq_z; = E?zo(—l)d_ivi,d_zj. The sign pattern
of the Chebyshev vector is known to be c4_3; = (—=1)’|ca—2j|. For our purposes the sign

pattern of v; 4_3; becomes essential.

Multiplying out the products in the definition of the Lagrange polynomial we find, for
all:=0,1,...,dand j =0,1,...,[d/2],

2
Ui d—2j = (_1)d—i+j ZIQ{O»I:"':[(d'—l)/Z]}\{ivd_i}:#-[=j HkEIsk . (5)
’ HkE{O,l,...,d}\{i} |si — skl

Thus the sign pattern of v; g_s; is (—1)4~**7. This and (4) yield

d
lca—2;] = Zi:o vi,d—2;]- (6)
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The numerator in (5) is nonzero unless the summation is empty; this occurs only if d is
even and j = d/2 # i. Since numerator and denominator of (5) are symmetrical in 3

and d — z we finally get

oy =0 forj=d/2+#1;
(D) a9 = |vi,a—2j| = |vaia2;] { (7)
>0 otherwise.

These properties were derived in Studden (1968) as a consequence of design optimality.

Conversely, availability of these properties greatly facilitates the proof of design optimality.

Let the parameter system of interest be 8y = {6; : ¢ € I}, where I is the s element
index set I = {é1,...,7,}. With the Euclidean unit vectors e, ey, ..., eq of R2*! and the
(d+ 1) X s matrix K = (eyy,...,e;, ), the parameter system of interest is represented as
K'6. The matrix K fulfills K'K = I, and KK' = Zzzl ei, ei'l, the latter is a diagonal

matrix D with d;; being one or zero according as 7 belongs to the set I or not.

We will relate the set I to the Chebyshev index set {d—2j:j = 0,1,...,[d/2]}, that
is, the indices where the Chebyshev coefficients are nonzero. Our first essential assumption

is that the parameters of interest contain at least one member from this set,
J={7=0,1,...,[d/2]: d—25 € I} # 0. (8)

This happens only if KK 'c # 0. Notice that the vector KK 'c = > jeJ Cd—2j€d—2; depends
on I only through J. The following theorem gives the optimal design for ¢'KK'6 =

Zje] Cd—2j0d—2j-

THEOREM 3.1. Under assumption (8), the only design {1 that is optimal for ¢' KK '8
has the Chebyshev points s; for its support points, with weights

(=1)* "y, : |
wi:wd_izw, fora]]zzO,l,...,d, (9)
and minimum variance (p(KK’c))2 = ||K'c|*, where the coefficients UQ,Ul,...,Uq are

determined from

Zj:o u; f(si) = KK'C. (10)
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If J # {d/2} then all the weights are positive; if J = {d/2} then c' KK = 6y and wq/, = 1,
that is, the one-point design in 0 is optimal for ;.

ProOF. The vector u = (ug,u1,...,uq)’ solves Bu = KK'c. We get u = A'KK'c,
that is, u; = EjeJ V;,d—2jCd—2;- Lhis sum is nonempty, by (8). Because of the sign pattern

of v; g—2; the weights are nonnegative,

d—1 d—i
(=) "us = (1) Zjejvi,d—zjccz—z]' = E].EJ |vi,a—25llca—2;] = 0. (11)

Now (7) implies that the weights are all positive, unless J = {d/2}, as well as symmetric.
Using (—1)?~% = Ty(s;) = ¢'f(s;) we find that they sum to one,

d _1\d—t,, . _ 1 d ) N ' ' 13
S (D= wif(s) = ' KK e = | K|

Let M be the moment matrix of {;. The key step is the following,

d 1 1 d 1 ,
Mc = Zi:o wif(si)f(si)'c= H_I{THZ Zz_zo u; f(s:) = WKK c. (12)

Premultiplication by ¢'KK'M~ gives ' KK'M~KK'c = || K'c|*.

The design problem, of minimizing ¢'KK'M(£)~ KK 'c over all designs £, is paired
with the dual problem of maximizing ¢'KK'NKK 'c, over those nonnegative definite
matrices N that satisfy f(z)'Nf(z) < 1 for all z € [-1,1]. In particular, the choice
N = cc¢' satisfies f(z)'cc'f(z) = (Td(m))2 < 1, and the dual objective function takes the

value || K 'c||*. Therefore {5 and N are optimal solutions of their respective problems.

Furthermore only points = with f(z)'cc’f(z) = 1, that is, the Chebyshev points s;,
can support an optimal design. Corollary 1 of Pukelsheim and Torsney (1991) provides
the unique optimal weights, w; = |u;|/ ZZ=0 Ik O

We remark that two index sets I and H that contain the same members from the
Chebyshev index set lead to the same set J in (8), and hence yield identical designs in the
theorem, £ = £g.
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The case I = {0,1,...,d} gives the optimal design &, for ¢'8, with minimum vari-
ance ||c||*. The cases I = {d — 2j} yield the optimal designs £;2; for the individual
parameters 64_2;, with minimum variance (p(ed_g j))2 =c_, j» given in Section 4 of Stud-
den (1968). One has the relation

L (=D)*File [4/2) €G_gj (1) Pvig—n; /A iy,
Ec(sz) “ ”2 Z “6“2 Ca—2; - Z].=0 ”0”2 ‘fd—?](sz).
Therefore £ is a mixture of the designs {4—2;, with mixing weights cJ_,/||<||*.

From (12) we obtain the Elfving representation
! N d d—1 ! _ 1112
KK'c/p(KK'e)=3 (1) wif(s:),  p(KK'c)=|K'e|.

Thus the coefficient vector K K 'c penetrates the Elfving set R through the face gener-
ated by the ‘alternating regression vectors’ (—1)¢ f(so), (=1)¢1 f(s1),...,—f(s4-1), f(54)-
Theorem 5.1 of Studden (1968) provides a related result.

The following corollary sets the stage for E-optimality when the parameters of interest
are K'6.

COROLLARY 3.2. The design é1 has an information matrix C for K'6 that has K'c

as an eigenvector corresponding to the eigenvalue || K 'c|| =2

PROOF. We introduce the residual projector R = Ij1; — KK'. Let M be the moment

matrix of £;. Then we can represent the information matrix as
C=K'MK—-K'MR(RMR)”" RMK.

Postmultiplication by K 'c gives, using MK K 'c = Mc— M Rc and replacing Mc according
to (12),

CK'c= K'e. [

1K "e]l?
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4. E-Optimal polynomial regression designs. For E-optimality we need to
ensure that the smallest eigenvalue comes from the block corresponding to the Chebyshev
index set. Qur second essential assumption is sufficient to secure this, demanding that any

non-Chebyshev index is accompanied by the Chebyshev index following it,
d—1-25€l = d—2j5€l, (13)

for all j =0,1,...,[d/2]. Since the scalar case is taken care of by Theorem 3.1, we assume
that I contains at least two indices. Because of (13) the set J from (8) then cannot
degenerate to {d/2}. Our main result is that the design {7 from Theorem 3.1 is E-optimal
for K'6 = 6;. )

THEOREM 4.1. Under assumptions (8) and (13), the design & from Theorem 3.1 is
the only E-optimal design for K '6, with optimal value | K 'c||~2. If d > 1 then the smallest
eigenvalue of the information matrix C = Cx(M(£1)) has multiplicity one.

PROOF.

I.  From Theorem 3.1 we know p(KK'c) = |K'c||?. In view of (1) of Theorem 2.2 we
show that (|| K'c||/p(KK'c))? = | K'c||~? is the smallest eigenvalue of C,

[Els

IC > _a~i
FEE R

for all z € R,

with equality if and only if z is proportional to K'c. Let M be the moment matrix of £;.
There exists a left inverse L of K such that the information matrix can be represented as
C =LML'. Hence we wish to show that '

K c||*a’ Ma > ||2|)?, where a = L'z. (14)

Because of symmetry of the design £; the odd moments in M vanish, and M decomposes

into two interlacing block matrices. Therefore ||K 'c|?a’Ma can be written as

Yo (D (e f(s0)" = 3o (0 ((PGs)” + (@)?))
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where P and ) are the polynomials associated with the Chebyshev index set and its

complement,

[4/2] —oi [(d—1)/2] —1—94
P(a)=) " aa2e®™,  Q@)=) " asaogetT .

The contributions from P? and Q? are discussed separately.

II. From (11) and (6) we get

Zj=o(P(si))2(_1)d—1 . z P(s Zjejlvi’d—Zjllcd_2j|
St (P gl ) (S o

2
Z ( _y PG/ Ivia—2; (1) [|vi,a—s; |> (15)
2
Z ( P(s i d— 21)
o2
=D ., %
where in the last line we have applied (4).

If equality holds in the Cauchy inequalities in (15) then we need exploit only any
one index j # d/2 to obtain proportionality, for i = 0,1,...,d, of P(si)m and
(=1)%=%\/Jvi a—2;]- Because of v; 4_2; # 0 this entails P(s;) = a(—1)?"%, for some a € R.
Hence equality holds in (15) if and only if P = aTy, that is, ag_2; = acg-z; for all
i=0,1,...,[d/2]. ’

IT1I. The argument for Q% is reduced to that in part II, by introducing

[(d—1)/2] o ~
zQ(z) = Z ai_1_2;24"% = P(z),

=0

say. From s? <1 and (15) we get the two estimates

Z;"(Q(Si)) (1) > 300 Qi) (<1 (16)
PRRCLC)NC D DR S | S
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If d is even and j = d/2 then the last sum involves the coeffcient of z° in P which is
a1 =0.

Equality holds in (17) only if, for some 8 € R, we have P = BT;. In case d > 1
equality holds in (16) only if (Q(s:))? = s?(Q(s:))?. Any oneindexi =1,...,d—1 entails
Q(s:) = 0 = P(s;) = (—1)*"4. Hence equality obtains in (16) as well as in (17) if and
only if ag_1—2; =0for all y =0,1,...,[(d—1)/2].

IV. Combining (15), (16), and (17), and now utilizing assumption (13) we obtain

K ¢cl*a' Ma > zjej(a?d—zj + a’?l—l—Zj)

> Y
- el

=ao'KK'a.

With @ = L'z and LK = I, we get ' KK 'a = ||z||*>. Hence (14) is established. If d > 1
then equality holds in (14) if and only if a = ac, that is, z = oK 'c.

V. If £ is another E-optimal design for K'0 then £ is also optimal for ¢'KK '8, by
Theorem 2.2. Hence the uniqueness statement of Theorem 3.1 carries over to E-optimality

for K'6. N

It is an immediate consequence of the theorem that the design ¢. that is optimal
for ¢'6 is the unique E-optimal design for the full parameter vector 6, and that the smallest

eigenvalue of its moment matrix is ||c|| 2.

5. Discussion. It follows from Theorems 2.2 and 4.1 that for polynomial regression
on [—1,1] the Elfving set R has in-ball radius ||c|| =%, and that the Chebyshev coefficient
vector c defines the direction where the in-ball touches the boundary of R. This can also

be obtained from the following extremal property of the Chebyshev polynomial.

LEMMA 5.1. For every vector a € R %! with maXi=o,1,....d (a'f(s,-))zg 1 we have the
inequality ||a|* < ||c||?. If d > 1 then equality holds if and only if a = +e.

PrOOF. Owing to a result of Erdés (1947), pages 1175-6, the polynomial P(z) =
a' f(z) satisfies | P(2)| < |Ty4(2)|, for all complex numbers z with |z| > 1. Hence integration -
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relative to Lebesgue measure on the complex unit sphere yields

1 2w . 2 1 27 . 2
2= — P(et d<——/ Ta(e')|” dp = |||
ol = 5= [ 1P@ do < o= [ e do = el

Equality necessitates |Ty(2)| = |P(2)|, for all z in the complex unit sphere. With z = /=1,
the arguments of Erdés show that equality holds only if @ = +c. 0

The supporting hyperplanes to R are given by the vectors 0 # a € R %! such that
maxze[—1,1] [a'f(z)| = 1. Lemma 5.1 yields ||a]|> < |/¢[|?>. The hyperplane {v € R+! :
a'v = 1} has distance 1/||a|| to the origin. Therefore the supporting hyperplane closest to
the origin is given by the Chebyshev coefficient vector c, and has distance r = 1/||¢||. This
and Theorem 2.2 provided the starting point to show that the design ¢, that is optimal

for ¢'0 is also E-optimal for 4.

However, in retrospect, Theorem 4.1 provides a result stronger than Lemma 5.1, in
that it refers P? over sg,s1,...,s4 only to its average with respect to the measure ¢,

rather than to its maximum.

COROLLARY 5.2. For every vector a € R with f[—l 1 (a'f(a:))2 d¢. <1 we have
the inequality ||al{? < ||¢||?. If d > 1 then equality holds if and only if a = +ec.

PROOF. For K = Iy11, the eigenvalue property (14) is-a'Ma > ||a||?/||c||2. This is
equivalent to 1> |[a]|?/||c||?, for all vectors a € R 4! satisfying a’Ma < 1. O

Yet another form of our result pertains to the polynomials ﬁ(x) = a'f(z)/||a|| that are

standardized so that their coefficient vector has Euclidean norm one. Then (14) becomes

/[_1,1] (13(:6)>2 déc > /[_1,1] (Td(m)>2 dé.,

exhibiting a least squares property relative to ¢; of the standardized Chebyshev poly-
nomial which is complerentary to the usual least square property relative to.the arcsin

distribution, see, for instance, Rivlin (1990), page 42.
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Moreover, Theorem 3.1 rederives and extends the classical extremum property of

Chebyshev polynomials. Namely, one has

K'c|™ = maxe.areyso (¢ KK ' M(E)™TKK'c -1
§&M(€)>
= maxg Ming ' gk 'c=1 0 M(£)a

= min, kK re=1 maxg a' M(&)a

. 2
= MiNg ' KK 'e=1 MAXz¢g[1,1] (a'f(x)) .

Hence among all polynomials P(z) = a'f(z) that satisfy ¢’ KK'c = 1, the sup-norm
maxX,e(—1,1] |P(2)| has minimum value | K 'c| ™2, and this minimum is attained only by
the standardized Chebyshev polynomial Ty/||K ‘c||?>. For the highest index d this result
is due to Chebyshev, for d — 2j to Markoff (1916), see Natanson (1955), pages 36, 50,
or Rivlin (1990), pages 67, 112. Our formulation also allows for combinations of those

coeffcients.

It is not hard to provide an analogue of Theorem 3.1 that covers optimality for the
remaining individual coefficients §4_1_2;, see Pukelsheim (1992). As pointed out by Stud-
den (1968), the optimal design for 64_1_5; is supported by the Chebyshev points of one

degree lower.

For large degree regression, d — oo, the E-optimal designs £, converge weakly to the

distribution with Lebesgue density

V2
7(1 + 22)v/1— 22’

-1l<z<l1.

If m(d) is the index of the maximum absolut entry of the Chebyshev coefficient vector,
lem(a)l = maxj—g,1,...[d/2] |ca—25], then limg o m(d)/d = 1/+/2. The limiting density is
the member for ¢ = 1/4/2 of the family on page 1395 of Studden (1978).

That some assumption like (13) is needed is evidenced by Preitschopf (1989). He
quotes d = 3 and I = {0,1,2} as an instance where the E-optimal design for K '6 is not
supported by the Chebyshev points.

The majority of Preitschopf’s tabulations are for the interval [0,1]. They illustrate

that our Theorem 4.1 does not carry over to this interval. E.g. for d = 4 and the four sub-

sets {0,1,2,3,4},{0,1,2,4},{0,2,3,4},{0,2,4}—all having the same set J = {0,2,4}—the

¥
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E-optimal designs for K '6 are distinct on [0, 1], whereas on [—1, 1] our Theorem 4.1 proves

them to be identical.

However, on [0, 1] or any other positive interval, the solution is more transparent since
the oscillatory polynomial Wy(z) = Z?:o w;z' = w'@ that replaces Ty has all nonzero
alternating sign coeflicients and the analogue of the Chebyshev index set is simply the full
set {0,1,...,d}. It can be shown—see also Theorem 5.1 of Murty (1971)—that the optimal
design &1 for w/K K '@ for every index set I (including the designs £, for the individual
coeflicients) is supported by the extreme points of W;. The same will apply to the E-
optimal design £ for 1 where now the interlacing block structure of M(£r) needed in the
proof of our Theorem 4.1 is no longer prevalent. All these designs are supported on the
full set of extreme points of Wy with the lone exception of the single coefficient 6y where

the design concentrates all its mass at zero when the interval [0, 1] is under consideration.
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