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ABSTRACT

We consider a mixture of the D;—optimality criterion (minimizing the variance of the
estimate for the highest coefficient) and the D—optimality criterion (minimizing the volume
of the ellipsoid of concentration for the unknown parameter vector) in the polynomial
regression model of degree n € N. The mixture is defined as a weighted product of both
optimality criteria and explicit solutions are given for the proposed criterion. The derived
designs have excellent efficiencies compared to the G—, D— and D;—optimal design. This is
illustrated'in some examples for polynomial regression of lower degree. The optimal designs
are calculated using the theory of canonical moments. Further applications are given in
the field of model robust designs for polynomial regression models where only an upper
bound for the degree of the polynomial regression model is known by the experimenter
before the experiments are carried out.
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1. Introduction. Consider the polynomial regression model of degree n € N
(1.1) | gn(z) = ao + a1z + ... + apz™, z € [~1,1].

For each z € [—1,1] a random variable Y (z) with mean g,(z) and variance o? can be
observed. A design £ is a probability measure on [-1,1] and the information matrix of ¢ is

defined by

(1.2) M,(¢) = /;1(1,:1:, 2T, e, ,z™")dé(z).

k
If ¢ is supported at k points z1,...,z with masses &, ..., 2k where ) n; = N, the
i=1
experimenter takes nj uncorrelated observations at each zx. In this case the covariance
matrix of the least squares estimator for the unknown parameter vector (ay,...,a,)7 is

given by (o2 /N)M;1(¢).

An optimal design maximizes (or minimizes) an appropriate functionél of the infor-
mation matrix or its inverse. One of the more commonly used criteria for choosing a
design ¢ is the D-optimality criterion which maximizes the determinant of the informa-
tion matrix M,(§). It was shown by Hoel (1958) that the D-optimal design puts equal
mass at the zeros of the polynomial (1 —2?)P),(z) where P,(z) denotes the n—th Legendre
polynomial. A D-optimal design allows good estimates for the whole parameter vector
a = (ag,...,an)T because (under the additional assumption of normality) it minimizes the
volume of the ellipsoid of concentration for the parameter vector a = (ay,..., ar)T. By
the celebrated equivalence theorem of Kiefer and Wolfowitz (1960) the D-optimal design
is also G-optimal, i.e. it minimizes the maximum variance of the least squares estimator
for gn(z) in the regression region X = [~1,1]. However, a D-optimal design should not
be used for the decision if the term z™ has to be included into the model or not. For this
purpose the Dj—optimality criterion is appropriate which minimizes the variance of the
estimator for the coefficient «,, and maximizes the power of the F—test for the hypotheses
an = 0. Kiefer and Wolfowitz (1959) showed that the D;—optimal design (for polynomial
regression of degree n) concentrates mass 1/(2n) on the boundary points —1,1 and mass

1/n at the zeros of T, (z) where T,(z) is the Chebyshev polynomial of the first kind. The
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disadvantage of the D;—optimal design is that it does not allow to efficient estimates of the
vector a and of the regression function g,(z) in the model of degree n where it is usually
used when the experimenter rejects the hypotheses o, = 0. This fact is illustrated for the

case n = 3 in Table 1.1 which shows the D— and G—efficiencies

4 (6) 1/n+1

et M, _ n+1

bie) = sup det M,(n) » Gl = sup d(z,§)
] z€[—1,1]

(dn(z,6) = (1,2,...,2™) M (€)(1,z,...,2™)T) and the D;—efficiency

o0~ (57545 /et

for the D-optimal and D;-optimal design {p and {p, in the cubic model (n = 3)

D) |G [Di(f) support ¢{£1}) JE{#t})
£p 1 1 0.8566 |[—1,41/v5,1 1/4 1/4
¢p, [0.9344 [0.6667 1 —1,+1/2,1 1/6 1/3

Table 1.1: D—, G— and D; efficiencies of the D— and D;-optimal designs £p and ¢ D, in
the cubic model.

It can also be shown that the D;-optimal design is not very efficient in the model of degree
n—1 where it is usually used when the experimenter has decided (for example by a F' ~test)

to omit the power z™ in the regression model (efficiency in the quadratic model 0.75).

In this paper we will determine designs which are very efficient with respect to all
three optimality criteria. To this end we will introduce an optimality criterion which is a
mixture of the D— and D;—optimality criterion. This criterion is defined in section 2 in a
general context and an equivalence theorem is stated. In section 3 we go back to polynomial
regression models and determine the support and the weights of the optimal design with
respect to our criterion. For this purpose we use the theory of canonical moments which
was introduced by Studden (1980, 1982a, 1982b) (see also Lau (1983), Lau and Studden

(1985) and Lim and Studden (1988) for more details). In section 4 we give some examples
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for the polynomial regression models of lower degree and compare the efficiencies of the
derived designs with the efficiencies of the D— (G—) and D;~optimal designs. In section 5
we will apply the results of section 3 in the context of model robust design for polynomial
regression which was considered by Lauter (1974, 1976), Cook and Nachtsheim (1982) and
Dette (1990, 1991). Finally in the appendix a proof of the main theorem (stated in section

3) is given.

2. The mixture of the D— and D;—optimality criterion. Let fo(z),..., fo(z) de-

note n + 1 linear independent regression functions defined on a compact experimental

domain X which contains at least n + 1 points and define the model g by

9(2) = a0 fo(®) + ... + anfala).

The information matrix for a design £ on X is now given by
M) = [ @ @)

where fn(z) = (fo(z),... Jfa(@))T. Let ¢, = (0,...,0,1)T, the variance of the least
squares estimator for a, is proportional to ¢ M1 (£)c,, while the volume of the ellipsoid
of concentration for & = (ay, ..., an) is proportional to detM,1(¢). We call a design ¢

®g—optimal if it maximizes the function

¥5(¢) = (1— §)log(eT My (€)ea) ™ + —L logdet Mo ()
(2.1) |
det M,
= (1-5) log =" tMn_Efé) ¥ i — log det, Mo(€)

where B € [0,1] reflects the desired weight of the experimenter for the D-optimality
criterion. Note that a tg—optimal design will always have a non singular information
matrix and that ¢g gives the D— and D;-optimality criterion for # = 1 and 8 = 0,

respectively. The following theorem characterizes the 1g—optimal designs.



Theorem 2.1. Let ¢, = (0,...,0,1)7 € R", then the following three conditions are

equivalent

(1) The design £g is Pg—optimal

FE@M Ocn) P

Ty gk
I Mz (E)en 1 I @M (Ofa(z) < 1 VzeX

@  1-0

<1 VzekX

Gy LS @M ©a)? | 0 -5) 41 (@M e’
=0

n+1 . C;FMI_I(é')Cl n+1 cZM{l(E)cn

Moreover, in (ii) and (iii) we have equality for the support points of the optimal design &5

and the expressions on the left of (ii) and (iii) are the same.

Proof: We consider the Fréchet derivative of 1g at M; in direction of M, (see Silvey
(1980), p. 18) and obtain by straightforward calculations

T -1 n
M MM —1}+ b (e (MM — (n 4 1)

Fy,(My,M;) =(1— e
0p (01, ) = (1 - ) { 2 —
(see also Silvey (1980), p. 21, p. 48). The assertion (ii) now follows by an application of
Theorem 3.7 of Silvey (1980), p. 19, which gives a generallequiva,lence for concave and

differentiable optimality criteria. From

log(det Mu(€) = D log 352 ok = - log(ef My (€)™
=0 - e=0

(det M_;1(€) = 1) we have for ¢g

1-8)+1

n—1
0a(©) = 7 Lo M o0+ P g (M e

and the condition (iii) is proved by a similar reasoning as given for (ii).

We should mention at this point, that Theorem 2.1 is also a consequence of a general
equivalence theorem for mixtures of optimality criteria, which was considered by Gutmair

(1991) and does not require the assumption of differentiability.
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Theorem 2.1 allows to check if a given design is 1 g—optimal and it is also the basis of
any numerical procedure for the determination of ¢ s—optimal designs (see Fedorov (1972),
Silvey (1980)). However, it is not a very useful tool for the determination of an analytical
solution of the ¥s—optimal design problem. In the case of polynomial regression there are

more efficient methods for this purpose which are considered in the following section.

3. Polynomial regression and the theory of canonical moments. In this section

we are going back to the polynomial regression model of section 1 and give a brief review
of the theory of canonical moments which is used to determine the g—optimal designs. For
a more detailed investigation we refer to the work of Skibinsky (1967, 1968, 1969, 1986),
Studden (1980, 1982a, 1982b, 1989), Lau (1983, 1988), Lau and Studden (1985, 1988), Lim
and Studden (1988) and Dette (1990, 1991). Let ¢ denote a probability measure on [-1,1]
with moments ¢; = f_ll :cidg(:c). For a given set of moments cy,...,c;_1 let c;" denote the
maximum of the i~th moment f_ll z'dy(z) over the set of all probability measures p having
the given moments co, ..., c;—1. Similarly let c; denote the corresponding minimum value.

The canonical moments are defined by

Note that 0 < p; < 1 and that the canonical moments are left undefined whenever c;" =c;.
If 7 is the first index for which this equality holds, then 0 < pz < 1, k=1,2,... ,1—2, pi—1
must have the value 0 or 1 and £ has a finite support (see Skibinsky (1986), section 1). As
an example consider the Jacobi measure with density proportional to (1 —z)%(1+z)# (a >
—1,8 > —1). Skibinsky (1969) showed that the canonical moments of the Jacobi measure

are given by

k
P = Y Bt 2k 11 1
B+k
- = k>1.
P2k—-1 o+ BT 2%k 2

The uniform measure (a = § = 0) has psz_; = § and pax = k/(2k+1) (k > 1) and

the arcsin—distribution (o = § = —%) has py = % for all k. The determinants of the
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information matrices (for the polynomial regression model) given in (1.2) can easily be

expressed in terms of canonical moments (see Skibinsky (1968), Studden (1982b)).

Theorem 3.1. Let £ denote a probability measure with canonical moments p1,ps,... ,q; =

1—-p; (1 21),6 =1, (1 =p1 and {; = ¢j—1p; (j > 2), then the information matrix of ¢

(in the polynomial regression model of degree n) is given by

det Mn(€) = 2" T [ (Goima C20)™ %
=1

The maximization of the optimality criterion given in (2.1) can now be carried out by a

maximization in terms of the canonical moments of the design £ and we obtain.

Theorem 3.2. The yg—optimal design £z for the polynomial regression model of degree

n 1s uniquely determined by its canonical moments which are given by

1
Pzi—1=§ cae=1,...,n
(3.1) { n+1—:8 :
i = p Z=1,...,'I’L—1
P ot r1-i8)— P
( P2n =1

Proof: Maximizing the function 14(£) in terms of the canonical moments of ¢ we obtain
by straightforward algebra the moments of (3.1). The fact that £g is the unique design
with canonical moments (3.1) results from p;, = 1 (see Skibinsky (1986)).

Note that the cases § = 1 and f = 0 give the canonical moments of the D— and D;—
optimal design. If we let 8 = ﬁ:ﬁ-—a (a € [0,00]) we obtain for the sequence (p1, ... ,p2s)
of (3.1)

1
Pzi—1=§ 1=1,...,n
(3.2) < n—ita+l
i: . _1 .y _1
P2 20n—i+a)+1 ’ "
\p2n:1



where a = 0 and @ = oo correspond to the D— and D;-optimal design. In this notation
we have a nice interpretation of the 1g—optimal sequences of canonical moments. The

sequence of canonical moments of the D-optimal design (p1,...,p2.) is given by (see

Studden (1980))

n 1 n—-1 1 1
" 2n—1"2" 2n-3" 2777772

N =

while the sequence of the D;—optimal design is

1 1 1
ey Ty = L
I 2? )27 27

N | —

Fora=1 (8= ﬂ%) we obtain for the canonical moments of {4 the “shifted” sequence

1 n4+1 1 n 1 15141%11
2’ 2n+1" 2 2n—-1"2""7"77229" 2277 2" 5 2
while a = 2 (3.2) yields the sequence
1 n4+2 1 n+1 1 16151411
2’ 2n+43" 2 2n+1" 2777772711727 97 27 7 20 7
Thus by letting a = 0,1,2,... — oo we are shifting the sequence of canonical moments of

the D-optimal design (to the right) into the sequence of the D;—optimal design (note that

if @ — oo all the canonical moments of (3.2) will tend to 1/2).

Theorem 3.2 gives, in a sense, a complete solution of the yg—optimal design problem.
The remainder of the problem is converting the optimum p; to the support points and
the weights of the corresponding design. There is a considerable amount of literature con-
cerning the relationship between a sequence of canonical moments and the corresponding
design £ (see Studden (1982a,b) and Lau (1983)). In general the support and the weights
of the design £ have to be found numerically and analytic solutions are only possible for
n < 3 or special sequences of canonical moments (see Dette (1990, 1991)). However, the
sequences defined in (3.2) (or (3.1)) allow an explicit representation of the support points
as the zeros of a weighted sum of orthogonal polynomials. In what follows let C,(la)(x)
denote the n—th ultraspherical polynomial which is orthogonal with respect to the measure
(1 — 22)*~1/24dz (see Szegd (1959) or Abramowitz and Stegun (1964)), then we have the

following theorem which proof is deferred to the appendix.
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Theorem 3.3. Let n > 2 and a + z > —1, the design ¢ corresponding to the sequence of

canonical moments

( _1
p21—1—2
(3.3) ¢ n—i+a+z 1 _q
D2: 2(n—z+a)+z 7 N [
( P2n =1

is supported at the points —1,1 and the n — 1 zeros of the polynomial

vy - oy Dati) Tetatle)) In—j) Leren
(34) F( )(-'L') ; (_ ) I‘(a)l‘(]+1) I"(z—l—a+1) I‘(n) n 2]+1+ ( )

The masses at the support points zg, z1,...,z, are given by

a+1,z—2 a+2z2
Ftbs D gy — st pledB = (g

3.5 E({z;}) = . ) =0,1,...,n.
e ) (@ = 2D (@)=, ’

Note, that for a = 0, Theorem 3.3 gives the model robust designs considered in Dette
(1990) while in the case a = 0o we obtain the D;—optimal design for all z > —1. By an

application of Theorem 3.2 we immediately get the following result.

Corollary 3.4. Let 8 € [0,1] and a = (n + 1):Z2. The Yp—optimal design (for the
8 B g

polynomial regression model of degree n is supported at the points —1,1 and the zeros of

the polynomial given in (3.4) for z = 1. The weights are given by (3.5) (for z = 1).

4. Examples (polynomial regression of degree 3 and 4).

a) We will consider the case of cubic regression given in the introduction. Let a = 41—;£,
then we see from Corollary 3.4 that the support of the 1g—optimal design is given by

—1 and 1 and the zeros of the polynomial

Fz(a,l)(w) _ C’z(a+3/2)(9:) _ a(a2+2) _ (a + %)(2(1 + 5)x2 N (a+3)2(a.+1)



where we have used the representation C’éa)(a:) = a[2(a+1)z?~1] for the ultraspherical
polynomial of degree 2 (see Abramowitz and Stegun (1964), p. 794). By the same

theorem we obtain for the weights at the support points

o= 1. ze e (a+1)(a+3) e — (a+1)(a +3) o — 1
T T @a+3)2a+5) TV (2a+3)2at+5) T

(4.1)
Eo({z;}) = 1 (2a+3)(2a+5)z? —(3a® + 11a +9) i—1...4

2 2(2a + 3)(2a + 5)22 — (542 + 20a + 18)

which yields (note that § = 241

n+l4+a
1 3 12 3
(42) BN =5 T el =5

The optimal designs for various values of a (8) are given in Table 4.1 which also
contains the D—, G— and D; efficiencies for the different designs in the cubic model.
The D— and D,—efliciencies are calculated by an application of Theorem 3.1 and 3.2.
For the G—efficiency we use |

1
sup dy(z,€) =dp(1,8) =14+ — + 2 4 2%
relual P2 P2Ps P2PaPs

which can be proved by a similar reasoning as given in Lim and Studden (1988, p.

1237) (see also Dette (1990), p. 1790).

g D) | G | Db To/3 s(zays) |Ep(£1)
1 1 1 0.8566 |40.4472 0.25 0.25

0.8 0.9908 [0.8889 [0.9074 |{40.4781 | 0.2222 |0.2778
0.6667 |0.9809 |0.8333 ]0.9674 [40.4880 | 0.2083 |0.2917
0.5714 [0.9735 0.8 0.9795 |+0.4923 0.2 0.3

0.5 0.9681 |0.7778 [0.9858 |40.4947 | 0.1944 {0.3056

0.4 0.9607 | 0.75 0.9921 |40.4971 | 0.1875 |0.3125
0.2857 [0.9527 10.7222 [0.9965 |+0.4986 | 0.1806 |{0.3194

0 0.9344 10.6667 1 +0.5 0.1667 10.3333

—t
B oSomwo ol

Table 4.1: 1g—optimal designs and the D—, G— and D, — efficiencies for different values
of B=4/(4+ a)

Note that Table 4.1 indicates the convergence of the 1z optimal design to the D;—
optimal design as (8 tends to zero (a — co). In the range 8 € [0.5,0.6667] (a € [2,4])
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all designs {5 have good D—, G— and D;-efficiences which means that these designs
are in some sense robust with respect to the (D—, G— and D; —) optimality criterion.
Because of the simple form of its weights we would recommend the design £ (8 =

0.5714, a = 3) for practical applications in the cubic regression model.

b) As a further example we consider the case n = 4, # = 1/2 which corresponds to the
case a = 5 in Corollary 3.4. The canonical moments of even order of the ys—optimal
design are given by p; = 9/17, p, = 8/15, ps = 7/13, ps = 1 and from the definition

of the ultraspherical polynomials we obtain
c3/2) ) _ 85 .o 2 (15/2) .y _
s [ (z) = ?:c[17:c -3, C; 7' (z) =152
and it follows by straightforward algebra

FGD(z) = 82[22122 — 109].

Thus the support of the optimal design is given by the points —1, —4/ %, 0, %, 1.

For the weights we apply (3.5) and obtain

4 2 128
221 24 — 213 2% + 128

1) = 1 =0,1,...,4
which yields
3 109 3549 128
E({£1}) =55 & (i 221) = Ta250 ~ 02826, &({0) = -

The D-efficiency of this design is 0.9662, the G—efficiency is 0.75 while its D;-efficiency
is given by 0.9862. Note also that the D-optimal design has D; efficiency 0.8359 and
that the D;—optimal design has D—efficiency 0.9338 and G—efficiency 0.625.

5. Model robust designs. In this section we will consider some aspects of optimal

design theory where the underlying model is not known by the experimenter before the
experiments are carried out (see Atkinson (1972), Stigler (1971), Liuter (1974, 1976),
Studden (1982a), Dette (1990, 1991) for more details). We will use the optimality criterion
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introduced by Léuter (1974) for a given class of models. To this end let g;(z) denote a
polynomial regression model of degree I (I = 1,...,n) and collect all the polynomial

regression models up to the degree n in the set

Fn=A{g91(z),...,ga(2)}.

Let 81 > 0 denote a prior, which reflects the experimenters belief about the adequacy of
the model g¢; (Z b = 1), a design ¢ is called optimal for the class of F,, with respect to
1

=
the prior 8 = (f1,...,Bn) if it maximizes the function

35(6) = Y 7L log(det M(¢))

where Mi(£) denotes the information matrix of the design ¢ in the model g; defined by
(1.2). The canonical moments of the {g—optimal design with respect to a given prior
p were determined by Dette (1990) who also identified a one parametric class of priors
yielding optimal designs of a very simple structure. We will consider here the following

two parametric classes of priors (a + z > —1)

(z—1) T(n+a+2z—-1-1)

(ﬂl=(l+1)z

T Tnta_lyDn Thoeon?
_ P(Z+(l+1) (z—a_l)
(5.1) { fn-1=n ) a
_ I(z+a+1) 1

where ¥ is a normalizing constant to ensure Zn: B1 = 1. Note that this class contains the
one parametric class investigated by Dette (1l$3=910) (a = 0). For the case a = 0, z = 2 the
prior defined in (5.1) puts weight proportional to 2:3:...n:n 41 on every model of F,,. A
very important case is obtained for the choice z = 1, a € [—1,0], which reduces the prior
of (5.1) to a prior which puts only non vanishing (positive) weight on the models of degree

nandn —1, i.e.

(B1=...=fn2=0
(5.2) 1= o

5 :(a—}-l)(n-l-l)

L a+n+1
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Note that when a varies between —1 and 0 £,-1 and 8, = 1 — B,—-1 vary in the same
range. This prior is reasonable for an experimenter who wants to fit either a polynomial
of degree n or of degree n —~ 1. The optimal design for the class F,, with respect to a prior
B = (B1,...,Pn) can be easily expressed in terms of canonical moments (see Dette (1990),
Theorem 3.1 and formula (4.1)) and by an application of Theorem 3.1 and Theorem 3.3

we obtain the following result.

Theorem 5.1. Let a + z > —1, then optimal design for the class F, with respect to a

prior defined by (5.1) has the canonical moments given in (3.3). The support points are
given by —1,1 and the zeros of the polynomial 7:1(:2;)(5”) defined by (3.4) while the weights

can be calculated using the representation (3.5).

Note that in the case z = 1 the 1g—optimal design (Corollary 3.4) and the optimal design
for the polynomial of degree n or n — 1 (i.e. the optimal design for the class F, with
respect to the prior given in (5.2)) are completely different although they are given by the
same sequence of canonical moments in (3.3) (# = 1, @ > —2). This results from the fact
that in the optimality criteria 14 and ®g reasonable priors should be positive which yields
a € [~1,0] for the ®g—criterion (prior in (5.2)) and a > 0 for the 1 g—criterion. Therefore
an g—optimal design for polynomial regression of degree n can not be used as an optimal

design for the class F,, with respect to the prior in (5.2).

Example: (Cubic or quadratic regression). Assume that the experimenter wants to fit a
quadratic or cubic model and that he has no prior knowledge about the adequacy of these
models. In this case he would choose 8, =0, 8; = 83 = % which corresponds to a = —%
in (5.2). This is the case a = —%, z =1 and n = 3 of Theorem 5.1 which is also treated in
section 4. Thus we obtain from (4.1) and (4.2) that the optimal design for the quadratic

and cubic polynomial (equally weighted) is supported at the points —1 —  / %, + 111—77, 1

with masses é—g—, %%, %, %. The D-efficiency of this design in the cubic model is given by

0.9775 while its D—efliciency in the quadratic model is 0.9135. If we want to increase the

efficiency of the optimal design in the quadratic polynomial we have to put more weight
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on the polynomial of degree 2. To give an example we choose 8, = 3/4 and f; = 1/4

which corresponds to the case a = —4/5. The optimal design is supported at the points

11 7

11
-1, — 119, 1 and the weights are 33, %, 36, 36

This design has D—efficiencies
119’

0.9120 and 0.9491 in the cubic and quadratic model, respectively.

6. Appendix

Proof of Theorem 3.3: a) The representation of the support: Let ¢ denote the design

corresponding to the sequence in (3.3), then the Stieltjes transform of ¢ has the represen-

tation (see Perron (1954) or Dette (1989))
b et
d(z) = /_1 p—

47172 | . . 47271,—37217,—2 |
lz+1=2(v2+7) - Je+1—2(y2n_2 +Y2n1)

where 71 =1 —p1, 95 = pj—1(1 —p;) (j > 2). The support of £ is now given by —1, 1

1—z2

1
= [*$—1+2’)/1+

and the polynomial in the denominator of the above continued fraction. Defining

by -1
aq bl -1

-1

an bp
(all other elements in the matrix are 0) we obtain for this polynomial (see Perron (1954),

p. 4 or Wall (1948)) (Py(z) =1, Pi(z) = z)

(6.1) Pn-1($) :K< T (Zn—4+2a¥z)(2n—2+2a+2) ... T (2a¥242)(2at4+2)

(n—2+4+a)(n—1+a+2) (a4+1){a+2+2)
Z ... .T)

We will now show that this polynomial (of degree n — 1) is proportional to the poly-
nomial F,, (e, z)(a:) defined in Theorem 3.3. More precisely we will show by induction that

I‘(-2—+a+n)

_ (az)
M2 arey O = @)

(6.2) Phi(z) =21

where F( ’ )(x) is defined in (3.4). For n = 1 the identity (6.2) is obvious while the case
n = 2 yields

~ 2 z42 a
Pi(z) =2 <; ) 2 =0T+ (a)

14



which is evident from the definition of the ultraspherical polynomials (see Abramowitz
and Stegun (1964), p. 794). For the induction step from n to n + 1 it is convenient to
distinguish the cases of odd or even n and we will only consider the case of n = 2m even
(the case n = 2m + 1 is treated in exactly the same way). From the induction hypotheses
we thus obtain for Pz,(z) (by an expansion of the determinant)

2?mI(&£2 + a + 2m)
(&2 + o)T(2m + 1)

(2m —1+a)2m +a+2)
(4m —242a 4+ z)(4m + 2a + 2)

sz(w) = zPym-1(z) — sz—z(w)}

_m—l i Tla+j) T(z+a+j+1) T@2m—j-1)
‘jzzo(_l) MaTG+1) Teta+tl) T@m+1)

. -zﬂ a . ﬂ a .
{(2m —7=1)(z+2a+ 4m)x02(m2_1-’__2_;])(x) —(2m—-14a)2m+a+2) Cémz_;__;]-])(x)}.

Now let ]52(71;) (z) denote the above sum where the summation is only performed over the
indices 0,1,...,f (f € {0,1,...,m — 1}, i.e. 152(,",:_1)(:::) = Pyn(z)) and similarly define
F2(TJ;) (z) as the “truncated” sum of the polynomial Fé;’a)(:v) defined in (3.4), i.e.

f . . .
Degy =Sy L@+s) Tlet+ae+i+1) Tem+1-j) (ia))

(f €{0,...,m}) then we have the following Lemma which proof is given at the end of this
appendix.

Lemma 6.1. The polynomials F2(1];)(:12) and Pz(;?(m) satisfy the equation (f =0,...,m—1)

Ta+f+1) T(z+a+2+ ) L@m =1 - f) ~(2+f+a)

H(f) AN — 1
sz(:l:)—FZm (:13) _( 1)f+ F(G)P(f-l-l) 1-\(2+a+1) F(2m+1) 2m-~2f-2 (:E)

Using Lemma 6.1 we obtain now for the differences of the polynomials P;,,(z) and Fz(zz’z) (z)

Pom(@) = Fy?(2) = By ™ (@) = B~ ()
F'la+m) TI(z+a+m+1) T(m+1) _

- =T M(@)(m+1) T(z+a+1) T(@m+1)

0

which establishes (6.2) (in the case of even n = 2m). Because the odd case is shown in the
same way we have proved the assertion of Theorem 3.3 concerning the support points of

the 1g—optimal design.
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b) The representation of the weights: The weights of £5({z;}) at the support points
—l1=29 <z <...< 2z, =1 can be calculated by a partial fraction expansion of another

representation of the Stieltjes transform of £g

OEDY Ezs}) _ / dés(t)

T —xy 1 rz—1
_1 | 4GE | 4Ga-1(om |
et1-2G Je+1-9G 26 ... lo+1- 2
(see Lau and Studden (1988)). This yields for j =0,...,n

Gn(z;)
%Hn-l-l(m”z:zj

E5({251) = B(@)(@ — 25)|ams, =

n
where Hny1(2z) = [](z — ;) and the polynomial in the numerator is given by (see Perron

=0
(1954), p. 4)

_ 1 —4C1(2 cor ~4Cn—1C2n
Gn(m)_I{<0 $+1—2C1 .’E+1—2<‘2—2C3 .’1:+1-2<2n
_ (n—2+4a+z)(n—14a) ___(z4a41)(a42)
=K ( (2n—4+2a+2)(2n—2+2a+2) Tt (2a+2+2)(2a+4+2) )
a+1 _ (n—24a+2)(n—1+a) ___(z4ad2)(a+3)
_—— K (2n—4+42a+2z)(2n—242a+2) o (2a+442z)(2a+6+2)
20 +2+ 2 (;v T ...z z )
R PR e ot S = 5
=T Gn—l (:E) 2 + 2 +z Gn—z (.’17)
where the last equation defines C?gla_’? (z). By the reasoning given above we obtain from

(6.1) and (6.2) the representation

I'(Z+a+n)
L(%2 + a)T(n)

FI (@) = 2 &)

Ln;lJ - . '
= 5 (-1y Fa+14j) T(z4a+35)T(n—7j) 0(5‘2&‘*“.*")(@«)
IF'G+1)T(a+1) T(z+a) T'(n) n—1-2j

§=0

and for the polynomial H,11(z) we have from (6.1)

Pt +a+n) |7
T(52 +a)T(n)

Hpg1(2) = (22 = 1) - Po_y(z) = [2"—1 (22 = 1)F{2)(g).
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This yields

a+t+1l,z2—2 a a+2,z—2
ol(a)) = T @)~ BRI
L (22 — 1)F2D (@)|oms,

and completes the proof of Theorem 3.3.

Proof of Lemma 6.1: The proof of Lemma 6.1 is performed by induction and straight-

forward. However, the calculations which have to be performed are extremely tedious. For
the sake of simplicity we will only state the proof in the case a = 1, z = 2 which illustrates
all essential arguments. The general case can be treated exactly in the same way as the
proof given here for @ = 1,2 = 2. Let f = 0, then we have (¢ = 1, z = 2) using the
recurrence formula for the ultraspherical polynomials (see Abramowitz and Stegun (1964),

p. 782)

(0 (0,
Pin(e) — F{)(x) = m@m = 1) [

— 5= [4m+ 120, (@) — 2(m + 2, (<))

4(m +1)(2m — DeC;)_ (2) — 2m(2m + 3)C5_y ()]

.t ®
 2m(2m —1) Com—2(2)
which shows the assertion for f = 0. To go the step from f to f +1 (f < m — 2) define
D(f) = PD(z) — F{{(z) and
I'(f +5)I(2m — f —2)
T(AT(2m + 1)(2m — 2f — 2)°

With this notation we obtain (using again the recurrence formula)

(63) 7= (1)

I(f +5)0(2m — f — 2)
T(4)0(2m + 1)

B (@) - i1 (@) - D(f) = (-1 +

[4(m +1)@m — f = 2)aCyl ) i(2) - 2m(2m +3)CLH) . ()

_(2m—f—2)(2m—f—1)
2m — 2f — 2

{(4m —2f +2)2CH)._(2) - 2m + z)og,{f;f_3(x)}J

= |@m =2 ) +1Ef +6)5CY, o (2) - A €LY, ()]
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where
(6.4) A=2m+3)(f +1)(f +2) — 2m] + (2m — f —1)(2m — f — 2).

Using the induction hypothesis and the recurrence formula of the ultraspherical polyno-

mials (see Abramowitz and Stegun (1964), p. 782) it now follows

B ()~ FD (@) = 4 [(zm _F-9)(f 4 1){x<2f +6) 0, (@)

—(2m—2f —2) Céﬁgf_2(x)} -x e f—3(33)}

= |Cm= =2 + D20 [ +9) Yoo~ om— 1) O, (o)

+(2m+2) céi“?z’f_4(w>} - 0§£+43f-4<w>]

=7+ [@m = F=2)(f + ) {2(F + 920 (@) + 2m+2) CLEY, @)} -2 O, ()]

where the last line results from the identity
(6.5) (n+a) C157"(@) = (@—1) [ (=) - C(2, ()]

for ultraspherical polynomials (Abramowitz and Stegun (1964), formula 22.7.23). By a
further application of this formula, the recurrence formula for these polynomials and (6.5)

we obtain (using the definitions of v and A given in (6.3) and (6.4))

PD() ~ B2 G@) =+ [~ £ -2 + 0 2D

(2 —2f - 4) ¢, (@)
(2m+2) Oé:,‘f%f_s(z)] Fo(m+1) céfn?;f_4(:c>} ) céit43f_4(x)]
=7-[2@2m—f—2)(f + 1)(f +3) - AN CI ., (2)

=7 (f+5)(2m - 2f = 2)(f +2) CL™._, (@)

» T(f +6)T@m — f — 2 .
= (—py+e DELOTCM =T =2) oy ) o) (o

T(4T(2m + 1) -
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which shows the assertion of Lemma 6.1 (a = 1, z = 2) for f + 1 and completes its proof.
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