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Abstract

We investigate stochastic differential equations driven by semimartingales with jumps.
These are interpreted as Stratonovich type equations, with the “integrals” being of the kind
introduced by S. Marcus, rather than the more well known type proposed by P. A. Meyer.
We establish existence and uniqueness of solutions; we show the flows are diffeomorphisms
when the coefficients are smooth (not the case for Meyer-Stratonovich differentials); we
establish strong Markov properties; and we prove a “Wong-Zakai” type weak convergence
result when the approximating differentials are smooth and continuous even though the

limits are discontinuous.

Redumé

On considére des equations stochastiques différentielles ot1 le “bruit” est une semi-
martingale quelquonque (avee des sauts). On propose une interpretation des intégrales
stochastiques du type “Stratonovich”, mais du genre de celles introduites par S. Marcus,
plutét que du genre de celles de P.A. Meyer. On établit I’existence et 'unicité des solutions
et on démontre que les flots sont des difféomorphismes quand les coefficients sont conven-
ables (ce qui n’est pas le cas pour l'interpretation de Meyer—Stratonovich). De plus on

établit les propriétés de Markov fortes, et on démontre un genre de convergence faible du
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type “Wong—Zakai” quand les approximants sont réguliers et continus, méme si les limites

ne sont pas continues.

§1. Introduction

We investigate here a stochastic differential equation of “Stratonovich type”, where the
differential semimartingales Z can have jumps. We write the equation with the customary

“circle” notation to indicate that it is not a standard Ité type semimartingale integral:

t
(1.1) X, = Xo + / f(X,) 0 dZ,.
0

The “integral” in the equation is a new type of Stratonovich stochastic integral with respect
to a semimartingale Z with jumps. (Our integral is different from the one given by Meyer
[13] or Protter [14].) Unfortunately we have been able to define our new integral only
for integrands that are solutions of stochastic integral equations, and not for arbitrary

integrands.

The equation (1.1) above is given the following meaning, for the case of scalar processes

X, Z:
t

(1.2) Xe=Xo +/ f(X,-)dZ,
0

]‘ ’ ! c
+3 [ 112,21

Y Ae(fAZy, X,2) — Xa — f(X4)AZ,}

0<s<t

where ¢(g,z) denotes the value at time v = 1 of the solution of the following ordinary

differential equation:
dy
7, (W) = 9(y(w));  y(0) ==
We also write ¢(g,z,u) to denote the solution at time u; thus (g, z) = ¢(g, 2, 1).

The first term on the right side of equation (1.2) is the standard It6-semimartingale
stochastic integral with respect to the semimartingale Z; the second term is a (semimartin-
gale or) Stieltjes integral with respect to the increasing process [Z, Z]°, where [Z, Z] denotes

the quadratic variation process of Z and [Z, Z]® denotes its path by path continuous part
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(see Protter [14, p. 62]). The third term is a (possibly countable) sum of terms of order
(AZ,)? and therefore converges absolutely (see Section Two). Were we to have interpreted
(1.1) as a Stratonovich equation in the sense of the semimartingale Stratonovich integral
as defined by Meyer [13] (see also Protter [14]), the right side of (1.2) would have contained

the first two terms only.

The inclusion of the third term on the right side of (1.2) has several beneficial conse-
quences. The first (as we show in Section Six) is that the solution to (1.1) is the weak limit
of the solutions to approximate equations where the driving semimartingales are contin-
uous piecewise approximations of the driving semimartingale Z (a “Wong-Zakai” type of
result). The second is that the solution remains on a manifold M whenever it starts there
and the coefficients of the equation are vector fields over M. (This is proved in Section
Four.) The third (see Section Three) is that the flows of the solution are diffeomorphisms
when the coefficients are smooth. This last property does not hold in general for semi-
martingale nor Stratonovich-semimartingale stochastic differential equations, because (for

example) the injectivity fails (see Protter [14, Chapter V, §10]).

We feel that the first consequence mentioned above, that of the “Wong-Zakai” prop-
erty, is important from a modelling viewpoint, since a jump in the differential can be

regarded as a mathematical idealization for a very rapid continuous change.

The idea to interpret equation (1.1) by (1.2) is not new. It was introduced by S. Marcus
[10], [11] in the case where Z has finitely many jumps on compact time intervals. The
corresponding “Wong-Zakai” results were investigated by Kushner [9]. Recently Estrade
[3] has studied equations similar to (1.1) and (1.2) on Lie groups, and Cohen [2] has given
an intrinsic language for stochastic differential equations on manifolds, which relates to

section four of this article.

In this paper we prove existence and uniqueness of a solution of (1.2), we show the
associated flow is a diffeomorphism of R? in the vector case, we show the solution is a
strong Markov process when the driving semimartingales Z are Lévy processes, and of

course we establish “Wong-Zakai” type approximation results for weak convergence.

One notation caveat: the i** component of a vector z will be denoted z'; the jt*

column vector of a matrix f will be denoted f;, and hence fJ’ stands for the (7,;) term
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of the matrix f. Finally, when the meaning is clear, we use the convention of implicit
d
summing over indices (that is we write a; to denote Y a;).
=1

§2. Discussion of the Equation

Let (2, F,Ft, P) be a probability space equipped with a filtration {F;;t > 0} of
sub-o-fields of . We assume the filtration satisfies the “usual hypotheses”, i.e. it is right-

continuous, and Fy contains all P-zero measure sets of Foo = F.

A process Z which has right continuous paths with left limits a.s. (known as “cddldg”,
after the French acronym) is called a semimartingale if it has a decomposition Z = M + A,
where M is a cadlag local martingale and A is an adapted, cadlag process, whose paths are
a.s. of finite variation on compacts. For all details of semimartingales the reader is referred
to, for example, Protter [13]. A k-dimensional semimartingale Z = {Z;;¢ > 0} is assumed
given with Zg = 0. Let f € C*(R%;R?*¥). Given an F; measurable d-dimensional random

vector Xg, we want to study an equation, which we write symbolically as:

(2.1) X: = Xo +/ F(X,) 0 dZ,
0

and is to be understood as

Xe=Xo+ [ fXiyiz 43 [ £i0xaz, 2

+ Y {e(fAZ,, Xoo) — Xoo — f(X,-)AZ,)
0<s<t

(2.2)

Let us explain the meaning of the three last terms on the right of (2.2).

t t .
/ F(Xo_)dZ, = / f(Xo_)dZd,
0 0

where the sum runs from j = 1 to j = k (we use throughout the convention of summation
of repeated indices), is the “It6 integral” of the predictable process {f(X;-)} with respect

to the semimartingale Z.

23) [ sz, 2= [ oo caz, zms

is a Stieltjes integral with respect to the continuous bounded variation processes [Z7, Z™]°

which are the continuous parts of the quadratic covariation process (cf. Protter [14, p. 58]).
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Let us finally define the notation p(fAZ,,z). Given g € C'(R%R?) and z € RY, the

following equation: p
Y =
{ 2 () = g(y(w)
y(0) =<

has a unique maximal solution {¢(g,z,u);0 < u < £} and
im] ¢(g,2,u)| = +oo if £< oo

If¢>1,

90(9,.’12) = ‘P(gaxa 1)
If { <1, p(g,7) is undefined: the solution of (2.1) explodes at the corresponding jump
time of Z. We shall be mainly concerned with the case where f is globally Lipschitz,

in which case p(fAZ,, X,_) is always defined as a d-dimensional F, measurable random

vector (given that X,_ is F s-measurable).

For equation (2.2) to make sense we must show that the sum on the right side is
absolutely convergent. This follows from Taylor’s theorem: Since u — e(fAZ,,z,u) is

C?, we have:

o(fAZ,,z,1) =z + f(x)AZ,
+ 37 Fp(fAZ0,2,0)AZ,A7¢

for 6 € (0,1) which depends on (s,w,z). Note that the notation used above is defined in
equation (2.3). Thus

Y- lp(fAZ,, Xo) - Xo- — f(X,-)AZ,|

0<s<Lt
1
<35 suwp |f'f(e(fAZ,, Xom,0)( D |AZ,?)
02%21 0<sst
<K ) |AZ[J,
0<s<t

which is a.s. finite since K(w) < oo and the sum of squares of the jumps of a semimartingale

is always finite a.s.

The next observation allows us to use many of the results of the well developed the-

ory of stochastic differential equations, and it has greatly simplied a previous version of
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this paper. Let [Z, Z]¢ be the jump component of the quadratic variation process [Z, Z],
analogous to [Z, Z]° being the continuous part. That is,

(2,21 = ) |az,?
0<s<t

where Z is a given vector of semimartingales.

Again for a given vector of semimartingales Z, we define

P(AZsf,z) —z — f(2)AZ,
|AZ,[2 '

h(s,w,z) =

where the w comes from the terms AZ, = AZ,(w) . We have the following obvious result:

Lemma 2.1 For f and f' f well defined and Lipschitz continuous, a solution X of equation

(2.1), interpreted as a solution of

t
(2.4) X, = Xo + /0 F(X,_)dZs+

1 ¢ ! [
5| 11Xd1z,21

+ Z {‘P(fAZs,Xs—) — X — f(Xs—)AZs},

0<s<t

is also a solution of
t 1 [t
(2.5) Xe=Xo+ [ fXe)iZo+ ] | 75x.-ydiz, 20
0 0
t
+ / h(s,+, Xs-)d[Z, Z]¢,
0
and conversely.

§3. Existence, Uniqueness and Flows of the Equation

One can study the equation in question

' i
(3.1) X, = Xo+ / f(X,) 0 dZ,,
0
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directly (as the authors did during their preliminary efforts), but it is much more efficient

to realize that equation (3.1) can be rewritten as
¢
(3.2) X, = Xo + / F(X,)dZ,+
0
1 [
3 [ ricoaz, 2
0
t
+ [ bsyw, X, )dlz, 2%
0

where h(s,w,z) = cp(AZ,f,Tg—Zzl—zf(z)AZ,, and [Z,Z]¢ = Y. AZ!AZ,, the sum of the
: 0<s<t

squares of the jumps.

We will call an operator F' on processes process Lipschitz as defined in Protter [14,
p. 195]) if (i) whenever X7~ = Y7~ then F(X)T~ = F(Y)T~ for any stopping time T;
and (ii) |F(X); — F(Y)| < K¢|X: — Yy|, for an adapted process K.

Lemma 3.1 For f and f'f Lipschitz continuous, the function h(s,w,z) is process Lip-
schitz. If Z has bounded jumps, then h is random Lipschitz with a bounded Lipschitz

constant.

Proof: To show the result we apply Taylor’s theorem to the mapping

u— @(AZsf,z,u) — p(AZf,y,u) :
le(AZf,z,u) — p(AZs foy,u) —z —y — AZ,(f(z) — f(y))|
< S F(0(DZuf,2,0)) — F f(@(AZ, f,y,0)}AZ,AZY
< clo(AZ,f,2,0) — p(AZ,f,y,0)||AZ,[*
< clz — yle?rZI|AZ, |,
where the last inequality follows from Gronwall’s lemma. This implies

Ih(s7 w, .’L') - h(S, w, y)l < cl:p — yleclAZA|,

and the result follows. O

Lemma 3.1 allows us to use the already well developed theory of stochastic differential

equations as found in Chapter V of Protter [14].
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Theorem 3.2 Let f and f'f be globally Lipschitz. Then there exists a cadlag solution

to (3.1), it is unique, and it is a semimartingale.

Proof: Rewriting equation (3.1) in its equivalent form (3.2), we observe that (3.2) is a
standard stochastic differential equation with semimartingale differentials Z, [Z,Z]°, and
[Z,Z)7, and process Lipschitz coefficients. There is one technical problem: the coefficient
h(s,w, z) is not predictable for each fixed z, and does not map caglad (left continuous with
right limits), adapted processes to itself. However the process [Z, Z]J is an increasing, finite
variation process, and since h is optionally measurable for each fixed z, this does not pose
a problem. Thus we need only to apply a trivial extension of (for example) Theorem V.7
of Protter [14, p. 197] to deduce the result. a

We can weaken the globally Lipschitz hypotheses of Theorem 3.1 to locally Lipschitz,
by standard techniques (see e.g., Métivier [12, Theorem 34.7, p. 246] or Protter [14, pp. 247
249]). We will call a function g locally Lipschitz if for any n there exists a constant ¢n such

that for all z, y € R? with [|e]| < n, |lyl| < n, llg(=) — 9@)]| < callz — .

Corollary 3.3 Let f and f' f be locally Lipschitz continuous. Then there exists a stopping

time T', called the explosion time, and a cadlag, adapted d-dimensional process {X:,0 <

t < T} that is the unique solution of equation (3.1). Moreover limsup ||X¢|| = co a.s. on
t—T

the event {T' < oo}.

Remark: A more general equation than (3.1) is the following
t 1 t
(3.3) Xe=Jot [ FXo)iz+ 3 | rxdiz,
0 0

1 t
+3 [ rex)ds,

+ Y Ae(fAZ,X,o) - Xo- — F(X,-)AZ,)
0<s<t;AZ,F#0

where J is a cadlag, adapted process such that [J, Z]° exists (in the sense defined in Protter
[14, p. 215]), and moreover 3 |AJ,[? < 00, each t > 0. Also, f(z) € Réx(*+4) jg

0<s<t,AZ, 20
defined as

&) = @) i 1 and 7= (%),
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We can prove an existence and uniqueness result for equation (3.3). Note that if J is a
semimartingale, then equation (3.3) can be put into the form of equation (3.1). We shall

restrict ourselves to the case where J is a semimartingale in this paper.

Letting the initial condition be = € R%, we can write X (t,w, ) for the solution

t
(3.4) X, =z+ / f(X,)odz,.
0

The flow of the stochastic differential equation (3.4) is the function ¢ — X(t,w,z),
which can be considered as a mapping from R? — R? for (¢,w) fixed, or as a mapping from
R? — D?, where D? denotes the space of cadlag functions from R, to R?, equipped with

the topology of uniform convergence on compacts, for w fixed.

Theorem 3.4 Let f and f'f be globally Lipschitz. Then the flow z — X(-,w, z) from

R? to D? is continuous in the topology of uniform convergence on compacts.

Proof: We can express equation (3.4) in the equivalent form (3.2). Since f and f'f are
globally Lipschitz and k is process Lipschitz, Theorem 3.4 is a special case of Theorem V.37
in Protter [14, p. 246]. O

We henceforth consider the flow of equation (3.4) as a function from R? to R?, for each
fixed (t,w). Let ¥ denote the flow: that is, ¥ : R? — R? is given by ¥,(z) = X(z,t,w)
for fixed (t,w), where X is the solution of equation (3.4).

For a semimartingale Z with Zy =0, let Z = N + A be a decomposition into a local
martingale N and an adapted, cadlag process A with paths of finite variation on compacts,

and Ny = A9 = 0. For 1 < p < oo define
o0V, ) = IV, ML+ [ Ao,

where || - ||z denotes the L? norm with respect to the underlying probability measure P,
and [ |dA,| denotes the total variation of the paths of A, w by w. Next define

12l = 3uf (N, 4),
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where the infimum is taken over all decompositions Z = N + A. We will be especially
interested in the > norm. Note that if || Z||»~ < ¢, then the jumps of each component
of Z are bounded by e.

For a given € > 0, and Z = (Z',...,Z™), we can find stopping times 0 = Ty < T} <
T3 < ... tending a.s. to oo such that

Z™ = (2°)5 — (2°)5-

has an H* norm less than €, 1 < & < m. (See Theorem V.5, p. 192 of Protter [14].) The
above observation allows us to first consider semimartingale differentials with small H®

norm.

Let X!(z) denote the solution of

¢
(3.1) | X =a:+/ f(Xs)odZ,
0
where the equation has driving semimartingales Z*J = (Z*)T~ — (Z*)Ti-1. Qutside of
the interval (Tj_1, T;) the solution is:

z for t < Tj,

X{(z) = {

X%j_ for t > T;

We next define the linkage operators H7 : let y = y(t,z) be the solution of

dy

= = JW®)AZ; y(0) ==

and define HY(z) = y(1,z).

The next lemma is classical:

Lemma 3.5 Let f be C*® with all derivatives bounded. Then H7 is a.s. a C® diffeomor-
phism of R¢.

Next we have the obvious result:
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Theorem 3.6 The solution X of

(3.1) X, =z+ / £(X,) 0 dZ,
0

is equal to, for T; <t < Tjyq:
Xi(2) = X[ (2j4),

where
To4+ =T

21 = X} _(2), 214 = H'(e1-)

Tj— =Xt _(2(j-1)+); Tj+ = H(z;-).

Theorem 3.7 Let f be C* with all derivatives bounded. The flow ¥ : z —» Xi(z,w)
of the solution X of

3.1) Xi=o+ /Ot £(X,) o0 dZ,
is a diffeomorphism if the collection
z — X! (z,w)
are diffeomorphisms.
Proof: By Theorem 3.6, the solution X of (3.1) can be constructed by composition of the
functions X7 and the linkage operators H’. But the linkage operators are diffeomorphisms

by Lemma 3.5, and since the composition of diffeomorphisms is a diffeomorphism, the

theorem is proved. O

To show the functions z — X7 (z,w) are diffeomorphisms we are able to use the

results of Section 10 of Chapter V of Protter [14].

Theorem 3.8 Let f, f'f be C*® with all derivatives bounded, and Z = (Z',...,Z™) be

semimartingales, Z, = 0, and let X be the solution of

(3.1) X, = :1:+/ £(X,) o0 dZ,.
0
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The flow ¥ is a diffeomorphism of R? if ||Z||3e < € for ¢ > 0 sufficiently small.

Proof: We rewrite the equation (3.1) in the form (3.2). Equation (3.2) is in the classical
form with process Lipschitz, smooth coefficients. We then invoke Hadamard’s theorem
(Theorem 59, p. 275), along with Theorem 62 (p. 279) and Theorem 64 (p. 281) of Protter
[14] to deduce the result. O

Combining Theorems 3.7 and 3.8, we have:

Theorem 3.9 Let f be C* with all derivatives of f and f' f bounded. Let Z =
(2%,...,Z™) be a vector of semimartingales. Then the flow ¥ : z — Xi(z,w) of the

solution X of .
Xt::c-i-/ f(Xs)odZ,
0

is a diffeomorphism of R¢.

§4. A Change of Variable Formula and Manifold-Valued solutions

One could argue that even the Stratonovich integral for Brownian motion should
not be called an “integral”, since it does not satisfy a minimally acceptable “dominated
convergence theorem”, as does — for example — the semimartingale “It6-type” integral.
However our “integral” is even less of an integral than the Meyer-Stratonovich integral,

since it is only defined for integrands which are solutions of stochastic differential equations.

Nevertheless there are circumstances under which we can establish a change of vari-

ables formula. Let X denote a solution of our equation:
t
(41) Xt = Xo + / f(Xs) o dZs.
0
We will establish for g € C*(R?; R¥) that we can define an integral

t t
/g(X,)odZ,:/ 9i(X,) 0 dZ}
0 0

for ¢ > 0, which we call the Stratonovich integral of 9(X) with respect to Z. (Note
that this definition is not consistent with that of Meyer [13] and Protter [14], when Z
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has jumps; however it agrees with the integral originally proposed by Stratonovich for
Brownian motion. Also all generalizations of the Stratonovich integral agree when Z is

continuous.)

Throughout this section {Z;} shall denote a given k dimensional semimartingale. For
d € N and f € C'(R%R?), we shall say that the d-dimensional process X belongs to

£4(Z, f) if there exists a d-dimensional Fj-measurable random vector X, such that:

t t
X, =Xo+ [ f )2+ 3 [ 7500, 2

+ Y {e(fAZy, Xo) = Xoo — f(Xo—)AZ,)
0<s<t

Definition 4.1 Let d € N, X € £%(Z, f) and g € C'(R%;R*). We define the Stratonovich
integral of the row vector g(X) with respect to Z as follows:

/Og(Xs)OdZ.9=/o g(Xs—)dZs
+%Tr /0 §'(X)d(Z, ZIEf(X,)!
+ 3 ([ op(raZ, Ko w) - (X, )awAZ,
0<s<t V0
O

Let us now comment on that definition. The first two terms on the right side of the
above formula should be clear from the usual definition of Stratonovich integrals. However,
the last term merits some comments. First of all, note that each term in the sum is of the

order of [AZ,|?, so that the sum converges. Furthermore that expression tells us that:

a([ axi)o dze)i= | stoazs, X w)aniaz,

This formula can be interpreted as follows. At each jump time of Z, we open a unit length
interval of “fictitious time”, over which the integrand varies continuously from 9(X:-)
to g(X:), and the jump of the integral equals the jump of the driving semimartingale
multiplied by the mean of g(z) along the curve joining X;_ to X.
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We can now state and prove the associated change of variable formula:

Proposition 4.2 Let de N, f € CY(R4;R%*), X € £%4(Z,f), and ¥ € C%*(R%). We then
have:

(X)) = U(Xo) + /t U'(X,)F(X,) 0dZ,,t >0

Proof: We know that X is a semimartingale and that:

dX¢ = f(X¢-)dZ: + %flf(Xt)d[Z, Z)+
+ Z {p(AZf, Xs-) — X, — f(Xs-)AZ,);

0<s<t

dlX, X]; = f(Xe-)d[Z, Z]$ f(X:-);
AXt = (,O(Ath, Xt_) - Xt._.

We plug these expressions into the Itd formula:

t it
¥(X,) = T(Xo) + / V(X, )dX, + 5 Tr / V(X,)d[X, X]+
0 0

+ D (U(Xom + AX,) — ¥(X,-) — U'(X,_)AX,)

0<s<t

It is then easy to check that this expression coincides with

¥(Xo) + / WX NF(X,) o dz,,

with the help of Definition 4.1. 0

Let X denote the unique solution of equation
t
Xt=X0+/ f(Xs)odZ,, t>0
0

where f € C1(R%;R*), f and f'f being locally Lipschitz.
Let now M be a C? manifold without boundary embedded in R?, and assume that
fi(z) eT,M, zeM, 1<j<k
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ie. {fj(z),r € M}1<j<k are vector fields over M. It is then intuitively clear that, starting
on M, the solution X should stay on M. Indeed, between jumps, it obeys a continuous

Stratonovich differential equation, and
T — p(fAZ,,z)

maps M onto M. However, since there can be infinitely many jumps in a compact time

interval, the above argument is not sufficient.

Suppose that the dimension of M is £ < d. Locally, one can find a C? chart p s.t.
¢1(2),...,pe(x) are coordinates on M, and @p4y(z) = ... = pa(z) = 0 if and only if |
z € M. It then follows from Proposition 4.2, by using the same argument as for ODE’s
(see, for example, Hirsch [5], pp. 149-152):

Proposition 4.3 Let M be a C? manifold without boundary embedded in R¢, and
suppose that {f;(z);z € M}1<j<k are vector fields over M. Then P(Xo € M) = 1 implies
that P(X; € M, t > 0) = 1. O

§5. Strong Markov Property

In the usual theory of stochastic differential equations, if Z = (Z%,...,2™) is a
vector of Lévy processes (i.e., processes with stationary and independent increments), and

if f: RY — R¥*™ is Lipschitz, then the solution

t
(5.1) X, = Xo + / f(X,_)dZ,
0

is strong Markov (see Protter [14, p. 238]). Recently the converse has been shown: Suppose
f never vanishes and let X denote the solution with initial condition X, = z. If the
processes X are time homogeneous Markov with the same transition semigroup for all z,
then Z is a Lévy process (see Jacod-Protter [4]). We have the same Markov property for

solutions with our Stratonovich-type differentials.

Theorem 5.1 Let f and f'f be globally Lipschitz, and Z = (22,.. ., Z™) be a vector of

Lévy processes. Then the solution X of
t
(5.2) Xe=Xo + / f(X.) 0 dZ,
0
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is strong Markov if X is independent of (Z;):>o.

Proof: As in section three, we rewrite equation (5.2) as:
t
(5.3) | Xe=Xo + / F(Xs-)dZ,
0
1 t
+3 [ £ixaz, 21
0

t
+ / h(s, Xa)d[Z, Z]"
0

Note that [Z, Z]{ = at for some constant a because Z is a vector of Lévy processes (see,
e.g., Theorem V.33 of Protter [14, p. 239]); thus [Z, Z]° is trivially also a Lévy process.
One easily verifies that [Z, Z)7 is also a Lévy process. Thus equation (5.3) falls within the
“classical” province, where the equation is driven by Lévy semimartingales. The coefficients
f and f'f are Lipschitz, and k is process Lipschitz. There is one technical point: for fixed
z, h(s,w, z) is not predictable; it is optional. Moreover for fixed z it does not map caglad
(left continuous with right limits) processes into itself. However the differential for h,
d[Z,Z)3, is an increasing, finite variation process, and thus the established theory trivially

extends to this case.

Adopting the framework of Cinlar-Jacod-Protter-Sharpe [1], we note that the coeffi-
cients f, f'f, and h are homogeneous in the sense of [1]; see page 214. (The coefficients f

and f'f, being deterministic, are of course trivially homogeneous.)

The result now follows by a straightforward combination of the technique used to
prove Theorem V.32 of Protter [14, p. 288] (where the coefficients are non-random), and
the technique used to prove Theorem 8.11 of Cinlar-Jacod-Protter-Sharpe [1, p. 215], where

the coefficients are homogeneous. O

§6. “Wong—Zakai” Type Approximations by Continuous Differentials

In 1965 Wong and Zakai [15] approximated the paths of Brownian motion with smooth
processes, and they showed that the solutions of the corresponding ordinary differential
equations converged to the solution of a Stratonovich-type stochastic differential equation,
and not to the solution of an Ité-type equation. Their result has undergone many gener-

alizations, culminating in Kurtz—Protter [7], where the Brownian differentials are replaced
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by general semimartingales. In Kurtz-Protter [7], however, and in all other treatments in-
volving semimartingales with jumps, the approximating differentials must also have Jjumps,
since convergence is in the Skorohod topology; and the limit of continuous approximants in -
either the uniform or Skorohod topologies must be continuous. Here we approximate the
general semimartingale differentials with continuous approximants, even though the origi-
nal semimartingale differentials may have jumps. The result is that the limiting equation
is that of our new type of Stratonovich integral. This gives a justification for the use of
our integral when one is modelling very sudden, sharp changes in an essentially continuous

system.

For simplicity we consider here the case where Z is a one dimensional, given semi-
martingale. A generalization to systems of equations driven by vectors of semimartingales

is possible with appropriate assumptions.

For the given (and fixed) semimartingale, we define approximations by:

1
(6.1) Zk = 1 / Z,ds
h Jin

for h > 0. Then Z* is adapted, continuous, and it is of finite variation on compacts.

Moreover }lm% Zt =2, as. eacht>0.
h>0

For given and fixed f:R — R that is continuously differentiable, we let X } denote the

unique solution of:
t
(6.2) Xt =Xo+ / f(XM)dzk.
0
We want to show that X} converges to X, in probability, each ¢ > 0, where

t
(6.3) Xt = X() +/ f(Xs) o dZs.
0

We will use a method involving changes of time. Our new time scale will allow us to
introduce the “fictitious time” where the solution follows the vector field f to form the
jump. Let for ¢t > 0:

[2,2)¢ = Z (AZ,)? < o a.s.,

0<s<t
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and [Z, Z]° = (Z,Z] — [Z, Z]*. The process [Z, Z]? is the purely discontinuous part of the
quadratic variation process [Z, Z] of Z. We define:

(6.3) )= / (12,218 + 5)ds.

Then 7 is strictly increasing (since [Z, Z]¢ is increasing), continuous, and adapted. We
also define
70(t) = [Z, Z];i +1,

which is also strictly increasing and adapted, although not continuous. Note that }lm% T(t) =
h>0

Yo(t—) a.s.

We define the continuous inverses
vi 1 (t) = inf{u > 0: v (u) > t}.

Then v, 1(t) is a stopping time for each ¢, it is continuous, and it is strictly increasing for

each h > 0. We next define

(6.4) Vit =2zk

Yr l(t).
The process V* is continuous and it has paths of finite variation on compacts, since Z"*

does. We next define Y* to be the unique solution of

t
(6.5) Vh=Xot [ frRavl.
0
Note that
h __ h
(6.6) v} =xk,,

by Lebesgue’s change of time formula, where X* is defined in (6.2). We next establish

several preliminary results.

Lemma 6.1 lim i 1(t) = 75 1(2), uniformly.
h>0

Proof: Since 7x(t) < 70(t) < va(t + h), it follows that v, '(t) — h < v5 () < vy 1(t), and

the uniform convergence follows as well. O
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We next want to find the limit of the processes V*. Towards this end define

m(t) = sup{s: 75 (s) < 7 '(¢)}
n2(t) = inf{u: v5 1(u) > 75 ()},

and
67 W 2 i m(t) = ma(?)
. t = t—7; (%) na(t)—t .
Zys1 () (m(t)—lnl(t)) + 21— (nz(:)—m(t)) if m(t) # m2(2)-

Note that 7;(¢) < 72(t) always and that Yo 1(s) is constant on [n1(%),72(¢)]. We can
intuitively interpret V° as the semimartingale Z time—changed according to 7, !, except
when Z jumps. When Z jumps we add “imaginary” time intervals [m1(2), n2(2)], of length
of order (AZ)?; we add them at the times of the jumps of Z. During these intervals

Z is made continuous by linear interpolation. Note that if Y |AZ,| < oo a.s., each
0<s<t

t > 0, then it is clear that V? can be interpreted as a semimartingale. However since it

is possible to have ] |AZ,| = 00 a.s., every ¢ > 0, these linear interpolations can have
0<s<t

infinite length even on compact time intervals, and V° need not be a semimartingale. In

all cases however V? is a continuous process adapted to the filtration G; = F ~1(4), because

lim 30(75™(8) ~ ) = m(¢) and Jim 70(55" () + b)) = ma(). "

Lemma 6.2 }llII% V* = V0, uniformly on bounded intervals.
h>0

Proof: Note that V* = Z -,:-1 (¢ 3s defined in (6.4), and V° is given by (6.7). By Lemma
h

6.1 we have ’Ein%] ¥ 1) = 4571 (t), hence if 1 (£) = n(¢), we have ,llirrtl) Vit = V2, since v;(2)

is a continuity point of Z. Thus we assume 7;(t) # 72(t).

Next observe that

d h
(6.8) —y; 1 (t) = - y
dt [Z, Z]7;1 0" [Z, Z]7;1 wn Th
and so
(6.9) don_ Zy1() = Ly () -n
3 t S— d _ d -
dt 2,210~ (221 T R
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Therefore we have

Zrpy = Zr
’lli_lﬁ) (%‘/th) Yo (t) Yo (t)

T om@)-m@)
which is the derivative of V) in [5:1(t), n2(#)], and which implies that ’%in%) V= V? when
m(t) # n2(t). Since it is easy to see that for £ > 0, there exists a § > 0 such that for

|s —t| < 6, sup [V} — V}}| < e, we deduce the uniform convergence. O
h<ho

Before continuing we need to introduce a concept from Kurtz—Protter [8].

Definition: A seqﬁence of semimartingales Z™ is said to be good in probability if whenever
(H™,Z™) converges in probability to (H,Z) in the Skorohod topology, where H", H are
cadlag, adapted; then Z is a semimartingale and Jo H?_dZ™ converges in probability in
the Skorohod topology to [ H,_dZ,.

A necessary and sufficient condition for a sequence of semimartingales Z" to be good
was obtained in Kurtz-Protter [7,8]: let hs(r) = (1 — §/r)*, and Js: D[0, 00) — DI0, 00)
by
Ts(z)(t) = Z hs(|Azs|) Az,

0<s<t
and

Z™ = 7" — J5(Z™).

Then Z™® has jumps bounded by §, and let
Zn,6 — Mn,ﬁ +An,6

be any decomposition of Z™? into a local martingale M™® and an adapted, cadlag, finite

variation process A™°. The condition is that there exists such a decomposition such that:

(*) For each o > 0, there exist stopping times T such that P(T* < &) < 1/a and
tATY
sup B (™, My + |dA:’6|} < oo.
n 0

We next define

(6.10) Ut =V = Z. 1y

0
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Note that by Lemma 6.2 we have

lim Uk =v? - Z = (s

Lemma 6.3 The sequence of semimartingales fot UkdU? is good in probability, and

moreover

t
1
h h 0 2
/0 Utduk = §{(v; ~Z1p) —[Z,z]%_l(t)}.

Proof: By definition

i 11
h h _ h h
/0 Utdy! _/0 (Ve = Z -3V = 2,1,

and since (Z ey 3))920 is fixed, it is enough to study

¢
h h
[ 0=z av
Using our expression (6.9) for the derivative of V*, we have

Zy3(s) = Loy (s)=n

h

- [Za Z]

t
/ Vs = Z,-1(,) . ~ ds
0 S R TS i-n TR

ds

1 Y ()
/t (E N ay—n Zr T = Zm,‘l(s)) (2200 - Z,e0-n)
0

d _ d
[Z’ Z]‘Y;l(s) [Z’ Z]‘Y;l(s)—h + h

and letting u = v; (s), we have (using (6.8)):

(1]

-Jo h

U.

It is easy to see that if a sequence of semimartingales (Z™),,>; defined on the same space is
good for one probability measure P, then it is also good for any other probability Q equiv-
alent to P, because if ) << P, then convergence in P-probability implies convergence in

Q-probability. Thus without loss of generality, by changing to an equivalent probability
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measure if necessary, we can assume that Z is in H?%; that is, Z has a canonical decomposi-
2
tion Z = M + A, where F {[M Ml + fot |dAs |} < 00, for any finite time ¢. By stopping,

we can further assume that for some T < 0o, Z; = Ziar. Therefore

-1
. {/'r;. D (5 Jucn Zsd8 = Z1(4, () Zu = Zu—)| du}

0 h

oo (L [¥ _
(6 11) < E / (h fu——h sts Z‘YO 1(./;.(14))) / (Z u h)2 1/2
T 0 h
1/2
o0 Sup (Za - Zt)2 . ) 1/2
<E / u=h<et<u o E { / (Zu — Zu—s) du}
0 h A 5

where we have used that u — kb < 75! (y4(u)) < u, which follows from the definition of

75 '(t) together with the observation that ~x(u) > 4o(u — h). Consider the first term on
the right above. Using Doob’s maximal quadratic inequality for martingales:

sup (Zs — Z;)? 1/2

*° u—h<s,t<u
E /0 7 du

32/ %E{ sup (Ms—Ms_h)z} du
0

u—h<s<u
o0 1 u
42 / ZE{(|Alu — [Alu-s)?} du  (where |4l = / IdAL|),
0 0

*1

<8 / T EB{IM, M) — (M, Mluos} du +2 / LE((|Al — [Alu-s)?} du,

58/0oo 2 EB{[2, Z)u ~ |2, Z]usn} du+2/0°° %E{(/ﬂ_h |dA3|)2} du,

with the last inequality holding because E{[M, M],} < E{[Z, Z];} for the canonical de-
composition (see Protter [14, p. 136]) and analogous inequalities hold for the increments.
However since E{[Z,Z];} and E{( fot |dA,|)?} are increasing functions, their derivatives
exist a.e. (dt). Therefore the first term on the right side of (6.11) is bounded in h; analo-
gously we have the second term bounded in k. We conclude that () is satisfied; hence we

have goodness.
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To identify the limit of [ U*dU}, we use integration by parts:

t
1
[ vkavt = St -12,2),01),
and by the definition of U" (see (6.10)),

we have lim (Uky? = lim (VF - Z,-19)’

= (Vto - Z'yo_l(t))z

by Lemma 6.2. O

For the remaining results we need to use the concept of the topology of convergence
of measure, popularized by Meyer and Zheng. For relevant definitions and results we refer

the reader to Kurtz [6].

Lemma 6.4 Using the Meyer-Zheng topology of convergence in measure, the sequence

fot f(YF)dV} is relatively compact, for convergence in probability.
Proof: By the definition of U} = V* — Z__. .., we have
¢ ¢ Yo (?)

t t t
| redavy = [z g, + | s

since Z,-1(,) is a fixed semimartingale it easily follows from Theorem 5.8 in Kurtz [6]
that [ f(Y;h)dZ%q(s) is relatively compact. Thus, it suffices to show that fot F(Y)dU? is

relatively compact. Using integration by parts, we have

/ FYRUP = FEPU - / U YRy
0 0
- [f(Yh)a Uh]t-

However Y* is continuous and of finite variation, and since f is C', so also is f(Y'*);

therefore [f(Y'?), U*] = 0. Hence

t t
(6.12) /0 FYMTr = FvUE - /0 UR (Y)Y,
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and considering the last term in (6.12) we have:

t t t
h h h __ h h h h h
| otrehart = [Coks ez, + [ vtrsema:

t t
= [0t s sz oy + [ seehutant,
and therefore, since U*dU™ is good, we have relative compactness of this term.

Next consider the first term on the right side of (6.12). We have
FYMUE = FYHVE - V) + fFH R - 2.1 (1)
Now f(Y*)(Vi* — V?) converges to zero and hence it is relatively compact. It remains to
consider f(}’th)(l/'to—Z%-1(t)). Let Uy = VtO—Z,yo-1(t). Note that U; = 0 unless 11 (2) # n2(2).

If 91(¢) # n2(t), then

0 t—m(t) n2(t) — ¢
=WV -2 1, =2 1 ——— 4y YT 5
e K O R U r ey Rt

. . £)—t t—n1(t .
and replacing _Z‘Yo_l(t) with _Z‘Yo—l( N (nzr(’:)(—)m o+ nz(t)n—lv(n)( t)>, this becomes

n2(t) — ¢
6.13 U=—-AZ -y, —=2 2~
(619 TR0 B -m®
Therefore if s,t are such that |s — t| < é:

[F(U: = F U

n2(t) — ¢
< (YMAZ -, 2 — () Um0 ()

—. YMAZ . M 11, (s .
%) %o () y(s) — my(s) Ml »(s)l

na(t
< If(YAZ -, _m =t Lna(9),m2(2) (2)
o W ma(t) —m(t)

k n2(t) —
—f()AZ, -y n_(t)—n_(t—) s (8),m2(8))(5)Lima (2),ma(8) (B)

n2(t) —s
HFVMAZ 1) = —s 110 (0,120 (D) Las () st (5)

n2(t) — m(t)
- f¥AZ -, % ni(s),ma(s)) (S)]
(6.14) = In(t,s) + Ju(t, 5).
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For an interval I and function « let w(a;I) = sup |a(s) — a(t)|, and let
s,te

wn(a,8) = sup{w(e;[t,t +0]):0 <t <t+60 <N},

for § > 0 and N an integer. Then by the Arzela-Ascoli theorem a subset A of C(R) is
relatively compact locally uniformly if (i) sup |(0)| < oo, and (ii) for all N, }’im SUP4e A
a€A gy

#>0
wn(a,8) = 0. We will use this criterion on I4(t,s) and Ji(t,s). Consider for example

In(t,s) of (6.14) above. For our given §, we can choose a partition {¢;} such that ¢;11—t; > §

and
(6.15) max w(Z(w); [ti,ti+1)) < .
Then
|AZ '1(t)f(Yth)
|Ih(t’ s)l < 172(7;) — "Il(t) 1[711 (t),ﬂz(t))(t)|n2(t) —-t- (772(t) - 3)1[111(t),7)2(t))(3)|
< Ce,

where the last inequality follows since the jumps are bounded by the choice of the partition
in (6.15). Analogous arguments yield that the Arzela-Ascoli criterion holds for Jy(t,s) as
well. O

Theorem 6.5 Let Z be a given semimartingale, Z} = %ftt_h Zsds for h > 0, and

t
Xt =Xo+ / f(Xhdz?
0
t
(6.16) Xy = Xo + / f(X,) 0 dZ,.
0

Then }llirr%) X} = X, each t > 0, with convergence in probability, except possibly for a

countable set of t’s.
Proof: Recalling the definitions (6.4), (6.5) and (6.6), let V;* = Z»’;‘l(t)’ and
h

t
Y = Xo + / f¥yave
0

and Y = Xt

ARG
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Consider the terms fot FYHavk:

t t t
[ ramave = [ 10z + [ sk

(where U" is defined in (6.10)). Consider
t t t
| serhavt = sebyod - [0bs 5wz g, - [ Ubs SaDL,

However fot Uk f(YdU? = fot f' f(YHURJU?, and since UtdU? is good, using Lemma
6.4, Theorem 2.2 of Kurtz-Protter [7], and the relative compactness in the topology of
convergence in measure of fot F(YH)dV}, we conclude that any limit point of the sequence

(Y'*) satisfies

t t
610 Ye=Xo+ [ FLZ 0+ SOV - [ USSR

4
B %/0 Ff(Yo)dU; = (2, 2] 72(,)-

Note that Y is continuous, and that U? is a semimartingale by the goodness of U*dU™"
g g

even though U need not be: the function f(z) = 1/ is not the difference of two convexes.)

Let us study equation (6.17). Note that U, is zero unless 1;1(¢) # n2(t); in this case
the jump has size —AZ ()" Therefore

t
o RO S AT AN

0<s<t

and so equation (6.17) simplifies to:

t
(6.18) Vo= Xot [ FVOZ 50 + FXOV:

1 [t » 1 [t .
‘Eﬂfﬂ“““+ilfﬂ%”WJ%ww
Further analyzing the process U, we recall from (6.13) that

n2(t) — ¢
=-AZ_- —_—1 1).
U, W OR@ =) mOm®)
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Therefore when ¢ € [11(2),72(%)), we have:

na2(t) —t

(6.19) Yo =Yoo (W 0)AZ, 52 — f(Vu(9)AZ,21 n2(t) — m(t)

' 2 772(t) — 38 s
" /[mm,t FINAZ 2 0) Gy e &

12(t) f(Y,)AZ _;

Since f(Ynl(t))AZ7;1(t) - {) W)_;% ds is of order (AZ%-1(t))2, we can sum the
1

terms (6.19) and then (6.18) becomes

1 1 t .
620)% = Xo+ [ fV)i 1+ 3 | riwaz, .,

12(70(s)) f(Y;)AZ

n / D dr— f(Y o )AZ, b
o<a<~/'zl(nz(t)){ mn(s) 12(70(5)) = m(%(s)) T o)

— 10

Since (Y*,V*) = (X :_1, Z ":_1) is relatively compact and converges to (Y, V), so also
13 h

is (X*,2 k) relatively compact in the topology of convergence in measure. Moreover

v (yn(t)) = t since 4, is continuous and strictly increasing; therefore (Y,::,V.:;) con-

verges to (Y, V), and applying this to (6.20) yields, except for possibly countably many
t:
Y.

Yo(2) 1 o(t) . .
Yo(t) = Xo +/0 f(Xa)dZ‘yo_l(S) + 5/0 f f(Ya)d[Z, Z].,o—l(s)

772(70(3)) f(YT)AZs
' > {/ 0() = mire(@) T I mae)AZs
0<s <y Hmaro(eyy) LM (0(e)) 12070 m1(7o

and applying a change of variables formula shows that X satisfies equation (6.16). |
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