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Abstract

The Hausdorff-Besicovich and Bouligand-Minkowski (box) dimensions §g and ég are
computed for a class of self-affine sets. Necessary and sufficient conditions are given for
6p = 0p; it is found that typically 65 # ép. The methods are largely probabilistic, with
certain exponential families of probability measures playing a prominent role.



1. Introduction

Let Si1,S52,...,Sr be contractions of R?, i.e., each S;:R? — R? has Lipschitz constant
< 1, the Lipschitz constant being defined as Lip (S;) = sup{|Siz — Siy|/|z —y|:z # y}. A
result of Hutchinson [Hu] states that there exists a unique nonempty compact subset A of
R? such that .
A= i—L—Jl Si(A);

we will refer to A as the limit set of the semigroup generated by Si,Ss,...,S,.. Many
interesting “fractal” sets arise in this manner, and questions concerning the Hausdorff-
Besicovich and Bouligand-Minkowski (box) dimensions §g and g of A are of considerable
interest (see [Ma] for definitions). We shall discuss a number of such questions in the
case where the contractions S; are affine mappings of a certain special type. (NOTE: For
similarities S;, 6y = ép and dg is the “similarity dimension”: see [Hu].)

Our interest stems from papers of Bedford [Be], McMullen [Mc], and Falconer [Fa).
McMullen studied the special case in which each S; has the form

Si(z) = ("’61 m0—1> zt (éc//:t)

where 1 <m < n,0 < k; <n,and 0 <¥¢; <m (k; and ¢; are integers); thus each S; maps .
the unit square onto an n™! x m™! rectangle R; contained in the unit square. He found
formulas for 6y and ép and discovered that §y = §p only in exceptional circumstances,
namely, when the number of R; in each “row” of the unit square with at least one R; is the
same (i.e.,V £ € {0,1,...,m} such that £ = £; for some 7, the number of i with £ = ¢; is
the same). Bedford found similar formulas (by entirely different methods) when the maps

S; have the form
nl 0 1 0 \* ki/n
5= (" ) (o 5) =+ ()

with certain other restrictions, so that A is the graph of a continuous function on [0, 1]
taking values in [0, 1]. Again, 6 = §p only in exceptional circumstances. Thus, the results
of Bedford and McMullen, in addition to providing explicit calculations of the HB and
BM dimensions, suggest that in such constructions it is atypical for the two dimensions
to be equal.

Falconer considers a far more general setup, in which
Si(z) = Tiz + a;

where T; is an arbitrary invertible matrix of norm < 31}- He does not, however, obtain a
formula for §y in each such case; instead, he shows that there is a constant § depending
on T1,T3,...,T, (but not ay,as,...,a,) such that for almost every choice of a1, ay, ..., a,
one has § = g = ép. This runs counter to the spirit of the Bedford/McMullen results, in
that it suggests g = dp is typical rather than exceptional for self-affine fractals.
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We shall consider a class of self-affine sets more general than those of McMullen but
less general than those of Falconer. Specifically, we will study the limit set A of the
semigroup generated by the mappings A;; given by

B | ai; 0 Cij ..
Al](x)—'(o bz)x-i_(d,)’ (i,j)Ej.
Here 7 = {(3,7):1 <t <mand1 < j < n;} is afinite index set. We assume 0 < a;; < b; <
1, for each pair (z,7), Z72,b; <1, and B3 ,a;; < 1for each i. Also,0<d; <dy <...<
dm <1 withdiy; —d; > b; and 1 —d,, > by, and for each 2,0 < ¢j1 < cip < ... < ¢jp; <1
with ¢;(j+1) — ¢ij = aij and 1 — ¢in; > ain;. These hypotheses guarantee that the open
rectangles

Rij = Ai;((0,1) x (0,1))
are pairwise disjoint subsets of (0,1) x (0,1) with edges parallel to the z- and y-axes, are
arranged in “rows” of height b;, and have height > width (see Figure 1).

We shall assume throughout the paper that |G| > 1 to avoid the trivial case in which
A consists of just a single point.

Figure 1
Our results about the limit set A are as follows:

(1) We determine the value of the Bouligand-Minkowski (box) dimension §p from the
parameters a;j,b;. Specifically, if p € R is the unique real such that ¥, = 1 then
6p = 6 is the unique real such that

m n; 6—
DY bfai~ P—1
=1 j=1 J



(2) We determine the Hausdorff-Besicovich dimension 6 from the parameters a;;, b;.
Specifically, we prove that

¥ X pij log pij

L) -I-quogq 1 - 1
Sepijlogai; T S\ Tgilogh ¥ T pijloga;
] L

]

6g = max

where the maximum is over all probability distributions {p;;} on the set J = {(z,7):¢ =
1,2,...,m;j = 1,2,...,n;} and ¢; = X;pi;. The expression in braces is the Hausdorff
dimension of the “iid” probability measure ¢ on A determined by {p;;} (sec. 3).

(3) We characterize those sets of parameters a;j,b; for which 6y = ép. In fact, we
prove that the following three conditions are equivalent:

(a) 8y = 6B;
(b) 0 < Hs4(A) < o0; and

(c) Zaff'rzl, Vi=1,...,m.
j

Here r is the unique real number such that ¥;b] = 1. This shows that §i = ép is highly
atypical. Moreover, it answers a problem posed in [Mc| (even in the special case considered
there): when is 0 < Hs, (A) < co? Observe that the collection of sets A considered by
Bedford and McMullen is countable; our results provide a smoothly parameterized family
of self-affine sets A with g # 6p.

Finally, observe that A is a repelling invariant set for a certain expansive (noninvert-
ible) map T: R? — RZ. T is any mapping which maps each R;; onto the square (0,1)x(0,1)
in such a way that T|R;; = Ai_jl. If the closed rectangles Eij are nonoverlapping then T
may be made C* (in this case A is a Cantor set). Our formula for the HB dimension
0g shows that dg is the maximum HB dimension of a T-invariant probability measure
supported by A (see, e.g., [Yo] for the definition). This leads one to wonder whether it
is generally true that the HB dimension of (say) a repelling, invariant, hyperbolic set in
a smooth dynamical system is the maximum HB dimension of an invariant probability
measure.

Definitions and Notation

If the closed rectangles R;; are nonoverlapping then A is a Cantor set homeomorphic in
a natural way to the sequence space 2 = JN. If, however, some of the R; ; have nonempty
intersection then A and 2 are no longer homeomorphic, but as will be seen there is a
natural continuous projection m:§2 — A which is at most 4 to 1. We will repeatedly
pass back and forth between ) and A; the reader should beware that there are occasional
subtleties in this when 7 is not 1 to 1.

We shall use the following notational conventions. Elements of 2 will always be
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represented by a small w, possibly with primes w’ or superscripts, and
)y wn = (tn,jn) € JT;
w' = (wy,wp,...), wp=(in,Jn) €T;

w(") = (U)§u)aw§u)7 .. ')’ w1(7,U) = (Z%u)’]f”bu)) € ‘7

w = (w1,ws,.

Let -
Z=UJk
k=1

be the set of finite sequences; elements of Z will always be represented by a small z,
possibly with primes or a superscript. The same convention regarding the entries of z will
be followed: e.g.,

z(u) = (zgu),zgu), s 7Z§cU))7Z1(zu) = (igzu)aj#)) €J.

Given w € Q and k = 1,2,..., define

A(w; k) = Ay j, 0 Aiyj, 0...0 Agy iy,
A(w; k) = A(w; E)(A),

R(w; k) = A(w; k)((0,1) x (0,1)),
R(w; k) = closure R(w; k),

Similarly, if z € Z is of length [ = £(z), define

A(z) = Aj 5, 0 Agyj, 0.0 Ay,

A(z) = A(2)(A),

R(z) = A(2)((0,1) x (0,1)),

R(z) = closure (R(2)),
Qz)={w € Qw, =2, YV1<n<I}

Note that if w € Q(z) then A(w;4(z)) = A(z), A(w;£(z)) = A(z), etc. Also, each R(z),
R(w; k) is an open rectangle, and

R(w; k)N A C Aw; k) C R(w; k)N A,
Afwi k4 1) C Aw; ),
R(w;k+1) C R(w; k),

k
height (R(w; k)) = 1I b;,,
v=1
k
width (R(w;k)) = I ai,j,-
v=1
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Since b; < 1 and a;; < 1, the diameter of R(w; k) shrinks to zero as k — oo, for any
w € Q. Consequently, Vw € Q

0 R(w;k) = {n(w)}

consists of a single point m(w) € A. This defines a map 7: Q — A. It is easily seen that =
is continuous, surjective, and at most 4 to 1 (see [Hul]).

Essential to the arguments of this paper will be certain sets which we will call ap-
prozimate squares. Analogous sets were defined in [Mc]. They will be used repeatedly in
calculations involving Hausdorff and box dimensions. Given w € Q and k € N, define

k
(1.1) Li(w) = max {nzo: IT b, < ﬁlaiuiv},
v=1 v=

where II9_, a;, ;, = 1 (convention); observe that as k — oo,k — Ly — oo because a;; < b;
for all ¢, 5. Define the approzimate square

(1.2) Bi(w) ={w' € Xi, =ty,v=1,...,kand j, = j,,v = 1,..., Ly(w)}.

Observe that each approximate square Bj(w) is a finite union of cylinder sets Q(z); and

that approximate squares are “nested”: i.e., for any two, say Bi(w) and By/(w'), either
Bi(w) N Bp(w") = @ or B(w) C By/(w') or By/(w') C Bi(w). In addition,

Bi(w)n A c m(Br(w)) C AN closure (Br(w))

where Bk(w) is an open rectangle in R? with sides parallel to the z- and y-axes, height
Ik_,b;, , and width Hfi(lw)aivju. (The rectangle By(w) is the intersection of the rectangle
R(w; Li(w)) with the horizontal strip of height II¥_, b;, containing R(w; k). See Figure 2.)
By (1.1),

L) iy
(1.3) 1< ﬁai:h < maxai_jl,
so the width/height ratios of the rectangles Bk(w) are bounded away from 0 and oo —
hence the term “approximate square”. Furthermore, observe that since 7(Bg(w)) contains
A(w; k), its diameter is at least the height of A(w;k)), which is height (A)IT5_,5; . It
follows that there are constants 0 < Cy < C3 < co such that Yw e Q, Vk> 1,

< diam (7(Bg(w)))
- Ik, b;

ty

(1.4) Cy

<Cy



Figure 2

Because of their nesting property, approximate squares and their 7-images are easier
to work with than balls in A. Observe that for any z € A and any r > 0 there is an
approximate square By (w) such that z € n(Bx(w)) and such that both the height and width
of the rectangle By(w) are between r and r(max a;; )(max b ). (Just take w € 771({z})
and k = max{k*:II¥_ b, > r}, and refer to (1.3).) Consequently, for any z € A and r > 0
the ball B(r,z) N A is contained in the union of (at most) four 7(Bx(w)), each with height
and width between r and r(max az-_jl (max b; ). Therefore, for any covering of A by balls
B(r,z) there is a covering by sets 7(By(w)) which is essentially just as efficient.

2. The Bouligand-Minkowski (Box) Dimension

In this section we calculate the Bouligand-Minkowski dimension 6§ of A. This is
defined as follows:

) log N(¢)
op =1 —_—
B = Sp loge=1"’

where N(¢) is the minimum number of squares of side £ needed to cover A (here and
throughout this section the term square means square with sides parallel to the coordinate
axes). We will begin by showing how to reduce the calculation of §5 to a counting problem
concerning approximate squares.

For € > 0 define

Fe=Uo{Br(w):w € Q and IIE_,b;, > e > kt1p; 3.

2.1 Lemma

i log | F¢]
ép =1 .
BN Toget



NOTE: Here |- | denotes cardinality.

PROOF: Clearly F. is a covering of {) by approximate squares for each £ > 0, because for
every w € Q there is a k > 0 so that TIX¥_, b;, > ¢ > II¥+1p, (recall that V3,0 < b; < 1).
Moreover, for each Bi(w) € F. the corresponding rectangle Bx(w) in R? has sides IT¥_, b;,
and I'Ifi(lw)aiu ;, between € and e(max b; ! )(max ai—jl). Hence F. determines a covering of A
by squares of side e(max b; ' )(max a;') (for each Bi(w) € F, blow up By (w) to a square).
Therefore, |F.| > N(e(max b;!)(max az-_jl)), which shows that

log | Fe|

60 < lim sup 1

To prove the reverse inequality it suffices to show that there is a constant C' < oo, not
depending on €, such that
|Fe| < CN(e) Ve>0.

For this we will show that for each ¢ > 0 there is a subset F. of F. such that F.is a
covering of Q by pairwise disjoint approximate squares, and such that

C* = sup | F.|/|Fe| < oo.

It will then follow that any square in R? of side ¢ can intersect at most four n(By(w))
with Bi(w) € F. (since the sets n(Bj(w)) are (essentially) the intersections of A with
nonoverlapping rectangles with sides > €), and hence that |F,| < 4N(e) and |F.| <
4(C*)N(e).

Let F. consist of those By(w) € F. such that By(w) is not properly contained in any
other By (w') € F.. The elements of F. are pairwise disjoint, because if two approximate
squares overlap then one is properly contained in the other. Moreover, since F; is a
covering of {2, so is Fo: every w € () is an element of some Bi(w) € F, so it must be an
element of a maximal By(w).

Each element of F. is properly contained in exactly one element of F.. Consider
Bi(w) € Fe; if By(w') C Br(w) for some By/(w') € F, then k < k', Lg(w) < L (w'), in =
i, foreach n =1,2,...,k, and j, = j;, foreachn =1,2,..., Lg(w). But since both By(w)
and By (w') are elements of F,

of_b;, >e >80,

M by > e > TE Sy,

M—yai,j, 2 M5oibi, > e,

Mo_iasj, > TM5_iby > e s,
where £ = Li(w) and #' = Ly/(w'). Consequently,

k' :
Oy_y1be > mingd;,

H£I=Z+1ai;’j:, Z (minijaij)(minibi)
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which implies

(K-k)+(' -0 <K
for a suitable K < oo (independent of Bi(w), Br(w'), and € > 0). Since By(w') was

obtained from By (w) by tacking on no more than K entries to (z1,12,...,i) and (J1, jz, . .
j2), it follows that there are no more than | J|¥ elements of F. contalned in any B (w) € .7-'
This proves that |F.| < |T|¥|F|. O

The set F. is a collection of approximate squares, each of which is uniquely specified
by a pair of finite sequences (¢1,%2,...,%k+1;J1,J2,- - -, Je+1) Subject to certain restrictions.
It will be easier to work with a modification F} of F,, defined by

f: = {(il,iza' "7ik+1;j1,j2a"- 1j£+1):(iuajll) € j Vi1 < v S £+ 1)
H,’jzlbiy >e> H,’fiibi,; and H£=1aiu,-,, >e> HHla,yh}.

2.2 Lemma

, log | 7|
ép = lim sup -
0 loge—

PROOF: Define
Fo={(1,02,. - ikg1501, 025 - -5 Jeg1): (o, Jw) €T V1<v <0414
E_.b;, >e> Tk, ;5 and
Hﬁ:la‘ivju 2€> H£+1a’lv]u}'
Clearly, F. is in one-to-one correspondence with F.. Moreover, for each f € FZ there is
a unique f' € F. such that f' < f,ie, k¥ =k, 0 < L3, =1, Vv =12...,k and

Jy =Jdv Yv=1,2,..., £ On the other hand, for each f' € F! there is at least one f € F*
such that f' < f. Hence, |F.| < |FZ|.

Suppose f' < f for some f' € F! and f € F*. Then

[
£ :
HV=£'+1aivju 2 E/Hll::lbzu Z mlnibi’
so
¢ —{' < K = max{n: (maxa;;)" > minb;}.

Consequently, there are at most | J|¥ elements f' € F! satisfying f’ < f for any f € Fr.

€

This proves that |FZ| < |J|¥|F.| for all € > 0. The result now follows from Lemma 2.1.
d

For e > 0 and ¢t € R define
g, = {Z € Z: HE(Z) -1 a;, j, >e> Hf;(:z_)laiujy};
€ = {(2172%"' azk-i-l):Hxlj:lbiu >e> Hzlfijibiy}a

H(t) = [He-¢l;
Fit)= 2 H@t+3ogh;,).
2€G, ¢



Recall that Z is the set of (nonempty) finite sequences with entries in G; for z € Z,£(2) is
the length of z and 2z, = (¢,,5,) for v =1,2,...,4(z). Observe that

(2.1) F(t) = |F-|,

because elements of F are obtained from elements of G, by tacking on 241,042y - ey LE4]
so that the appropriate inequalities are satisfied. Note that H(t) =0 V¢ < 0.
2.3 Lemma

Let r > 0 be the unique real number such that L7 b7 = 1. Then there exist constants
0<Ci <0y < oo such that

Cie™ < H(t) < Coe™ Vit > 0.

PROOF: Every element (41,12, ...,1x41) of He,e > 0, has at least one entry i;. Decompos-
ing H. into m disjoint subsets, one for each possible initial letter i, yields the functional
equation

H(t) = 3 H(t +logh:) + R(),
where
R(t)=|{ie {1 e{1,2,...,m}:t +logh; < 0}].

Observe that R(t) is bounded, piecewise continuous with finitely many discontinuities, and
has compact support in [0, c0). Also, R is strictly positive on [0, max;,log b71).

The functional equation for H may be transformed into a renewal equation ([Fe],, Ch.
11). Define H(t) = e"™ H(t) and R(t) = e~ " R(t); then
Ht) = % bTH(t +logb;) + R(t)
i=1
— [ (- s)u(ds) + Re)
s€{0,1]

where 4 is the probability distribution on (0,00) which puts mass b7 at —logh; V .
There are now two cases to consider: the arithmetic case, where logb7!,log bt ..., log b1
are contained in a discrete additive subgroup of R, and the nonarithmetic case. In the
nonarithmetic case, the Renewal Theorem ([Fe];, Ch. 11) implies that

lim H(t) = /0 " B(s)ds) / su(ds) > 0

since R is, clearly, directly Riemann integrable (recall that R has compact support and
only ﬁmtely many discontinuities). In the arithmetic case, the Renewal Theorem ([Fe];,
sec. XIII.10) implies that

lim H(ny) = :g)o R(n'y)//s,u(ds) >0

n—o0
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where vZ is the additive subgroup of R generated by {logh;*:i =1,2,...,m} (and v > 0).
Since H(t) is nondecreasing in t and is strictly positive on [0, c0), the result follows. [

2.4 Theorem

Let r > 0 be the unique real number such that X2 ,b7 =1, and let § > 0 be the unique real

number such that L7257, bla f] "=1. Then

ép =4.
PROOF: By (2.1) and Lemmas 2.1-2.2 it suffices to prove that

5= Lim 287

t—o0

Define
Gt)=0ift <0,

G(t) = gZ exp{rt}l’[[(z) b ift>0;
z€

e—t

then by Lemma 2.3 and the definition of F(¢), there exist constants 0 < C; < O3 < o
such that

G(t) is a sum over a collection of finite sequences z, each with a first entry 21 = (41, 71).
Breaking this sum into |J| disjoint sums, one for each possible value of (i1,71), gives the
functional equation

G(t)_( >, b{ a;; G(t + logaij) + R(t), t 2 0,
L2}

where R(t) is piecewise continuous with only finitely many d1scontinui~ties, R(t) > 0 for all
t € [0,max;;loga; 1), and R(t) = 0 for all t > maxloga .- Define G(t) = e ®*G(t) and

R(t) = e ' R(t); then the functional equation transcribes to

G(t) = G(t — s)u(ds) + R(t), t >0

[0,¢]
where 4 is the probability measure on (0, co) which puts mass b7a 6] "at —logas; V(i,7) €
J. By the same arguments as in the proof of Lemma 2.3 it follows that there exist
constants 0 < C] < Cj} < oo such that C] < G(t) < C), YVt > 0, and hence that
Cle®t < G(t) < Cje’t. By the preceding paragraph, therefore,
010' 6t < F(t) < CQC, 5t
from which it follows that t7!log F((t) — § as t — co.
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NOTE: The fact that 6 > 0 follows from our standing assumption that || > 2. Since
0 < b; <1and m > 1 we must have r > 0 in order that £2,b7 = 1. Since 0 < a;; < b; we
must have bTa;." > 1, so we can only have Ebeafj_r =1 with § > 0. O

1y

3. The Volume Lemma

In this section we obtain a lower bound for the Hausdorff-Besicovich dimension 8
of A, using the auxiliary notion of the Hausdorff dimension of a measure supported by A.

Recall ([Ma] ) that for a Borel subset K of R™ the §-dimensional Hausdorff measure of
K is defined by
Hs(K)=lm inf % (diam U)®
e—0 UeC(e) UelU

where C(¢) is the set of all open covers U of K whose elements U have diameters < . The
Hausdorff-Besicovich dimension of K is defined to be inf{§ > 0: Hs(K) < oo}.

Let p be a finite Borel measure on R¥. The Hausdorff dimension of y is defined by
HD(p) = inf{HD(Y):Y Borel and u(R*\Y) = 0}.
The following lemma is useful in determining HD(u). Its proof may be found in [Yo].

3.1 Lemma (The Volume Lemma)

If i ws a Borel probability measure on a Euclideon space and if there exists § > 0 such that

L L08A(B(r2)) _

, for p-ae.cz,
r—0 logr

then HD(u) = 6. Here B(r,z) denotes the ball of radius r centered at z.

Recall the mapping 7: Q — A defined in sec. 1. Since 7 is continuous, it is measurable
with respect to the Borel o-fields on A and Q respectively, and hence, given a Borel
probability measure y on 2, the set function defined by

(3.1) un\(E) = u(x"N(E)), E € B(A),

defines a Borel probability measure on A.

Let ¥ be the simplex defined by
L ={p=(pis)Gies)pij € [0,1] and ¥ jgl pij = 1}.
If p € X, then p defines a probability distribution on the set of indices J. For each p € T,

define a probability measure py on the Borel subsets of Q by requiring that for any z € Z,
the pp-measure of the cylinder set {2(z) be given by

£(2)
(3.2) 1p(Q(2)) = 10 pivs,s

12



where £(z) is the length of z. Note that (3.2) uniquely determines a Borel probability
measure on {), by Kolmogorov’s existence theorem (see [Bi]); up is the distribution of a
sequence of 1.i.d., J-valued random vectors X;, Xs,..., each of which has distribution p.
For each p € ¥ the measure pp induces (by (3.1)) a Borel probability measure on A, which
we will denote by fip (thus, fip = po7~1). Define, for any p € %,

D(p) = HD(ip);

observe that sup{D(p): p € £} is a lower bound for the Hausdorff dimension §5 of A. We
will ultimately prove (sec. 5) that this supremum in fact equals 85.

3.2 Proposition
For everyp € %,

El j_Z_sl pij log p;; é}nl g; log b; '51 g; log ¢;
(3.3) D(p) = = +1- == =

2 X Dij log aij 2 X pij log ai; | X g log b;

i=1j=1 i=1j=1 =1

(with the convention 0-log0 = 0), where

ng
g = ¥ Pij-
J=1

PROOF: Fix p € ¥ and let d denote the right hand side of (3.3). Write p = pp and
fi = fip = pon~!. By the Volume Lemma it suffices to prove that for i - a.e. z € A,

i 8AB:2) _

r—0 logr

We will argue that balls B(r, z) may be replaced by m-images of approximate squares in
the preceding formula. Recall (from sec. 1) that for any z € A and r > 0 the ball B(r,z)NA
is contained in the union of (at most) four 7(Bi(w)) each with height and width between
r and r(max ai—jl)(max b;'). Furthermore, if z € A and r > 0 then for any w € 7~ {z}
(recall |[x~!{z}| < 4) there is an approximate square By(w) such that 7(By(w)) C B(r,z)
and Cr < diam (7(By(w))) < r for a suitable constant C > 0 (independent of z,r,w), by
(1.4). Thus B(r,z) N A is bracketed by approximate squares of diameter on the order of
r. By (1.4), it therefore suffices to prove that

. logpu(Br(w))
3.4 ] SRR —d
(34) koo DE_ logh;,

for p — a.e. (w).
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But (3.4) is an elementary consequence of Kolmogorov’s strong law of large numbers

(SLLN). For any £ > 1 and w € Q,

(35) uee) = (0 ) (B a):

v=L(w)+1
By (1.3),
1 Li(w)
z 2 logbz,, by loga,-”-y — 0
v=1
and by SLLN,
1 % m
— 3 logbi, — X ¢ilogh;;
E 2
1 Lki(?w)l 2 3 il
a;, ;. — .+ log a;
Lk(UJ) J2 og viv i2h 2 lp] ga],
and
e S 5 pijlo
i 5, — Iy Iy
Tr(@) w2 O& Pi, 5, i=1j=1p] og Pij.

for p - a.e.(w). It follows from the first three of these that

Lk(w) 2 ¢; log b;
k

, M- ae(w),

) 1 :
zzljzlp] Oga]

and now by another (double) application of SLLN,

1 k m
—_— Py logg;, — ¥ g¢;loggq; .
k— Lk(w) v=Lp(w)+1 &4 i=1 %2089

Taking logs in (3.5) and applying the last three listed convergences one obtains (3.4). [

3.4 Proposition
There ezists a p* = (pf;)i,5eg € X, such that

(3.6) D(p*) = max D(p).
Furthermore any p* satisfying (3.6) must be an interior point of ¥ and have the form

p—1
(3.7) %_C%”<E%J G ed,

14



for some constants C,0, ) and p. The constants 8, X, p satisfy

T, B0 plilog pl; — LIL g log gf

0= &
Y, XL, p)logaij

)\ = g loggr

(38) Zmlqz logb
p= Emlqz ].Ogb
o E"‘ 2 p}jlogaij
where ¢f = X75L,pY;, 1=1,...,m

REMARK 1: Comparing the equations (3.8) for 6 and A with the formula (3.3) for D(p)
shows that ‘
0+ 2= max D(p).

REMARK 2: In certain special cases the maximum value of D(p),p € £, can be charac-
terized more explicitly. For exmaple, if there exists € (0,1) such that a?j = b; for every
(1,7) € J then maxs D(p) is the unique § > 0 such that

S“_, b‘sn" = 1.
=1

This is proved in Lemma 5.1 below. Observe that the cases considered in [Mc] are subsumed
by this.

PROOF: First observe that by (3.3), the function D:% — [0, 2], given by p — D(p) is
continuous. Since X is compact, the function D has a maximum. Let p* be a point in X
at which D attains its maximum. We claim that

(3.9) p* € int .

Once (3.9) has been proved a routine use of the Lagrange multipliers method shows that
p* must satisfy (3.7) for some constants C, 8, A and p and that 6, A, p must satisfy (3.8).

To complete the proof it remains to show (3.9). So assume p* € int ¥ and suppose
that pf,;, = 0. Choose p}, ; > 0. Such a p}, ; always exists since p* € Z. For 0 <& < pj, ;,

define p(®) by pgzo , pSfil =pjj, —€and pS]) = pj; for all other, z,;. Then p(e) is

certainly in ¥. We will show that for some ¢ >0, D(p(®) > D(p*).
Let

=¢

P - Em Zn. 1p1] ]'ngz]7
A* = ZiL, 2% pijlog aij,
P(e) = S, 3%, pf; log pfy)
and

Ale) = =, =™ pt? log ai;.
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Then, as ¢ | 0,

P(e) . p*
A(e) A’
On the other hand 4 [P
€
7 (A(e)) — 00, ase 0.
Hence the function € — P(e)/A(¢), is increasing in some interval (0,¢;) and so
P(e)  P*
_— > — 0 .
A(e)>A*’ <e<e
Next let .
Q" =XL,q loggf,
B* =37, 4! logb;,
=35m0 1og o)
Qe) =Eil1q;" logy;
and
B(e) = ST, log by,
where qgs) = Zﬁlpg),i =1,...,m. Then as above there exists ¢ > 0 such that

Q(s)[32€)~$J>Q*[%—%J, 0<e<es.

However then we have that

P(¢) 1 1
(e)y — — 2/ —_—
26 = 55 +90) 575 - 15
>+ @ |5 =D),  0<e<minfer,en)
T 5~ a-| = D), € < min{ey, &3},
by (3.3) and this contradicts the fact that D(p*) = maxpex D(p). 4d

Define p(d, A, p) € I, by defining p;;(8, A, p) to be the right-hand side of (3.7). Then
by the previous proposition, maxpes D(p) may be found by maximizing the function
d(9,A,p) = D(p(8, X, p)), for (8, p) in some compact subset of R3. (The compact set
over which d(6, A, p) is to be maximized is determined by (3.8).) Proposition 3.3 provides
a formula for d(f, A, p) and so maxpex D(p) is computable. As will be seen in section 5,
this number is in fact the Hausdorff dimension of A. Observe that, by definition 3.1, we
already have shown that the Hausdorff dimension of A satisfies

> = .
Su 2 max D(p) = maxd(6, A, p)

4. Comparison of §g with g
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In this section we show that 0 < Hj,(A) < oo iff g = §p, and give an easily checked
necessary and sufficient condition for g = ép in terms of the parameters a;; and b;.
Throughout this section we will write § rather than éy for the HB dimension of A. For
s > 0 we will write H, for s-dimensional Hausdorff measure.

4.1 Lemma

For any two distinct z,2' € J*, k € N,
(4.1) Hs(A(z) N A(2")) = 0.

NOTE: It follows that if 2,2’ € Z are distinct finite sequences such that 2z, # z/, for some
n < min(4(z),4(z')), then

(4.2) Hs(A(z) N A(z")) = 0.

For suppose £(z) < £(z'). Define z" = (21,23,...,7y,); then A(2) C A(2"). But Lemma
4.1 implies that Hs(A(z) N A(z")) = 0, since z # 2".

PROOF: Let S =[0,1] x [0,1] and let 0S5 be the boundary of S. Let Fy, Fy, F3, F be the
sides of 8S. We shall assume that there is no F; such that each R j» intersects F;. (If
this were so then A C F; and every nonempty intersection A(z) N A(z'), where z,2' € Z¥,
would consist of a single point, in which case (4.1) would reduce to a triviality.)

Now assume that A(z) N A(2') # @ for distinct 2,2’ € J*. Since z # ', the open
rectangles R(z) and R(z') do not intersect; since A(z) and A(z') are contained in the
closed rectangles R(z) and R(z'), respectively, R(z) and R(z') must meet in a single edge,
either vertical or horizontal. In either case A(2) N A(z") is contained in this edge. Now the
intersection of A(z) with this edge is precisely A(2)(A N F;) for.one of the four sides F;
of 85, and (recall) A(z) is an affine mapping. Consequently, to prove (4.1) it suffices to
prove that

Hs(ANE;)=0 Vi=1,2,3,4.
We shall prove this for F} = {(z,0):0 < z < 1}; the other three cases are similar.

Let A* be the limit set of the semigroup of similarity mappings of R generated by
Th,Ty,...,Ty,, defined by
Tj(z) =ajz+c1j, z€R

(recall the definitions of A;;, sec. 1). Then A* x {0} = AN Fy, so Hs(AN Fy) = Hs(A*).
Now A* is a self-similar set, so its Hausdorff-Besicovich dimension is the unique s > 0 such
that $71 a3, =1 (see [Hu)).

Consider the probability vector p € ¥ defined by

pij=ay; Yi=12,...,n,
pi; =0 Vi>1,;

note that ¢; = 1 and ¢; = 0 for ¢ > 1. Proposition 3.3 implies that D(p) = s. But p lies on
the boundary of X, because there is at least one pair (¢,7) € J such that > 1 (otherwise,
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every R; ; would intersect F1). Proposition 3.4 states that D attains its maximum only at
interior point(s) of ¥, and this maximum is < §. Hence

s<5.

which shows
0= Hs(A*) = Hs(AN F). O

4.2 Lemma

Let p be any probability vector in the interior of ¥, i.e., such that p;; > 0 for every
(4,7) € J. Then for any two distinct z,2' € J¥, any k > 1,

(4.3) Ap(A(z) N A(')) = 0.

NOTE: Again it follows that if 2,2’ € Z are distinct finite sequences such that z, # zJ, for
some n < min(4(z),4(z')), then

(A=) N A()) = 0.

This also implies that V z € Z,

(4.4) _ fip(A(2)) = pp((2)).

PROOF: Without loss of generality we may assume that 2z, = 2z, Vn < k—1and zx # 2,
since the sets A(z) are nested. There are two possibilities (assuming A(z) N A(z")) # 9D):
either R(z) and R(z') share a single horizontal edge, or they share a single vertical edge.
We shall only consider the first of these (the second is quite similar); in this case i, # i},
and we may assume i, = i, + 1.

Consider @ € = 1(A(z) N A(z')). It must either be that ik = i, in which case
in=m Yn >k, ori =i}, in which case 2, =1 VY n > k. Thus 77}(A(z) N A(2"))
consists entirely of sequences @ for which the coordinates @,,n > k, are all constrained
to lie in one of a finite collection of proper subsets of J. But p;; >0 V (z,5) € J; hence
the up-measure of any such constrained subset of  must be zero (e.g., by Kolmogorov’s

SLLN). _ d
4.3 Proposition

Let r be the unique real number such that ¥Xbla fJ "=1, and let p € & be the probability
vector defined by

(45) pij = bal;" ¥ (i,j) € J.
If
(4.6) 0 < Hs(A) <
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then

(4.7) D%ialT=1Vi=12,..,m,

(4.8) Dbl =1,

and the restriction Hs|A of §-dimensional Hausdorff measure to 6 is equivalent (mutually
absolutely continuous) to fip.

NOTE: In view of Th. 2.4 it follows from (4.7)~(4.8) that if 0 < Hs(A) < co then § = ép.

PROOF': The main step will be to show that (4.6) implies that H;|A is equivalent to fip. It
will then follow that D(p) = 6 and hence that p = p*, where p* is as in (3.7); reconciliation
of (4.5) with (3.7)—(3.8) will then require that (4.7) and (4.8) hold. So assume (4.6).

Consider first the special case considered in [Mc], specifically, a;; = n~! and b; = m™!

for all (z,7) € J. In this case p defined by (4.5) is just the uniform distribution on
J. Moreover, for all z,2/ € J* (and k > 1) the sets A(z) = A(z)(A) and A(Z') =
A(2')(A) are congruent, so they have the same Hjs-measure. By Lemma 4.1, if z # 2’ then
Hs(A(z) N A(2")) = 0; consequently, for each z € J¥,

_ Hs(A)

(A=) = T

But by Lemma 4.2, (cf. (4.4))
1
fip(A(2)) = pp(2(2)) = 77

since p is the uniform distribution on J. Now the sets A(z),2 € Z generate the o-algebra
of Borel subsets of A, so this proves that fip is in fact equal to the normalized é-dimensional
Hausdorff measure on A.

Unfortunately, this argument does not extend to the general case because in general
different A(z)’s will not be congruent. So instead we will use different A(z)’s which are
approximately similar. For each ¢ > 0 and w € 2 define

n(w,t) = min{n eN: I (b,_,,> > t} ;
v=1 a,-vjv

N = {(w1,wa, ..., Wn(u) ):w € QF.
Observe that N is a finite set of finite sequences z. For any two 2,2z’ € N; the sets A(z)
and A(z') are approximately similar (although they may differ greatly in size) because
the y-direction/z-direction contraction ratios for A(z) and A(z') are approximately the
same (both about #). More precisely, the affine map A(z')4(z)~! taking A(z) onto A(z")
is approximately a similarity; its z-direction and y-direction expansion factors are

£(2) £(z)

set

I ai,j, I b;,
v=1 a.n.d v=1
2(z') £(z") ’
I aij IT by
v=1 v=1

19



respectively, where £(z) and £(z') are the lengths of z and 2'. Since Hﬁ(___f)l(b,-” /ai,;,) and
Hﬁ(__fl)(big /ai ji) are both within a bounded factor of ¢, it follows that there are constants

0 < C; < C; < oo, independent of ¢, such that V z,2' € N}

Hs(A(2))/ Hs(A(='))
8 br o /mi0r ol

iy Jv p=1 Yi! 2! gl

Cl S S CZ-

By Lemmas 4.1-4.2 (see the notes following these lemmas) the overlaps A(z) N A(z') have
Hs- and jip-measure zero. Also, for each t > 0,A = Uzen, A(z), and by (4.4), V2" € Z,

Ap(A(z")) = IE bl

Hence, Vt>0and Vz €N,

Hs(A(2))/Hs(A)
- < Ca.
fip(A(z))

But the sets A(z), z € U;>oMNVt, generate the g-algebra of Borel subsets of A. Therefore, the

preceding inequalities imply that Hs|A and fip are mutually absolutely continuous, with
Radon-Nikodym derivative bounded away from 0 and co.

C: £

The preceding result implies that D(p)(= HD(fip)) = 6. For if § C A is any Borel set
such that jip(S) = 1 then 0 < Hs(S) < oo. But Prop. 3.3 also specifies D(p): comparing
(3.3) with the equation D(p) = 6 shows that

(4.9) 3 byilogyi =0
1=1
where o
Yi= X aj;"
i=1

Moreover, since p maximizes D(-), Prop. 3.4 implies that p = p* where p* satisfies (3.7)-
(3.8). Using (4.9) in the formula (3.8) for 8 shows that § = § —r and using (4.9) in the
formula (3.8) for A shows that A =r. Consequently, by (3.7),

bralyT = CWals 4™ ¥ (i,5) € 7,

et ¥

so Cy’~!' =1 Vi. Finally, the formula (3.8) for p shows that p <1, since 0 < a;j < bi <
1 V (i,7) € J, so i = v is independent of 7. Now, by (4.9), v = 1. This proves (4.7), and
(4.8) follows because r was chosen so that EZb{afj_r =1. a

4.4 Proposition
If there exists a constant § € R such that

ng P ’ i
Eaij=1 VZ=1,2,...,m
=1
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then § = ép and 0 < Hs(A) < oo.

PROOF: Let r be the unique real number such that X267 = 1. Then 2,27 a fj b =1,
so by Th. 2.3 § +r = ép. Definep € & by

sz_az] H (2 J)Ej

Recall the approximate square Bi(w) defined in (1.2), and recall that in computing
Hausdorff measures of A coverings by sets 7(Bx(w)) may be used in place of coverings by
open balls. By (1.3)~(1.4), there exist constants 0 < C] < €3 < cosuchthat Vk=1,2,..

and YVweQQ
o < dinm (x(By(@))"

= (L (@) bk —
(Hu=1 ai,,‘j,,) (Hu=1biu)

which implies .
, o diam (r(Br(w)))**" _

C) < — <G

' fip(m(Br(w))) ?

(since fip(m(Bi(w))) = pp(Br(w)) = T2a? - TIE_ 57, by (1.2) and (4.4)).

Now consider any covering {Fy, Fs,...} of A by sets F; of the form n(Bg(w)). By
the preceding inequality, together with the fact that fip is a probability measure on
A, Xdiam (Fn)o'*"" > C] > 0. Therefore, Hgy-(A) > 0.

Next let Fr = {Br(w):w € Q} be the collection of all k** generation approximate
squares; observe that each Fj is a (finite) covering of Q2. Recall that distinct approximate
squares are either disjoint or one is properly contained in the other. Let Gy = {B € F;: B
is not properly contained in any other B’ € Fi}; then Gy is a covering of Q2. For any
W(B) S ﬂ'gks

diam (7(B)) < Cyb*

where b = max(b1,bs,...,bm) < 1, by (1.4). By taking k large, we can make CobF
arbitrarily small. But Vk2>1

di Bt < ¢! fip(m(B)) < CL.
Beﬁgk iam (7(B))""" < C; Bezgk“”(”( )) < Cy

Thus
H9+T(A) < Cé < 0. O

4.5 Proposition
Let v be the unique real number such that X720 = 1. If 6 = ép then

(4.10) v E‘ a7 "=1Vi=12,
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PROOF": Since § = 6p, Th. 2.3 implies that 2, X7, ba fJ " = 1. Define v; = 2;-‘;1a5"

then XLblv; = 1 = Lb]. We will show that if v; 7é 1 for some 7, then for some ¢ > 0
Hs_o(A) < o0,
contradicting the fact that § = 8y is the Hausdorff-Besicovich dimension of A.
So assume that ; # 1 for some 7. For some 8 € [0, 1], define

‘P(G) = g 1'7':1 ‘.

Observe that ©(0) = (1) = 1 and that ¢"(6) = Z;b;7} ~?(log¥:)? > 0, since log 7; # 0 for
at least one :. Consequently,

0<p(d)<1l VEOe(0,1).

- Next, define for each § € [0,1] a probability vector p? € & by

pl; =bLal ™y )e(8), (5,5)€J.

Write pg and jig in place of upf and fipf. The measures py form a one-parameter expo-
nential family of probability measures on Q; the assumption that v; # 1 for some 7 assures
that ug and pe are distinct (in fact mutually singular) when 8 # ¢'. For any approximate
square Bi(w) (see (1.2)),

T 6= 17k 1-8
B f E, Le(w) (I _17i,)
/,Lg(Bk(LU)) - (19(9) <V1=Il blv) < ul;Il @iy jy HLk (w) . '

v=1 Ty

But by (1.3)—(1.4), there exist constants 0 < C] < €3 < oo such that for every £ =1,2,.

and every w € (,
diam (m(Bk(w)))’

(TT_bs,)" (Hf;gw)aivju)a—r <

C; < < Cy;

hence V@€ [0,1],

HLk (W),sz

(HU"l’Ylv ) o

We will use this inequality along with the fact that () < 1 V 8 € (0,1) to produce
efficient coverings of A by w-images of approximate squares.

Recall that the ratios a;;/b; € (0,1) for all (¢,7) € G. Hence, by (3.3), the ratios
Li(w)/k are bounded away from 0 and 1, at least for large k; i.e., there exist constants
0<8, <6 <lsuchthat VYw e Q and

(4.11) diam (m(Bx(w)))’ < Cap(8)* no(Bi(w))

1—91<11in meIE )<l1 sup£15]%£2§1—-92.

k—oo
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Now for any w € , it must be the case that

L2 i
(4.12) lim inf { vl T el} <1
k—oco (H =17iv)

or

k—oo

Li(w) . 1/k
Hu:l 71v } <1 .

4.13 lim inf <
9 (o

This may be seen by taking a sequence k1 < k2 < ... of integers such that, with £, =

Lkn(w)’
Lofkn—0€[l—61,1—6,],

6 T, logyi, — A < lim sup ksl log i, ,
—co
kr'Tiz, logyi, — lim sup kTS5, log i, ;
—co
one or the other of (4.12)—(4.13) will hold, depending on whether lim sup k~1Zk_, log~;,
is negative or nonnegative.

Since 0 < 62 < 61 < 1 it must be that p(#;) < 1 and ¢(62) < 1. Set b = mimi<i<m bi;

then 0 < b < 1 and there exists ¢ > 0 such that 5%¢ > ¢(§;) for : = 1 and 2. For.each ... ..

k=1,2,...let G; be the set consisting of those m(Bi(w)), w € Q, for which

Li(w
Hy;g )’qu < b—ek
1-6, —
(Hf=17i.,) '
or Le(w)
Hu;l 71.11 < —ck

(Hf:f?’i,,)l_ez -
and for which there is no w’' € \{w} such that Bi(w) is properly contained in Bi(w')
(recall that V w,w’ € , Bi(w) N Bi(w') = @ or one of Bi(w), Bx(w') is contained in the
other). By (4.12)-(4.13), U2 5 Gk is a covering of A for each N =1,2,....

Let w(Bg(w)) € Gk; by (1.4), diam (7(Bg(w)))™¢ < (C1b*)~¢. Consequently, by (4.11)
(recall that p(8;) < b3¢)

diam (7(Br(w)))’™* < Cb** g, (Be(w))

fori = 1 or 2 and a suitable constant € < oo. Now for any two distinct (B (w)), 7(Bi(w'))
€ Gk, Bi(w) N Bp(w') = O; since up; is a probability measure, it follows that for each
k=1,2,...

p2 diam (7(Bx(w)))’~¢ < 2C0°*

k

— k;v?N 3 diam (r(Br(w)))’™* < 26/(1 - b°) < oo

= H;s_.(A) <2C/(1-10°) < . m
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In summary, we have proved
4.6 Theorem

The following are equivalent:

0 < Hs(A) < o0
6 = 0B;
D,eT=1Vi=12,...,m

Here r 1s the unique real number such that X2 b7 = 1.

5. The Hausdorff-Besicovich Dimension
In this section we complete the computation of the Hausdorff-Besicovich dimension

g of A. Recall from section 3 that

(5.1) o > sz)leaz):cD(p).

Here we will show that the reverse inequality is also true. For ease of notation we will set
8 = maxpex D(p) throughout this section.

We start by considering a 3-parameter family of probability measures on J. For
6 € R,A € R and p € (0,1) define a probability vector p(8, A, p) € Z, by defining

(5.2) pii(6,),0) = C(6, A, p)al; 0}~ *(v:(6))*™*, (3,5) € T,
where
(5.3) ~7i(8) = _’Zvjlag’j, i=1,...,m

]:
and

m ng -1
(5.4) C0,0p)= |2 3 af;b}~°(7:(6))

=1 =1

Write pg,x,, and figx,, in place of up(s,a,p) and fipa,x,p), respectively. We will construct
an efficient cover of A with the aid of the measures g » ,.

5.1 Lemma

There ezists a real-valued continuous function 6(p), p € (0,1), such that for every p € (0,1),

(5.5) C(0(p),6,0) = 1
PROOF: There are two distinct cases, each requiring a separate argument.
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CASE 1: Assume that there is no n € (0,1) such that al; =b; V (i,j) € J.

First, we show that for each p € (0,1) there exist # € R and A < é such that
C(6, )\, p) = 1. For this it suffices to show that for each p € (0,1) there exist §, A € R such
that C(9 A, p) =1 and D(p(8, A, p)) = A, because then A must be < 6.

Fixp € (0,1) and 6 € R. The function C(0, J, p) is strictly increasing and continuous in
A, with limit +00 as A — 400 and limit 0 as A — —oo (since 0 < b; < 1). Consequently, by
the intermediate value theorem, there is a unigue A = (6, p) € R such that C(6, A, p) = 1.
Moreover, A(8, p) is jointly continuous in 8, p since C(8, A, p) is jointly continuous in §, A, p
and strictly increasing in A.

By Prop. 3.3,

(5.6) Do, ) =+ BEEA) 0o [, Kok

bG,0) 00,00 \° T a8, A 0)

where

a(8, A, p) = § % pij(0, A, p) log aij,

' pi;(8, A, p)log b;,

b9, A, p) = g g
) ’z‘;

(0, A, p) = pu(9 A, p) log v:(6).

Note that each of these is jointly continuous in 8, ), p; hence, v(8, A(8, p), p) is jointly
continuous in 8, p. Now (6, A, p) is a weighted average of the functions v;(6) defined by
(5.3), and clearly v;(6) — 0 as 8 — +o0 and v;(§) — oo as § — —o0, since 0 < a;; < 1.
Consequently, for each fixed p € (0, 1),

gli)nolo 7(67/\(97/)),,0) = —ooaolilzloo 7(97 )‘(97,0)’ P) =

By the intermediate value theorem, for each p € (0,1) there exists § € R such that
(8, (8, p),p) = 0, and therefore C(8, (0, p),p) = 1 and D(6, A(8, p),p) = A, by (5.6).
This proves that for each p € (0,1) there exist A < § and 8 € R such that C(6, ], p) = 1.

Second, we show that there is a continuous function (p) satisfying (5.5). It is here
that we use the assumption that there is no 7 € (0,1) such that a]; = b; V (3,7) € J.
Define m

Fy,p(0) =C(6, A, p)_l = igl bg\_ef)’i(a)p;

3 { [ 2] [28- 45 i

then

A,p(e)

"E’JS

and o
0) = & ofjlogas,
]=

7 (6) = jgil af;(log ai;)*.
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By the Cauchy-Schwartz inequality, v¥y; — ¥? > 0 unless loga;; = loga; V j, and in
this case v;/vi = loga;, so Fy (8) > 0 unless ploga;; =logd; V (i,j) € J. But we have
assumed that this is not the case; consequently, for each pair (A, p) € Rx (0, 1) the function
Fy,,(0) is strictly convex in 4.

Now F) ,(8) is strictly decreasing in A. In the first part of the proof we showed
that for each p there exists A < § such that F) , attains the value 1; it therefore follows
that for each p the function Fj, attains a value < 1. But Fj ,(8) is strictly convex for
6 € R, so Fs,(0) — oo either as § — oo or as § — —oo, and hence F5,(6) = 1 has
either one or two solutions §. Define 8(p) to be the larger of these two solutions; then
Fy (0(p)) = 0. If Fj (6(p)) > 0 then 6(-) is continuous at p, by the implicit function
theorem. If F; (6(p)) = 0 then for each ¢ > 0,

Fs,p(0(p) —€) > 1,
Fi,0(6(p) +€) > 1,
F5,(0(p) —¢) <0,
F5,(8(p) + ) > 0,

since Fy | > 0. Since F5,,(6) and Fj () are continuous in p, it follows that for 5 sufficiently
near p

Fs5,5(6(p) —€) > 1,
F55(6(p) +¢) > 1,
Fs,5(6(p) —€) <0,
F5,5(6(p) + ) > 0,

and therefore any solution § of Fj;(6) = 1 must lie between 8(p) — ¢ and 6(p) + ¢, by
convexity. This proves that 8(-) is continuous at p. a

CASE 2: Assume that there ezists n € (0,1) such that af; = b; for all (3,5) € J.

The argument used in Case 1 fails here because F) ,(f) is no longer strictly convex
in § when p = 7. In fact, the family {p(6, ), p)} of probability measures on J is over-
parametrized in this case: in particular, p(6, A,n) = p(0, A, n) for all 8, A € R, because

aGR 0 (8) = bR (b = Bl = B(0)

1771 1

and so F) ,(0) = C(8,\,n)~! is constant in 6.

Consider a probability vector p* which maximizes D(p). By Prop. 3.4, p* = p(6, A +
8, p) for some triple (8, A, p) satisfying (3.8). But the equations (3.8) imply that p = n (since
aj; = b;) and A +8 = § (this is always the case — compare (3.8) with (3.3)). Consequently,
by the previous paragraph, p* = p(0,d,n). Now (5.6) implies that

log C(0,6,7)

§=D(p(0,8m) =8+ =2
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because b(0, A, p)/a(6, A, p) = 1. Therefore, C(0,6,7) = 1, i.e.,
(5.7) S binl =1.

This implies that Fs,(8) =1 for all § € R.

Since 0 < b; < 1 for each : = 1,...,m, there exists, for each p # 71, a unique § = 8(p)
such that o
Fip(6) = 3 77 "nl = 15

moreover, (5.7) guarantees that 8(1 — p/n) — 0 as p — 7. The implicit function theorem
implies that § = 6(p) is continuous and differentiable at each p # 7, and

48 _ 1 ppmy-r ERaflogni +(8/p)logbijby """ Vnt
dP ’ 72, {log bi}bf—e(l_"’/")n:} .
Consequently, _
; " (logn;)bint
1 9 = 1 1( 1
P:E*I‘]I.] (p) (logb )bé‘ 7] ’

because if this were not the case it would be 1mposs1b1e for (1 —p/n) > 0as p — n, in
view of the differential equation. Thus, we may define 8(n) = lim,_., 6(p), making 8(p)
continuous at every p € (0,1). Since F5,(f) =1 V 8 € R, it follows that (5.5) holds for
every p € (0,1). O

5.2 Lemma
For each w € (, there ezists a triple (9,A,p) € R x R x (0,1) such that C(6,)\,p) =1 and

(5.8) lim sup {(b,-1 . blk) e, /\,p(Bk((.U))}l/k

k—oo
where § = maxpey D(p) and Bi(w) is defined by (1.2). _
PROOF: Fix w € Q. Then for any (4,,p) € R x R x (0,1) and k € N,

k(w 9 k 4 A4
59 monn(Bule)) = €O (VT 0 ) (HL:(L?’””(?) (f)

Set A = 6. By Lemma 5.1, for each p € (0,1) there exists § = 8(p) varying continuously
with p such that C(9,4, p) = 1. For any such pair p, §, equation (5.9) may be rewritten as
follows:

{(bil v bik)—6ﬂ6,6,p(Bk(w))}l/k

me g\ | Li(w)
_ v= v v — —_—
- ].—If:lbiv ) exp {pk 2 log 7111 (9) 2 ].Og 7111 (9)}
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Since by (1.3)

k—o00 Ik b;

v=1 v

Le(w) 1/k
].im (Hll:l a"v]v) — 1,

it suffices to show that there exists p € (0,1) such that for § = 6(p),

k—c0

1 (w)
(5.10) lim supexp{p-k-:- Y logv:, () — — kL‘ log7,v(9)}

Define
po = lim infy_oLi(w)/k,

p1 = lim supy_, o Li(w)/k.

Observe that 0 < pp < p1 < 1. Recall (Lemma 5.1) that § = v0(p) is a continuous function
of p, hence so is v;(8(p)) for each 7 = 1,...,m, and therefore also are

lim sup— E log 7, (6(p))

n—oo

and 1
lim inf = % log~i, (8(p)).
n-—oo 71 v=1

Consequently, by the intermediate value theorem, at least one of the following must be
true:

© )hm sup— 2 log i, (8(p1)) > 0;

n—oo

(i7) lim inf - Z log i, (8(po)) < 0;

(727) lim sup -~ 2 log i, (6(p«)) = 0 for some pg < p« < p1.
In case (7), (5.10) holds with p = p; and § = 6(p1); in case (22); (5.10) holds with p = pg
and 8 = 8(po); and in case (7i¢), (5.10) holds with p = p. and § = 8(p.). For instance,
consider case (i) (the other two cases are similar). Set p = p; and 8 = 6(p1), and choose
a sequence k; < kg < ... such that

1 ko
Iim — 2 log~i, (6) = lim sup-llg— ¥ logvi, () >0
k—oo v=1

jmoo ki b1

and such that both {k™!Li(w)} and {(Lix(w))™? 5L 10g i, (8)} converge along the sub-

v=1

sequence {k;}. Set l[; = Ly;(w),j = 1,2,...; then

|
1 log 7111 (6)} Z 0!

J J V=

1 % i 1
i — log v; 1.
Jigglo {pkj u§1 o8 7i, (6) ki

since p = lim supy_,o k7 Lp(w) > lim; o0 k7 11;. This implies (5.10). O
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5.3 Theorem
Sy=246 <= Igea)%cD(p)>.

PROOF: By (5.1) we need only show that § < 6. Fixe > 0 and n > 0. We will construct
a covering U = U, , of A consisting of m-images of approximate squares B(w) such that
each element of U has diameter < 5 and

¥ (diam U)*+3 < C.
Ueu

for a constant C. < oo depending on € but not n. This will imply that Hsi3.(A) <
oo Ve >0, which in turn will prove that ég < 6.

Let F; C F» C ... be a sequence of compact subsets of R X R x (0,1) such that
U, F, = RxRx(0,1). Foreach k = 1,2,...let Gx be the collection of all 7(Bi(w)),w € Q,
such that Bi(w) is not properly contained in any other Bi(w’) and such that

-5
(5.11) < I bz,,) Ho,2,0(Bi(w)) 2 (max bi)**

v=1

for some (6,1, p) € Fp satisfying C(6,A,p) = 1. (Recall that for distinct w,w’ € Q
either Bx(w) and Bi(w') are disjoint or one is contained in the other.) By Lemma 5.2,
Uk = U Gk is a covering of A for each K = 1,2,.... By (1.4) there is a constant C < oo
such that for any approximate square By (w),

(5.12) diam (r(Bi(w))) < C yli[l by

Since max; b; < 1, it follows that for sufficiently large K all elements of /g have diameter
< n. Thus, to complete the proof it suffices to show that for some choice of the sets Fi

(5.13) k§ T diam (1(Br(w)))*% < co.
=1 G;

Choose F1 C F; C ... so that UR  Fr = R x R x (0,1) and so that each Fy has a
finite subset Ex = {(8i, \i, pi):t = 1,2,...,k} of cardinality k& with the following property:
For each (0, \, p) € F there exists (6;, A\i, pi) € Ex such that Vw € Q,

po,5,0(Br{w))
l"ei,z\.‘,pi(Bk(w))

That this is possible follows from the continuity of the funct1ons C(9, ], p), and ~(9),
together with the formula

< (max b;) ™,

k A= /L (w) O (T*_ v (6))°
#O,A‘p(Bk(w))=C(9,,\’p)k <u§1 bi"> ( I ai,,j::) ( Lk(];J)V(()g)

v=1
V__
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valid Vw € Q and V (8,),p) € R x R x (0,1). It now follows from (5.11)-(5.12) that for
every m(Br(w)) € Gi there exists (6;, Ai, p;) € Ey such that

diam (r(Br ()’ < Cho; ni,pi(Br(w))(max;b;)*.

Recall that each ug »,, is a probability measure on Q and that distinct sets m(Bi(w)) in
Gi are disjoint. Therefore,

g_,; diam (r(Bi(w)))’*3e

k
< C(max;b;)** .21 g] 16:, 7,0 (B (w))
i=1G;
< Ck(maxibi)sk;

since (max; b;) < 1, this proves (5.13). a
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Figure 2: In this ezample by = by = .5; a11 = 4,012 = a21 = .2;¢11 = 0,c12 = 8,001 =
3;dy = 0,dy =.5. The shaded rectangles are the various R(z),z € J* (third generation);
A is contained in their union. The rectangles surrounded by thick lines are the various

Bs(w); observe that each of ABCD,AEFD,DHIG, and DFJG is a Bs(w).





