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ABSTRACT

The standard Maximum Entropy method of Burg (1967) and the resulting autore-
gressive model has been widely applied for spectrum estimation and prediction. In this
article, a generalization of the Maximum Entropy formalism in a non-parametric setting
is presented, and the class of the resulting solutions is identified to be a class of Markov
processes. The proof is based on a string of information theoretic arguments developed in
Choi and Cover’s (1984) derivation of Burg’s Maximum Entropy spectrum. A framework
for the practical implementation of the proposed method is also presented, in the context
of both continuous and discrete data.

Index Terms. Markov processes, Maximum Entropy, non-linear time series, non-
parametric estimation.



I. Introduction

Suppose {X,,n € N} be a wide-sense stationary stochastic process with mean zero and
autocovariance (k) = EX; Xy, for k € Z. 1t is well known (cf. Burg [1], which is reprinted
in [3]) that the Maximum Entropy such process that satisfies the constraints (i) = ¢;,i =
0,1,...,p is the mean zero a.utoregressivé Gaussian process that satisfies these constraints. In
fact (cf. Choi and Cover [4]), a wider entropy-maximization problem (where {X,,n € N}
is neither assumed to be wide-sense stationary, nor of mean zero) is seen to have the same
autoregressive Gaussian process as its solution. Note that this linear autoregressive model is
actually a special case of a Markov process.

In practical applications, a stretch X3,..., Xy is observed from the {X,,n € N} sequence,
from which the autocovariances y(k) for £ = 0,1,...,p << N are estimated accurately. Then,
for the purposes of spectral estimation or prediction, the Maximum Entropy principle is invoked,
leading to the aforementioned Gaussian autoregressive model. Effectively, the assumption of
this model allows for a nontrivial extrapolation of the autocovariance function to places where
there are insufficient data, or none at all,i.e. y(k)fork=p+1,p+2,--- ,N,N+1,....

However, in many situations the observations seem not to be compatible with the Gaussian
model to be assumed. Such examples are amply provided by considering any sequence of
discrete random variables, e.g. a binary sequence. Another example is the famous Sunspots
data-set (monthly means of daily sunspot numbers for the period January 1749 to March
1977), which has been shown to be non-linear and non-Gaussian [15]. Therefore, fitting a
linear autoregressive Gaussian model seems to be the wrong thing to do in these cases.

Having discarded the assumption of a Gaussian (and linear) model, attention could be
focused on the remaining property of the standard Maximum Entropy solution, namely the
Markov property. It would seem desirable to have a non-parametric formulation of the Max-
imum Entropy principle that permits the extrapolation of distributions, in the same manner
Burg’s Maximum Entropy extrapolates the autocovariances. This goal is accomplished in the
next section, where in fact the solutions to the non-parametric Maximum Entropy problem are

shown to be Markov processes.



II. Markov Processes and Maximum Entropy

Let {X,,n € N} be a stochastic process specified by its marginal distribution functions
Fu(z1,...,2n) = P(X1 £ 21,...,Xn < 2,), n € N. It will be assumed that, for any n € N,
Fo.(z1,...,%,) possesses a density f,(z1,...,2,) with respect to a measure v, on R". The
measure v, will be chosen to be either Lebesgue measure on R", or a counting measure, resulting
to fo(z1,...,%,)’s that are the usual probability density functions (p.d.f.) or probability mass
functions (p.m.f.) respectively.

The entropy of the n-tuple Xj,..., X, is defined by (cf. [2])

H(X1,..., Xn) = —/fn(a:l,...,:cn)logfn(wl,...,wn)dun(:vl,...,:cn) 1)

Since H(Xj,...,X,) represents a functional of f,, we can alternatively denote it by H(f,).
Similarly, the conditional entropy of X,, given X,,_1,...,X; is defined by

H(Xp| Xn-1,...,X1) = —/fn(a:l,...,wn)logfn(xnlmn_l,...,ml)dvn(xl,...,a:n) (2)

where f,(zp|Tn-1,...,21) is the conditional density of X, given the values of X, _4,..., Xj.

The stochastic process {X,,n € N} is said to have an entropy rate

by Tim EKL e Xn)

n—o0 n

(3)

provided the limit exists. It can be shown that the limit exists for (strictly) stationary processes.
The following lemma will be of use in proving our main theorem. Its essence is that

extrapolation of distributions is possible in the class of stationary Markov processes.

Lemma 1 Let {Z,,n € N} be a (p — 1)th order strictly stationary Markov process, where
p s a positive integer. All the marginal densities of the process {Z,,n € N} are completely

determined by its pth order marginal density g(z1,. .., 2zp).

Proof. Note that by the term 0-order Markov process, it is meant an i.i.d. (independent and
identically distributed) sequence. Hence for p = 1 the lemma is obvious, and for any n € N the

nth order marginal density (i.e. the density of Zy,...,Z,)is g(21, ..., 2,) = g(21)g9(22) - - - g(2n)-



Now let p > 1. Note that the pth order marginal density g(#1,...,2,) can be expressed as

g(zla ) zp) = g(zplzp—la SRR Zl)g(zla ) zp—l) (4)

where g(zg|2k-1,...,21) is the conditional density of Zp given Zi_i,...,Z; (which, by sta-
tionarity, is identical to the conditional density of Zii, given Zxyn—1,...,Zn41, for any
n € N). From equation (4), the functional form of g(zp|#—1,...,21) (and therefore also of
9(2k|2k=15. . 3 Zk—p+1), Yk > p) can be obtained. Then, for any n > p, the nth order marginal

density is given by the chain rule

n n
9(z1, .., 2m) = g(21,. .oy 2p—1) H 9(zklze-1, .-, 21) = g(21,. .+, Zp—1) kl__[ 9(zk|Zk=1, -+« 5 Zk—pt1)
k=p p 5)

where the Markov property was explicitly used.O
Let g(z1,...,2p) be a density with respect to measure v, on R?. We will say that g(21,..., %)
satisfies the stationarity requirement if there exists in some probability space a sequence of
random variables Zy,...,Z, with (joint) density g(z1,...,2,) that is stationary, i.e., for any
k =1,2,...,p, the joint distribution of Zi,...,Z; is identical to the joint distribution of
Z14ns -y Zktn, for any n = 1,2,...,p — k. This is equivalent to requiring that the marginals
of g(Zu,...,Z,) are ‘right’, in the sense that they are compatible with the hypothesis of sta-

tionarity.

Lemma 2 For some positive integer p, let g(z1,...,z,) be a density with respect to measure
vp on R? that satisfies the stationarity requirement. Then, there exists a (p— 1)th order strictly

stationary Markov process {Z,,n € N} with pth order marginal density equal to g(zy,. .., Zp).

Proof. For p = 1 the lemma is obviously true. So assume p > 1. Let Zi,. .., Zp have

(joint) density g(z1,...,2p). For n > p, construct the Z,’s inductively, by letting the conditional
density of Z, given that Z,_y = z,_1,...,Z; = 2 be equal to

g(zn—-p+17 cecy Z’n)
g(zn—p-{-la sy zn—l)

g(znlz‘n—la teey Zn—p+1) =

From the construction it is apparent that the sequence {Zn,n € N} is (p — 1)th order

Markov, with time-invariant transition probability density function 9(znlzn—1,. .., Zn—py1), ie.
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a function whose functional form does not depend on n. To complete the proof, it has to be
shown that {Z,,n € N} is also stationary. It would then be implied that it possesses a pth
order marginal density equal to g(z1,...,2p).

In order to do this, consider the process {Y,,,n € N}, where, for any integer n, Y,, is defined
to be the block of (p — 1) consecutive observations from the Z-sequence starting from Z,,. For
example, Y1 = (Z1,...,2,-1),Y2 = (Z2,...,Z,), and so forth.

It is apparent that the {Y,} sequence is first-order Markov, and it is stationary if and only
if the {Z,} sequence is stationary. It is also easy to see that the conditional density of Y;
given Y; coincides with the conditional density of Z, given Z,_,,..., Z1, using the appropriate
notation, and the marginal density of Yy coincides with the marginal density of Zy,...,Z,_1.
Now it is immediate that the (unconditional) density of ¥, coincides with that of ¥;, showing
that the sequence {Y,} is stationary.0

The point to be made from Lemma 2 is the following. Suppose that a density g(z1,...,zp)
is given, with the additional knowledge that g(z1,...,z;,) is the pth order marginal density of
some stationary process. Among. the many stationary processes that have pth order marginal
density equal to g(z1,...,2,), there is one that is actually (p — 1)th order Markov. As a matter

of fact, this Markov process can also be characterized as a maximum entropy process.

Theorem 1 For some positive integer p, let g(z1,...,z,) be a density with respect to measure
vp on RP that satisfies the stationarity requirement. The sirictly stationary stochastic process

{X,,n € N} that has mazimum entropy rate subject to the constraint

fo(®1,. ., 2p) = 9(z1, ..., 2p) (6)

for all (z1,...,2,) € R?, is the (p — 1)th order (strictly) stationary Markov process satisfying

the constraint.

Proof. The proof is based on the same arguments used in the information theoretic proof
of Burg’s Maximum Entropy spectrum presented in Choi and Cover [4]. Assume that the
observations X4, ..., X, from the stationary process {Xn,n € N} satisfy the constraint (6).

First consider the case p = 1. If we let {Z,,n € N} be an i.i.d. sequence, with the density
of Z, given by g(z1), then we have



H(Xpy o Xn) < 3 H(XG) = 3 H(Z8) = H(Zy. ., Z) )
k=1 k=1

Consider now the case p > 1, and let {Z,,,n € N} be a (p — 1)th order (strictly) stationary

Markov process, whose nth dimensional marginal density g(zy,..., #,) is given by
n
g(21, ERRE) Zn) = g(zl, EERP) zp—l) H g(zklzk—la EERR) zk—p+1) (8)
k=p

from Lemma 2, for any n > p. Then we have

H(X1,e o Xo) @ H(Xyy o, Xp) + 0 H(XK Xkt -, X1)

k=p
(®) n
< H(X1, oo, Xp) + D H Xl Xk-15- -+ Xp—pt1)
k=p
c L d
QD H(Z,...,2)+ Y H(ZW Zhry -, Zhepin) 2 H(Z4, ..., Zn) 9)

k=p
Here, (a) is the chain rule for entropy; (b) follows from the conditional entropy inequality
h(A|B,C) < h(A|B); (c) is consequence of the fact that the conditional entropies involved are
uniquely determined by functionals of the pth order marginal density, which is the same for
both {X,} and {Z,} processes; and (d) follows from the chain rule for entropy in connection
with the Markov structure of {Z,,,n € N}.
Note that the limit hz = lim,_, ﬂzl;L—’Z"l can be explicitly calculated yielding

hy = { — [ 9(z1)logg(21)dri(z1) ifp=1 (10)
—J9(21,...,2)logg(zpl2p—1,. .., 21)dVp(21,...,2) ifp>1

Combining results (7) and (9), it is seen that H(X4,...,X,) < H(Z1,...,Zy,), for any value
of p € N. By stationarity, is follows that the limit Ax = lim,_,o ﬂx—lnﬁl exists as well. It
is then immediate that Ay < hz, and the theorem is proved. O

It is apparent from the proof that the only occasion constraint (6) was invoked, was in step
(c), and only through a functional of fy(z1,...,%,) and g(z1,...,%,) that remains unchanged
if fp and g are different on a set of v,-measure zero. Hence, the theorem remains true if the

constraint (6) is substituted by fy(z1,...,2,) = g(21,...,2,), almost everywhere with respect

to vp.



Of course, the distribution functions corresponding to densities coinciding almost every-
where with respect to the dominating measure are identical. In this sense, we can say that
the Markov process {Z,} in Lemma 2 and Theorem 1 is uniquely specified, meaning that its
marginal distribution functions are completely détermined. However, there are other types of
constraints different from (6) subject to which the Maximum Entropy problem is well defined
and has a uniquely determined solution.

One such example is Burg’s problem, where the constraint consists of a restriction on
the second order moment structure of the pth marginal. Another example is provided by
a result of Shannon ([14], Appendix 4) concerning the capacity of communication channels,
that has also found applications in ergodic theory [10]. To briefly describe it, suppose that
{Xn,n € N}is astrictly stationary process, with X taking values in the finite set {ay, ..., ax}.
Let B = (bi;),%,j = 1,...,k be anirreducible and aperiodic matrix of zeroes and ones indicating
the permissible transitions of the sequence, i.e. b;; = 1 if P(Xp41 = a;|X, = a;) > 0, and
b;; = 0 if P(Xn41 = a;|Xn = a;) = 0. Then, the process that has Maximum Entropy among
such processes is a first order Markov chain with transition probabilities that can be explicitly
calculated.

Hence in general the constraint might involve only a certain feature of the pth order marginal
distribution of {X,,n € N}. It is the purpose of the next theorem to show that, whatever the
type of constraint, maximization of entropy leads to a (p— 1)th order Markov process, provided

of course the problem is well defined.

Theorem 2 Let F, be the set of all probability distribution functions on R?, and let T : Fp —
T be some functional with range T, where T is some space. Let T be a subset of T, and
denote by S, the set of all strictly stationary processes with pth order marginal distribution E,
satisfying T(Fp) € 7. Denote by M, the intersection of S, with the set of all (p — 1)th order
Markov processes. Then |

h(Sr) < h(M;) (11)

where h(S) = sup{hx : {Xn} € S} is the supremum of the entropy rate hx, with the process

{X,} ranging over the class S.



Proof. First note that M., is empty if and only if S, is empty too, and hence equation
(11) would hold by defining the supremum of the empty set to be negative infinity.

Let the process {X,} be in S, and let {Z,} be in M,,. The process {Z,} can be constructed
by extrapolation of the pth marginal distribution of {X,} analogously to the results of Lemma
1 and Lemma 2. Now by a similar chain of arguments as in (9) it is shown that hx < hz, and

the theorem is proved. O



IT1I. Non-Parametric Maximum Entropy

The success of Burg’s Maximum Entropy method is both due to its intuitive appeal, as well
as its easy implementation, which is in essence fitting a parametric (Gaussian autoregressive)
model to the data. In this section, a procedure for the Non-Parametric implementation of the
Maximum Entropy Method based on Theorem 1 will be described that is equally straightfor-
ward. _

Suppose that a stretch X3, ..., Xy is observed from the strictly stationary process {X,,n €
N}. An integer p << N is then chosen, and the pth order marginal density g(z1,...,%,) is
estimated from the data in a standard non-parametric fashion. This would involve calculating
the observed relative frequencies in the case of discrete random variables, or the usual kernel-
smoothed multivariate density estimates for (absolutely) continuous random variables [13].
Then, for the purposes of extrapolation of distributions or prediction, the Maximum Entropy
Principle is invoked, implying (in connection with Theorem 1) that the distribution of the data
should be approximated by the distribution of a (p — 1)th order stationary Markov process
possessing a pth order marginal density equal to the estimated one. The problem of choosing
p properly will be separately addressed in Section V, since it is of importance in practice.

Note that some condition of weak dependence in the sequence {X,} must be assumed in
order to have consistent density estimates, (and to be able to reasonably approximate {X,}
by a Markov model). For example, it may be assumed that the {X,} sequence satisfies some
mixing condition (cf. [6] and the references therein). In connection with real-valued Markov
processes, the most common weak dependence condition is ¢-mixing, which is equivalent in
this case to assuming that the sequence of ¢-mixing coefficients is decreasing exponentially
fast [6]. For countable-state Markov processes, the a-mixing condition should be sufficient,
corresponding to the Markov process being aperiodic and ergodic [11].

However, some special care should be taken in order for our estimated density to satisfy the
stationarity requirement. In fact, the estimated marginal density folz1, .. ., Zp) will typically
not satisfy the stationarity requirement, as the following simple example shows. Suppose {X,,}

is a 0-1 binary sequence from which the sample X; = 0, X, = 1 is observed. It is obvious



that the estimated second order marginal density (p.m.f.) which puts mass one on the point
(0,1) € {0,1}? is not compatible with the hypothesis of stationarity. Although it can be argued
that, for large sample sizes N, the estimated marginal density will be ‘close’ to satisfying the
stationarity requirement, it seems difficult to assess and quantify this ‘closeness’.

The way out of this difficulty is once again presented in the framework of Markov processes.
For a (p—1)th order Markov process, estimation of the pth order marginal density g(z1,...,%p)
is equivalent to simultaneously estimating g(21,. .., Zp—1) together with the conditional density
9(zp|Zp-1,...,21). The crucial observation now is that if the Markov process is assumed
to be stationary, the conditional density g(zp|zp-1,...,1) determines uniquely the marginal
g(z1,...,Zp—1) under some conditions. As a matter of fact, g(z1,...,%,-1) would be the so-
called stationary or invariant marginal of the Markov process. The implication then is that only
the conditional density g(zp|Tp-1, - .., 1) should be estimated from the data, and g(z1,...,%p-1)
should be set to be the corresponding stationary marginal.

To elaborate, let {Z,,n € N} be a (p — 1)th order stationary Markov process. Then it
is immediate that the process {Y,,n € N}, which was constructed in the proof of Lemma
2, is first-order Markov and stationary. -As it was mentioned, the conditional density of Y2
given Y; coincides with the conditional density of Z, given Z,_,..., Z;, using the appropriate
notation, and the stationary marginal of Y; coincides with the stationary marginal density of
ZiyeneyZp_1.

Now suppose that {Y,} takes values in the countable set {a1,az,...}. If the matrix B =
(bi;) of transition probabilities b;; = P(Y2 = a;|Y1 = a;) is positive recurrent, irreducible
and aperiodic, it is well-known [12] that there is a unique stationary marginal probability
distribution P* for Y;, given by any of the rows of the matrix B* = lim,,,o, B". As a result
of positive recurrence, P*(Yy = a;) > 0, for any j € N. Also note that if {V,,} takes values
in a finite set, the matrix B will necessarily be positive recurrent. Hence, in this case, the
stationary marginal g(21,...,2p—1), (Which is identical to the stationary marginal of ¥7) is
uniquely determined by the conditional density g(zp|2,-1,...,21), (which is identical to the
conditional density of Y5 given Y7).

In case {Y,} takes values in an uncountable set, e.g. a possibly infinite rectangle in R?~1,
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(that corresponds to the {Z,} process being real-valued), then some additional regularity con-
ditions must be imposed to ensure that the conditional density g(zp|2zp—1,...,21) determines
uniquely the stationary marginal g(z1,...,2p,—1). The usual assumption in this connection
is that {Y,} satisfies Doeblin’s condition [5], that actually turns out to be equivalent to an
exponentially decreasing sequence of ¢-mixing coefficients [11].

It is apparent by the above discussion that, in a number of interesting cases, the station-
ary marginal g(21,...,2p-1) of a (p — 1)th order stationary Markov process {Z,} is uniquely
determined by the conditional density g(zp|2zp—1,...,21). This observation justifies the formu-
lation of the following theorem, which is tailor-made for the implementation of the proposed

Non-Parametric Maximum Entropy Method.

Theorem 3 For some integer p > 1, let {Z},n € N} be a (p — 1)th order stationary Markov
process, whose conditional density g(zp|2p—1,...,21) uniquely determines g(z1,...,2p—1), the
stationary marginal density with respect to measure v, on RP. Then {Z}} has mazimum
entropy rate in the class of all strictly stationary processes {X,,n € N} whose conditional

density of X, given X,_1,..., X1, satisfies

fo(ZplZp_1,...,21) = 9(zp|Tp-1,..., 1) (12)
for almost all points (z1,...,x,) with respect to v,.

Proof. Let {X,,n € N} be a strictly stationary process with n-dimensional marginal
density f,(z1,...,2%n),n € N, that satisfies (12). This implies that the pth marginal density of
{Xn,} is given by fp(z1,...,2p) = fo-1(1,. ., Zp-1)9(zp|Tp-1,...,21).

By Lemma 2, a (p — 1)th order (strictly) stationary Markov process {Z,,n € N} can be
constructed, so as to have pth order marginal density equal to fy(z1,...,2,). Then, from
Theorem 1 it follows that hx < hz.

However, it is obvious that the process {Z,} also satisfies (12). But from the assumptions
of the theorem it follows that there is a unique (p — 1)th order stationary Markov process
satisfying (12), and this is {Z}}. Hence, the processes {Z,} and {Z}} should coincide, and the

theorem is proved.C
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IV. Extrapolation of Distributions and Prediction

As shown in Section II, the solutions to the Non-Parametric Maximum Entropy problem
turn out to be Markov processes. Considering that the class of Markov processes is the ‘natural’
class in which extrapolation of distributions is possible (c¢f. Lemma 1), the ability to extrapolate
seems to be intimately linked with the Maximum Entropy Principle.

Burg’s Maximum Entropy Method can also be viewed from that angle, that is, as a method
for distributional extrapolation in the Gaussian setting. Since Gaussian processes are com-
pletely determined by their second order moment structure, the extrapolation of distributions
is equivalent in this case to the extrapolation of autocovariances and spectral estimation.

An additional feature of Markov processes (and hence processes with Maximum Entropy)
is that they provide an ideal framework for the purposes of prediction of Xpy; given the
values of Xy, ..., X;. The autoregressive model of Burg yields the obvious predictor, linear in
XN, ...y XN-p+1, Which is optimal with respect to Mean Squared Error in the Gaussian case.

In our general non-parametric setting, the function ¢(zy, ..., 1) that minimizes the Mean
Squared Error of prediction E(Xn41 — ¢(Xn,...,X1))?, is the conditional expectation [9]
q(zn,...,21) = E(XNy1|XN = 2N, .., XN—pt+1 = TN—p+1), Which is computable (knowing
the conditional density f,(zp|Zp-1,...,1)), and does not depend on the values of X1,..., Xy,
(by the Markov property).

Of course, in the practical problem the conditional density fp(zp|2p-1,...,21) is not exactly
known. Nevertheless, an estimate fp(zplwp_l, ...,%1) can be constructed based on the data, as
outlined in the previous section. Using the estimated (rather than the exact) pth order density

corresponds to calculating the prediction function

Np(TN, ... 1) = /$N+1fp($N+1|$N, ey EN—pt1)dr (TN 1) (13)

which is asymptotically optimal with respect to Mean Squared Error (cf. [6]). In the Gaussian
case, the same argument would apply to justify the use of the linear predictor with estimated

coefficients in the autoregressive model of Burg’s method.
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V. Choosing the Order of the Model

Let us now return to the problem of choosing p properly. In the case of fitting an au-
toregressive model (as in Burg’s method), choosing p amounts to choosing the order of the
autoregression. Many data-driven criteria have been formulated for the choice of p in this case,
the most popular ones being Akaike’s information criterion (AIC) and Bayesian information
criterion (BIC).

Note that in the autoregressive case, the number of parameters to be estimated from the
data is linear in p. However, in the non-parametric setting under consideration, the number of
parameters to be estimated from the data is exponential in p for finite-state Markov chains, or
infinite otherwise. This observation is sufficient to rule out minimization of AIC or BIC as a
sensible way of choosing the order p.

Nevertheless, an attractive alternative criterion for a data-driven choice of p exists, in the
form of ordinary or predictive cross-validation. Actually, it turns out that, applied to autore-
gressive model fitting, predictive cross-validation is approximately equivalent to minimizing the
BIC, and ordinary cross-validation is approximately equivalent to minimizing the AIC [8]. In
this sense, ordinary and predictive cross-validation can be considered as the extensions of the
AIC and BIC criteria respectively in more general contexts.

In brief, the proposed cross-validation procedures would go as follows. As in the previous
section, with the order of the model chosen to be p, the (approximately) optimal predictor of
Xn+1 given that Xy = zn,..., Xy = 71 would be gy p(zn,...,21), as given in equation (13).

Define the usual residuals en,,(s) by

np(s) = Xo = 4N p(Xs-1,. .., X1) (14)

for s = 1,...,N, and using X; = 0, for £ < 0. For a given data-set, the sum of squares
Enp= % >N elzvyp(s) can be computed for p = 1,2,.... Minimizing Ey , with respect to p
constitutes the (ordinary) cross-validation method of choosing p.

However, in order to find the order of the model that has ‘best’ performance as measured
by the accuracy of its predictions, it seems pertinent to look at the predictive (or recursive)

residuals e,(s) that are defined in a slightly different way. Recall that for the computation
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of the usual residuals ey p(s), the predictor gy, was used, which was based on the whole
sample Xi,...,Xn. Define gs41,p(Xs,...,X1), for s = 0,1,..., to be the (approximately)
optimal predictor of X,y given that X; = z,,...,X3 = 2;. Note that for estimation of
Gs+1,p(Xs, ..., X1) only the sample X;,...,X; is to be used, (and the assumption Xj = 0, for
k < 0). In this sense, the predictive residuals e,(s) = X5 — G5 p(Xs-1,...,X1), fors=1,...,N,
provide a measure of the accuracy of predictions using a model of order p. Minimizing Ey,, =
]—{,— Zﬁvzl eg(s) with respect to p constitutes the predictive cross-validation method of choosing
the order p.

Carrying through the predictive cross-validation procedure involves an increased computa-
tional effort as compared to using ordinary cross-validation, mainly because, for each value of
p, N different one-step predictors g,,,s = 1,..., N, have to be calculated. That this extra
effort might be worthwhile is exemplified by the familiar case of a linear autoregressive model
of true order p*. Using the BIC criterion (or predictive cross-validation) provides an asymptot-
ically consistent means to estimate the true order of the model from the data, while it is well
known that use of the AIC criterion (or ordinary cross-validation) does not necessarily lead to
a consistent estimate. Comparing the performance of ordinary and predictive cross-validation
in our more general non-parametric setting shall be the subject of further research.

As a final note, there is a lot to be said in favor of using finite-state Markov models as an
approximation, even if the time series under investigation is real-valued. To elaborate, suppose
that {X,,n € N} takes values in the finite set {ay,...,ax}. Then, in order to estimate the pth
order marginal density and approximate {X,} by a (p — 1)th order Markov process {Z,} with
the same pth marginal, about kP parameters should be estimated from the data Xj,..., Xn.
Indeed, this problem can be compared to estimating the probabilities in a multinomial model
with kP cells. It is intuitively clear that to have reasonable estimates (and few empty cells when
counting relative frequencies) it must be the case that k» << N, and rather k? < v/N. So, as
‘a rule of thumb’, one would say that p should be taken to be of smaller order than %logk N
in this case. The problem is that for other than finite-state models, the number of parameters
to be estimated from the data is infinite, and our intuition breaks down.

For countable-state (say integer-valued) processes, truncation seems to be the obvious prac-
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tical approximation, i.e. to artificially reduce the state-space from {1,2,---} to {1,2,---,k, k*},
where the symbol k% corresponds to observations in the set {k+1,%+2,---}. For uncountable-
state (say real-valued) processes, the practical problems are more serious. To start with, due to
the sparsity of p-dimensional Euclidean space, the rate of convergence of the multivariate den-
sity estimate fp(xl, ..., Zp) is very slow [13]. This implies that the estimate of the conditional

density

_ fp(mh'--’mp) (15)
fp—l(ml, ey wp—l)

also converges very slowly. In addition, the assumed ¢-mixing (or Doeblin’s) condition is a

fp(:vp|:vp_1, ceyZ1) =

very strong form of weak dependence that is satisfied only rarely. For example, in the case
of Gaussian processes the ¢-mixing condition is equivalent to m-dependence [7]. Hence the
only Caussian ¢-mixing Markov process is an i.i.d. (independent and identically distributed)
sequence of normal random variables. The practical solution would be to artificially discretize
the state-space by dividing the real line into cells of appropriate sizes, and to consider the
resulting finite-state model. This procedure is closely related to using histograms instead of

kernel-smoothed functions for density estimation.
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VI. Conclusions

The stationary processes with maximum entropy rate in the class of processes whose pth
order marginal distribution satisfies some constraint were shown to be Markov processes. In
particular, the (p — 1)th order stationary Markov process with pth order marginal density
g(z1,...,2p), with respect to some measure, was shown to possess maximum entropy rate in
the class of stationary processes with pth order marginal density equal to g(z1,...,2,). This
result forms the basis for an extension of the usual Gaussian Maximum Entropy Method of
Burg to non-parametric settings.

A framework for the practical implementation of the proposed Non-Parametric Maximum
Entropy Method was also presented. Specifically, the pth order marginal density should be esti-
mated from the observed data, taking care that the estimate is compatible with the hypothesis
of stationarity. This can be achieved by estimating the conditional density g(z,|zp-1,-..,21)
from the data, and setting g(1,...,Zp—1) to be the corresponding stationary marginal. Then,
for the purposes of extrapolation of distributions or prediction, the Maximum Entropy Prin-
ciple can be invoked, implying that the distribution of the data can be approximated by that
of a (p — 1)th order stationary Markov process with the estimated pth order marginal density.
Notably, unless the estimated pth order density is multivariate Gaussian, the Non-Parametric
Maximum Entropy Method would point to a non-linear Markov model. Finally, the important
problem of choosing the order p of the fitted model was addressed, and the cross-validation

methodology was suggested as its possible solution.
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