SOME GENERALIZATIONS OF ELFING’S THEOREM
by
Holger Dette
Purdue University

and
University of Gottingen

Technical Report #91-16C

Department of Statistics
Purdue University

April 1991



Some Generalizations of Elfing’s Theorem
by
Holger Dette

Abstract

We consider a model robust version of the c-optimality criterion and give geometric
characterizations analogous to Elfing’s (1952) characterization for the classical c-optimal
design problem. As a special case we obtain an Elfing’s theorem for the D-optimal design
problem. Some examples are given in order to get insight into the geometric structure of
the underlying problem. The results are derived from general equivalence theorems for

model robust designs which are proved in the appendix.

1. Introduction

Consider the linear regression models
ge(z) = fF(z)-6, £=1,...,n

where fJ(z) = (fe1(2),- ., fek(2)),  is the control variable, 87 = (0p,...,0e,) are
the vectors of unknown parameters (£ = 1,...,n). The design space A’ is assumed to be
compact containing at least ¥ = ki + k2 + ... + k, points and the regression functions

fa(z),..., fer,(z) are assumed to be independent for every £ =1,...,n.

A design £ is a probability measure on X and the matrix

M(€) = /X fol@)fF (2)de(z)

is called the information matrix of the design £ in the model g;. If ¢ is supported at m points
T1,...,Tm With masses {(z;) = 24 the experimenter takes n; uncorrelated observations at
each point z; (1 = 1,...,m, in: n; = N). The covariance matrix of the least squares
estimator for §; (in the mode;1=:;g(a:)) is proportional to the inverse of the information
matrix and an optimal design minimizes (or maximizes) an appropriate optimality criterion

depending on M, (§) (or Me(€)), where M, (§) denotes a generalized inverse of M;(¢).

1



In this paper we are interested in designs which allow good estimates for a given linear
combination of the unknown parameter vectors 6, i.e. c{ﬂg, where ¢, € R* is a given
vector (£ = 1,...,n). We will start our investigations with one model (i.e. n = 1). A
design is called c;-optimal if it minimizes ¢§ M; (€)c; (see Silvey (1980) p. 49). Usual
choices for ¢; are ¢; = (0,...,0,1,0,...,0) (precise estimation of one parameter of 6; =
(61,1,---,01,k, )T) or e1 = (f11(0),. .., fik, (z0))T (precise estimation of the regression at
the point z¢). The ¢; optimal design also maximizes the power of the F-test for the
hypotheses Hy : ¢} 6; = 0. In order to satisfy the estimability of ¢{6; or testability of
¢T8, = 0 for a given design ¢ we have to assume that ¢; € range (M(¢)). Define

Ry = convex hull of fi(X)U —f1(X)

which is compact, symmetric and convex set, spanning R** and containing the point 0.
The following geometric characterization of the ¢i-optimal designs is due to Elfing (1952)

(see also Pukelsheim (1979) for its geometric interpretation and some examples).

Theorem 1.1. (Elfing (1952)) A design £ = {;: }V=1 (for which ¢T'; is estimable) is ¢;-
optimal (in the model ¢;) if and only if there exist a positive number 4; > 0 and numbers

E11,...,E1m With 6%]- =1(j =1,...,m) such that the point

Y11 = Epuelufl (-’Du)
v=1

is a boundary point of the set R;.

The theory described so far is based on the fact that the underlying model (namely
g1) is known by the experimenter before the experiments are carried out, which is seldom
the case in practical applications. We will now consider optimal designs which are robust

with respect to a given set of models.

To this end assume that the “true” model belongs to the given set of models

fn = {gl(m)a' .. )gn(z)}'
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For every model we want to estimate a linear combination of the parameters c} 6, (£ =
1,...,n). For example, if we want to estimate the (unknown) regression function g(z)
at a given point ¢ we choose ¢ = fi(zo) (£ = 1,...,n). Let Bi,..., B, denote positive
numbers with sum 1, the vector 8 = (B1,...,0») is called a prior for the class F, and
Be reflects the experimenters belief about the adequacy of the model g (£ = 1,...,n).
Let ¢ = (c],...,cI)T, a design ¢ (for which all linear combinations c} §; are estimable) is

called c-optimal for the class F, with respect to the prior g if it minimizes

n

Bp(¢) = Belog [c; My (€)ed].

t_

Note that the condition of the estimability of the linear combinations c7 8, implies
ce € range My(§) for{=1,...,n

and that an c-optimal design will allow good estimates of the linear combination ¢ 6, in

every model of F,.

The outline of the paper is as follows. In section 2 we will give a geometric charac-
terization of the c-optimal designs similar to the characterization of Elfing (1952), which
is obtained as a special case of the general theory. In section 3 we will use these results
to prove an Elfing type theorem for the D-optimality criterion. Section 4 gives examples
to get some insight into the geometric structure of the underlying problems. Finally in
the appendix we give proofs of some theorems used in section 2 by an application of the

results given in Pukelsheim (1980).

2. The Generalized Elfing Theorem

With the notation of section 1 we have the following equivalent condition for c-optimal
designs for the class F,, with respect to the prior 8. The proof involves general arguments

of information functionals as given in Pukelsheim (1980) and is deferred to the appendix.

Theorem 2.1. A design ¢ (for which ¢l is estimable £ = 1,...,n) is optimal for the class
Fn with respect to the prior 4 if and only if there exist generalized inverses Gy,..., G, of
Mi(§),...,M,(£) such that
(et Gefe(®)) _
Z B e S !
My (E)ce —
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for all z € X. The equal sign in this inequality appears only for the support points of the

optimal design.

We will now define a set R, corresponding to the set Ry of the original Elfing theorem.
Let R, denote the convex hull of the set

{eff @), eafa@)T|  zeX, ) Bej=1}
=1

which is also a convex, symmetric and compact subset of R¥:7+t¥s containing the point
0. Note that in the case n = 1 (1 = 1) this set is exactly the set given in Theorem 1.1. In
general the structure of R, is very complicated and will be illustrated in some examples of
section 4. We are now able to prove an analogous geometric characterization of c-optimal

designs for the class F,, with respect to a prior 8 as given in Theorem 1.1.

Theorem 2.2. A design £ = {;:} B (for which cJ 6, is estimable £ = 1,...,n) is

c-optimal for the class F, with respect to the prior # if and only if there exist positive

numbers vi,...,7v, and numbers €11,...,E1m, €215+ --3E2my -+ ,Enly---,Enm sSuch that
m

(A) Yece = E puee fo(zy) £=1,...,n
v=1

(B) The point (y1c¥,...,7acl)T is a boundary point of the set R, with a supporting

hyperplane (af,...,al)7.

' n

(©) ycgar =0 £=1,...,n
(D) Zﬂg&%,,=1 v=1,...,m
=1

Proof: To prove the necessity of the theorem we will use the equivalence theorem 2.1.
m

Let £ = { :: } . denote an optimal design for the class F,, with respect to the prior f.

By Theorem 2.1. there exist generalized inverses of M;(§),..., M,(€) such that

(cg Gefe(z))* - all
(2.1) Zﬂ M (E)ce <1 forallze X



and

(7 Gefe(z0))® _
(2.2) ;ﬁe TM; (E)ee =1 forallv=1,...,m.

Let v, 2 = ¢f M, (€)ce and dg = 44Gyce (£ = 1,...,n) then we have from the estimability
of cfﬂg by the design £

YeCe = Mg(f)de = Zpyag,,fg(:lz,,) £=1,...,m
v=1

where eg = ff(z,)de (£ =1,...n, v =1,...,m). This proves the representation given in

(A). Equation (2.2) and the representation of y.c, yield

(2.3) > Bevecide =) Be(d] fo(zn) = _ Becy, =1

=1 =1 =1
which shows condition (D). From the inequality (2.1) and the Cauchy-Schwarz inequality
we get

n 2 n n

(Z ﬂe(dfezfe(m))> <Y Beei- Yy Beldf fe(z)) < 1
=1 £=1 =1

for all z € X, whenever the numberse;, ..., ¢, satisfy the equation Y Bee? = 1. Observing

£=1

(2.3) we thus see that the point (y1¢f,...,ncl)T is a boundary point with supporting

hyperplane ($1d7,. .., BndL)T which proves (B). Finally the condition (C) follows readily
from the definition of v, and d;.

To prove sufficiency let (af,...,al)T denote a supporting hyperplane of R, at the
boundary point (y1cT,...,7mel)T and let ap = Bedy (£ =1,...,n). Thus we have for all
TE€X, (€1,...,62)T with 3 Bee? =1

. =1

(2.4) 1) (Bede) " (eefe(z)) <1
=1

We will now show that (2.4) implies the inequality

(2.5) i Be(dT fo(2))? <1 forallz € X
=1

5



To do this we have to distinguish two cases. At first consider a z € X for which d fe(z) =0

(£ =1,...,n), in this case (2.5) is obvious. In the other case define
dj fe(z)

; Be(dF fo(=))?

6((.’1))= €=1,...,n,

then it follows that ) Bee%(z) = 1 and (2.4) must hold for this vector which yields
=1

12 [i(ﬂedz)T(W(w)fe(w))} = Be(d] fe(=))*
=1 =1

and proves (2.5). Because (B1d7,...,B.dE)T is a supporting hyperplane at the point

(r1el,...,1mel)T we obtain from (2.4) (used at z = z,) and the representation (A)

1= Bevecide = pv Y ewwBefi (mn)de < 1
£=1

v=1 £=1

which implies (note that | 3 Becen f7 (z0)de| < 1)
£=1

Zﬂleluf[T(xu)dl =1 (v=1,...,m)
£=1

By an application of the Cauchy Schwarz inequality we now get for v =1,...,m
(2.6) 1= () Beeen f7 (w0)de)* <Y Becs, D Be(d7 fa(zn))? <1
=1 =1 £=1

where the last inequality results from (2.5) and condition (D). Therefore we have equality

in the Cauchy-Schwarz inequality and it follows

VBeeew = M/ Be dF fe(z,)  £=1,...,n, v=1,....,m

or equivalently

E[,,=/\yd{f[($y) £=1,...,n, v=1,...,m.

From the normalizing conditions on the &g, in (D) we obtain observing (2.6) (v = 1,...,m)
2.7) L=D Bech, =N ) eldf fu(z)) = X,
=1 =1
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On the other hand we have from the property that (y1¢7,...,v2cI)7 is a boundary point

of R, with supporting hyperplane (f1d7, ..., B,di)T

1= Zﬂg’ﬂc,{dg = Zpu Zﬂlelu(d’{fl(‘t"))
=1

v=1 £=1
m m m
= ZPW\V zﬂl(dzfl($V))2 = ZPW\V
v=1 =1 v=1
Equation (2.7), p» 2 0, Y. py, = 1 now show that A, = 1 whenever p, > 0 and this implies
v=1
o = dF fo(z,) L=1,...,n, v=1,...,m

where we have assumed that in the representation (A) all p, are positive (without loss of

generality). From this representation we thus obtain for £=1,...,n
yece =Y pueesfe(zv) =Y pufe(xo)fE (w2)de = Mo(€)de
v=1 v=1

From the definition of a generalized inverse (see Searle (1982), p. 238) it follows that there
exist generalized inverses Gi,...,G, of the matrices M;(€),...,M,(§) such that

dg=’)/[GgCg €=1,...,n.

By the condition (D) we thus have (note that a; = 8¢d; and that c{G’gcz is invariant with

respect to the choice of the generalized inverse because c] 6§, is estimable)
1= yeci de = 7ic; Geee = vieg My (E)ee (£=1,...,n)

and the inequality (2.5) yields that there exist generalized inverses G1,. .., G, such that

G
Eﬂ (CT A;f‘((gz <1 forallze X,

By an application of Theorem 2.1 we now see that the design ¢ is optimal for the class F,,

with respect to the prior £, which completes the proof of Theorem 2.2.

Note that Theorem 2.2 reduces to the original Elfing theorem if n = 1 (8, = 1)
and that in this case the condition (C) is obvious while condition (D) yields &1, = F1
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(v = 1,...,m). The Theorem can easily be transferred to the case where the experi-
menter is not only interested to estimate one linear combination cfag in the model g,
but several combinations, i.e. A7 8, for some matrix A, € R¥*% (¢ = 1,...,n). Let
A = (AT,...,AT)T a design ¢ is called A optimal for the class F, with respect to the
prior @ if it minimizes

Zﬂe log [trace {M[(f)AgAf}]
£=1

By an application of an analogous equivalence theorem as given in Theorem 2.1 (see The-
orem 5.8 in the appendix) we can prove a similar geometric characterization for A optimal
designs for the class F,, with respect to the prior §. The proceeding is the same as in the
proof of Theorem 2.2 and the details therefore omitted. Note that this result contains the
Elfing theorem of Studden (1971) for A-optimal designs as the special case n =1, 8; = 1.

Theorem 2.3. Let R,, denote the convex hull of the set

{((A@)ED)Ts- ., (fal@)en)D)T| z€ X, er € RV, Y By trace (e7eg) = 1)

£=1

m
The design € = {:" } . is A-optimal for the class F,, with respect to the prior § if and
v v=

only if there exist positive numbers 71,...,v, and vectors g¢, € R1**¢ (£ =1,...,n, v =

1,...,m) such that

(A) YeAg = Zpyfe(x,,)eg,, L=1,...,n
v=1

(B) There exists a “supporting hyperplane” D = (DT,..., DI)T (D, € R*¥:*3¢) of R,, at
the “boundary point” (1147,...,7,AT)T such that

(1) Y trace 4, D} Ay = 1 £=1,...,n)
£=1

(2) 122:31 trace (D{fg(w)sg) <1

for all z € X and e, € R*™* with Y B, trace (el e¢) =1
=1

(C) ~e¢ trace D{Ag = e £=1,...,n)
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(D) z,@e trace (e 4,) = 1 v=1,...,m

It is obvious that Theorem 2.3 gives Theorem 2.2 for the case s, =14 =1,...,n
However, the set R, in this theorem is a subset of a very complicated space (namely
RF1Xs1 x RF2Xs2 x . x RF»Xs») and the geometric structure of the derived results is
more intuitive for the case considered in Theorem 2.2, which is the reason why we have
given the proof for the last named Theorem. This Theorem will also allow to give an
Elfing characterization for the D-optimality criterion, which is considered in the following

section.

3. A Characterization of D-optimality

In this section we will investigate a special case of Theorem 2.2, which is of particular
interest because it will give a geometric characterization of Elfing type for the D-optimal
design problem. To this end consider the “nested” models

(=) = fu(z)

f3(z) = (fule), fz(z))
(3.1)

f;f(x) = (fll(x), f12($)’ v )fln(m))
and the vectors “for the highest coefficient” & = (0,...,0,1)T € R, £ = 1,...,n. For
this special choice (which is of particular interest to decide how many regression functions

J1e(z) have to be included in the regression model) the optimality criterion ®g(¢) reduces

to
‘ det Mg(f)
and for the prior 8 = ... = 8, = % we obtain the D-optimality criterion. Thus we have

(by an application of Theorem 2.2) the following geometric characterization of D-optimal

designs.



Theorem 3.1. A design { = {”" }m_l is D-optimal for the model gn(z) = a1 f11(z) +

Py
...+ ap fin(z) if and only if there exist positive numbers v, > 0 (£ = 1,...,n) and numbers
E11y+++yElmy~--3Enly« -+ »Enm such that
m
(A) veée = (0,...,0,%)" =Y poenfo(z,) £=1,...,n
v=1

(B) The point (71&7,...,762)T = (11,0,72,0,0,73,---,0,...,0,95)T is a boundary point
of the convex hull of the set

Ro={(Efl (@) eafl@)T|  z€X, Y ef=n} C R/

=1

with supporting hyperplane & (d¥,df, ..., dD)T, dT = (du, ..., den)

(C) ’ﬂdu:l for€=1,...,n
(D) Ze%,:n forv=1,...,m.
£=1

Examples to illustrate the theorem are given in the next section. We will finish this
section proving a certain orthogonality condition of linear combinations of the functions
given in (3.1). To this end consider the optimality criterion in (3.2) and an optimal design

with respect to this criterion (i.e. an c-optimal design for the class F,, with respect to

the prior 8 where the functions f] (z) are given by (3.1) and ¢ = (&7,...,&)T with
&l = (0,...,0,1)T). Define as in the proof of Theorem 2.2 (note that for the vector
c = (&,...,60)T we may assume that all information matrices My(£g) of the optimal

design {3 are non singular)
’7[2 = E{Ml—l(fﬁ)ég, de = ’szz—l(fﬁ)ég (£=1,...,n)
and consider the “polynomials”

(3.3) P(z) =df fo(z) £=1,...,n.
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Then we have
[ P T @es(@) = &F [ fae)f7 @)dtol@) =
X X
ey My (E)Me(€) = veée = (0,...,0,7e)
and

[ Pro)dea(a) = dF Maleo)de = 26 M = 1.
X

Thus we have proved the following theorem.

Proposition 3.2. The “polynomials” {P(z)}¢>0 defined by (3.3) are orthonormal with
respect to the measure dfg(z), where {3 is the c-optimal design for the class F;,, with

respect to the prior 8 and ¢ = (&7,...,80)T (& = (0,...,0,1)T).

4. Examples

In this section we will give some examples to get more insight into the geometric

structure of the optimal design problems investigated in section 2 and 3.

Example 4.1. (Linear or quadratic regression through the origin). Let n = 2, ky =1,
ky =1, fi(z) = z, f2(z) = 2% and X = [0, 1], by the definition of R; as the convex hull of
the set

{(erz,022")"] 2 €[0,1],  Brel + Bres = 1)

we have that R, is given by the ellipsoid Ry = {(z,y)T| B1z%+ B2y < 1}. Now let ¢; = 2,
¢z = 4 (suppose that we want to estimate fi(z) or f(z) at the point zo = 2), 11 = 3,

Yo = i and g the design which concentrates mass 1 at the point 1. Thus we have

() = () = (i)
Y2C2 1 e2f2(1)
where p; = 1, 5 = €2 = 1. The supporting hyperplane of R, at the point (1,1)7 is

given by (1, f2) and the conditions of Theorem 2.2 readily checked which shows that the
c-optimal design for the class F; is supported at the point 1 (independent of the prior 3).
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Example 4.2. Let n =2, k; = ko =1, fi(z) =z, fo(z) =1 —z and X = [0,1]. Fora
prior # = (B1,P2) the set R is the convex hull of the set

() Com) (F7) (97))

which is given in Figure 4.1.

4 X
;.(0,1)
// \\ ‘
\ 3l
\ = (33
/ \ d= (TJ 2-)
/ \
; \
/l 1 A
, L \
/ L1y 3
=\3 3 4
//’ R-l c=(23) \ (chx‘%) (1-3)
2 / .
(._;.o)l/ \\ (i)O)
o A
'\\;4 A / '
\\ / X1
\ ’,
. /
. /
\ Y 4
\ Y4
\ /
\ y;
\ 7
\\ -4 4 /
\\ /
\ /!
\ /
\ /
\\ /
r4
\\ //
}'(o,-z)

Figure 4.1. The set R; for fi(z) =z, fa(z) =1—=, b1 =3/4, B2 =1/4
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Suppose we want to estimate one of the regression functions fi(z) or fa(z) at the point

To = % Thus we choose ¢; = ¢3 = % From Figure 4.1 it is evident that the point

= = 132 - + 181 b1
(2\/ B2 - % VB2 1,—ﬂ2 1 0
is a boundary point of Ry with supporting hyperplane d = (v/B1,v/B2)T (note that

the boundary of R, in this part consists of the set {(z,—+/B1/B2(z — 1/v/PB1))T|z €
[0,1/4/B1]}). The quantities in the representation (A) of Theorem 2.2 are given by p, = S,

pr =P, 21 =0,z =1, 611 =0, €12 = 1//P1 €21 = 1/Pa, €22 = 0. The conditions
(C) and (D) are easily checked and we conclude that the c-optimal design for the class

Fa2 = {z,1 — z} is supported at the points 0 and 1 with masses 8, and ;.

Example 4.3. In this example we want to determine the D-optimal design for the model
g2(z) = a1(l — z) + azz? where z € [0,1]. To thisend let n = 2, ky = 1, ky = 2
ff(z) = 1— =z and fI(z) = (1 — z,2%). We will solve the more general problem of
determining a c-optimal design for the class F2 with respect to the prior g = (1/2,1/2)
where ¢ = (c1,¢3)T = (1, k1, h2). The set R defined in section 2 is given by

(4.1) Ry = {(1,22,23)7] 22 +22 <2, |os| < V2 — y/2? + 22}

and is depicted in Figure 4.2.

We have to distinguish the cases h; = 0 and hy # 0.

(A) hy = 0: In this case the vector ¢ is given by ¢ = (cT,¢l)T = (1,h1,0)T which
shows that the vector (y1c],7¥2¢i) can only intersect the boundary of R, at the curve
K = {(z1,22,0)T| 22+ z2 = 2} which is obtained from the point (7 (0), fZ (0))7, i.e.

(e e}

Therefore the c-optimal design (for the vector ¢ = (1, 1,0)T) puts mass 1 at the point 0.
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Figure 4.2. The set R, for the models fI(z) = 1 -z, ff(z) = (1 — z,z?)

(B) hg # 0: In this case the vector (yi¢],v2¢)T touches the boundary of R, at the
some point ¢ € 3R, which is a convex combination of a point of K and one of the points
(0,0,v2)T or (0,0,—v/2)7 which depends on the sign of hy. Therefore we see that the
c-optimal design is supported at the points 0 and 1. From now on we will assume for

definiteness that hy > 0.

The calculation of the weights is more complicated because we have to determine the

unknown quantities 1,72, €11, €12, €21, €22 used in Theorem 2.2. First we remark that

14



the condition (y1¢f,72¢3 )T € R, implies
(4.2) yoha = V2 — /72 ++3hi.

Let d = %(dl ,d2, d3)T denote the supporting hyperplane of R at the point (y1¢f,y2¢3 )T =

(71,72h1,72h2)T then we have from the condition (C) of Theorem 2.2

-1
71
(4.3) d= ( do ) for some dy € R
(1 = v2h1d2)/(v2h2)

and from the property of the supporting hyperplane we get (note that we have assumed

h2>0) 0
i
dT —_—— 2h1 — =
() (5)] -

dy — 7i + 73k — ehe
Y2ha[\/7} + V3h3 + y2hs)

which implies

From (4.3) and (4.2) we thus obtain for the supporting hyperplane 1d at the point

(11T, 72¢d)T by straight forward calculations

1 1 —=42v;h
d= 7117—7“"\/§)T=(d?,d§)T
’72h1

and by the definition €5, = d7 fi(z,) (compare with the proof of Theorem 2.2) we have
en = difil0) = ¥ e = dffo(0) = =Zuk

vy2h1
12 = difi(l) = 0 €22 = dJ f2(1)

V2

From condition (A) of Theorem 2.2 we have the equation

051 €11 0
Y2h1 | =p1 | €21 | +p2| O
Y2ha 0 €22

which yields p1 =92, p; = 327’%2—, p1 = 1(%’2-"‘7)—; and p; + p2 = 1. From these equations we
- 212

get

(4.4) 12hs = V2(1 —})
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(4.5) pr=9% pp=1—7}

2 2 2
(4.6) 2vi [1 — :—%] — 3 [1 — 4%] — 2% =
From (4.3), (4.4) and (4.5) it can easily be shown that 3(di,dz,ds) - (1,h1,h2)T =1
and that the &4, satisfy condition (D) of Theorem 2.2 (note that we have used all other
conditions of this theorem to derive (4.3), (4.4) and (4.5)). Thus we see that the c-optimal
design for the class F, with respect to the prior 8 = (1/2,1/2) (¢ = (1,h1,h2)T) puts
masses p; = 72 and p, = 1 — 72 at the points 0 and 1 where 4? is the positive solution of

the equation
(4.7) 293 (h3 — k1) — 11 (k3 — 4h) — 2T = 0.

Note that this result also includes the case hy = 0 for which (4.7) reduces to (y2 —1)% = 0.
For the vector ¢ = (1,0,1) (h1 = 01, h; = 1) we obtain the D-optimal design for the model
a1(l — z) + azz? (compare with Theorem 3.1) which puts equal masses at the points 0

and 1.

Example 4.4. We will now show that the condition (C) is necessary to obtain the
equivalence of Theorem 2.2. To thisend let n = 2, §; = B = %, kv = 2,ky = 3,
fE(z)=1,z), fI(z) =(1,z,2%), T = (cT,cl) where ¢ =(1,2) and ¢] =(1,2,4) (thus

we want to estimate a linear or quadratic regression at the point zo = 2). Consider the

design { which puts masses 2/11, 3/11, 6/11 at the points —1, 0, 1 and let 17 = —4/3/2,
€12 =0, €13 = 1/3/2, €21 = 1/\/5, €22 = —V/2 and €33 = 1//2, then we have the following
representations

2N Y pen 2 (N pe B (N 2 A3 (N 2
fugploy) TR o) T8I\ T 11V 2\ T
1 1
2 3 6 1
621ﬁ(-11)+622ﬁ( )-I-Ezsﬁ (}) —-1—1-\/5( )—’}’262
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where v, = ﬁ\/g, Yo = 112. Thus the design ¢ satisfies the conditions (A) and (D) of
Theorem 2.2. To prove that the point (y1¢f,v2¢7)7T is a boundary point of Ry C R® define

d = (df ,d¥)T where
-2/3
3/0 3
w=3() 7( ‘1’ )

then we have yc¢Td = y1¢f dy + v2¢3 dz = 2 and by the Cauchy Schwarz inequality
(erfi (@)dr) + (€3 fa(2)da) < (e + DI(f] (2)d1)? + (f7 (2)d2)?]

9
2

3 2 9 2 2 2 1 2 [
P —_ —_— = —_ — —_ <
=—z°+ -(z 2/3) (z )+ 2

whenever e2+¢3 = 2 and z € [—1,1]. Therefore the point ycI = (11¢T, y2¢7 ) is a boundary
point of the set Rs with supporting hyperplane %d = (%dl, %dg)T. Thus all conditions

of Theorem 2.2 are satisfied except for condition (C) (for example ;dfyic; = 12). If

1) we obtain from

the design { would be c-optimal with respect to the prior f = (%, 2

Theorem 2.1 and straight forward algebra the inequality

1 (T M7HE fe(2))? 11 11,3
EZ chf\ljl(ﬁ)Cg - 1—6—$2 + E(Zzz -l

£=1
for all z € [—1,1]. But for £ = 0 this inequality does not hold and thus ¢ is not a c-optimal
design for F, which shows that condition (C) of Theorem 2.2 can not be omitted.

5. Appendix (General equivalence theorems for model robust designs).

In this section we will give a proof of the equivalence theorem 2.2. To this end we
will derive similar results as given in Pukelsheim (1980) and prove a general equivalence
theorem in the model robust setup, which contains Theorem 2.2 as a special case. We will

also use the same notation as given by Pukelsheim (1980).

Let NND(k) denote the set of all nonnegative definite matrices A € R¥** and simi-
larly PD(k) the set of all positive definite matrices. For a fixed matrix K € R¥*® of rank
s define A as the set of all A € NND(k) whose range contains the range of K. Let J
denote the function from NND(k) into NND(s) which maps every A € NND(k) into
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(KTA-K)™! € NND(s) if A € Ak and into 0 otherwise. An information functional j on

NN D(s) is a real valued function which satisfies the conditions

(i) 4(B)=20 V B e NND(s)
51 (i) J(B)>0 V B PD(s)
(&1 (iii) j(AB) = Aj(B) VY B e NND(s) VA>0

(iv) j(B+C)>j(B)+j(C) V B,C € NND(s).
The conditions (iii) and (iv) are called positive homogenity and superadditivity. Typical ex-
amples of information functionals are the ®,-optimality criteria (Kiefer (1974), Pukelsheim

(1980))

(trace C?/s)'/? if —co<p<1,p#0
(5.2) 7p(C) = (det C)/* ifp=0

Amin(C) if p=—o0
The polar function j° (defined on NND(s)) is given by
trace (CTD)

3(C)

Let M denote a compact convex subset of NN D(k) for which M N Ag # 0, then we have
the following theorem (see Pukelsheim (1980), Theorem 5).

(5.3) 7°(D) = inf{ | C e PD(s)}

Theorem 5.1. Let M € M N Ak, C = J(M) = (KTM~K)™!, then M maximizes the
function j o J with respect to M if and only if there exists a generalized inverse G of M

and a matrix D € NND(s) with the properties

(1) §(C)-j°(D) = trace (CTD) =1

(2) trace (KTGAGTKCDC)<1  forall Ae M

If M maximizes j o J then for every contracting generalized inverse of M and a matrix D

with these properties we have equality in (2) for every matrix A which maximizes j o J.

Note that the above theorem can be applied to derive an equivalence theorem for the

optimal design problem described in section 1 when n = 1 (K = ¢;, M = {M(é)|f is a
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probability measure on X'}, j(c1) = ¢1, j°(d1) = d1). However, you can not apply this
theorem in the model robust situation described in section 1 (i.e. n > 2). We will now
derive an equivalence theorem for this situation which contains Theorem 5.1 as a special
case. The proceeding is similar to that given in Pukelsheim (1980) and we will only state

the main theorems and sketch the differences in the proofs.

For£=1,...,nlet K; € R¥*3t denote a fixed k¢ X s; matrix of rank s; and consider
n information functionals j; : NND(sg) — R»o. For an adequate description of the

model robust set up consider the set
NND(ki,...,ks) :={C =(C1,...,Co)T| Co € NND(ky) £=1,...,n}

of all matrix valued vectors C, where the £-th coordinate consists of a nonnegative kg x kg

matrix (£ = 1,...,n). We define the function j from NND(sy,...,s,) into R>¢ by
(5.4) i(€)=[[{ieC)}** ¥ CE€NND(sy,...,s5),
=1

where the (; are positive numbers with sum 1.

Proposition 5.2. Let j; denote information functionals defined on NND(s;), B¢ > 0
(£=1,...,n)and ) B¢ = 1. The function j defined by (5.2) is an information functional
=1

on NND(sl,...,snS.

Proof: Condition (i) and (ii) of (5.1) are obvious, while (iii) follows from Y 8¢ = 1 and
=1
the fact that the j, are information functionals. To prove (iv) we use the well known

inequality (see Roberts and Varberg (1973), p. 190)

n n n
(5.5) H zyt < ZO{[:I:[ V 2,20, ag >0, zag =1
£=1 =1

£=1
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which implies for “matrices” B = (By,...,B,)T ,C = (Cy,...,Cn)T € NND(s1,...,5,)

i  [lGamo+idcor: e+ T
i(B+C) = []GuBe + Co)Y > = 7 [ Je(Be)™ + J'(C)‘]
£=1 o ‘ }:Il jg(Bg)ﬂ‘ + [1:11 jz(Cg)ﬂl =1 =1 i

. Jje(Be) 0 Jje(Ce) b
H(iz(Be)+je(Ct)> +£1_—__Il (jz(Be)+jz(Ct)) }

£=1

= |[TseBoP + [Lietco {
| £=1 =1 J

vV

1T made o TToente]| I % je(Be) " 7e(Co) -
_EM(Bz)ﬁ +£=]_—IIJ£(Cz)ﬂ - {Zﬂljt(B£)+je(C£) +Zﬂ£je(Be)+jz(Cg)}

=1 =1

= [[ (B + [[ 5e(Co)” = i(B) +i(C).
£=1 £=1

This shows property (iv) of (5.1) and completes the proof of the proposition.

For the vectors B,C € NND(sy,...,8,) define a scalar product by
< B,C >= Z,@g trace (B;Cg).
=1

The polar function j° (from NND(s1,...,s,) into R>¢) is defined in a similar way as in

(5.3)

<C,D >

(5.6) 7°(D) = inf{Wl C € PD(s1,...,3n)}

where PD(sy,...,s) denotes the set of all vectors C' = (C1,...,Cn)T € NND(s1,...,55)

whose components C; are positive definite matrices.

n
Theorem 5.3. Let jq,...,7, denote an information functionals and j(C) = [] je(Cr)?
£=1
then the polar function j° defined by (5.6) has the representation

(5.7) i°(D)=[]i¢(D)** ¥V DeNND(sy,...,sn)
=1

20



where j; denotes the polar function of j, (£=1,...,n).

Proof: We will first assume that some of the jj(D¢) are vanishing. Without loss of
generalization assume jJ(D¢) >0 (£ =1,...,n—1), jo(Dy) = 0 and let for every € > 0
C, denote a positive definite matrix such that
trace (CTD,,)
Ja(Chr)

Defining C, = Crn/jn(Cr) we have for every € > 0 a matrix o= PD(sy) with

0=ja(Dn) < <Jjn(Dn)te=e.
(5.8) 0 < trace (CTD,) <e, jn(Cn)=1

Now let Dy = Dy + I, £=1,...,n—1) (where I; € PD(s;) denotes the identity matrix)
and C = (¢Ds,...,eD,-1,C,)7, then we have for every ¢ > 0

n—1 . n—1 o
<6.D> (l_l B¢ trace (D{Dz) + Br)e , e; B¢ trace (D{Dg) + Bn
OSJ ('D)S j(é) S n—1 . . =& n—1 . -
zH1 bt jo(Dy)Pt eH Je(De)Pe
= =1

which shows that j°(D) = 0.

Now assume that jj(D¢) > 0 for all £ =1,...,n. From the definition of j; we have in

combination with (5.5)

5" B trace (CTDy) éﬁmmm@)

<C,D> ;5 S
i) - i(C) - 3(C)
[1 (G2(De)je(Ce))P: n |
2 S —5 = [1Ge (D)™
£=1

for all matrices C' € PD(sy,...,ss) which implies
i°(D) = [] Gz (Do)
£=1

To prove the converse inequality, we remark that (by the same reasoning as given in (5.8))
for every & > 0 there exist matrices Cy € PD(s;) (£ = 1,...,n) such that
trace (C7 Dy)

0 < jg(Dy) < =
¢(De) 2(Co)

<ji(De)+e, §u(Ce)jg(De) =1
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Let € = (C~'1, ceesy C~'n)T then we obtain from these inequalities for every ¢ > 0

3> By trace (CF D) é Beie(Ce)(jg(De) +¢)

i°(D) < B <=
[T 7e(Ce)Pe [T 7e(Ce)Pe
£=1 £=1
L4631 Beif(P)™ _ YT+ ipnd ~_B
= = - = 1]7e(De)™ |1+ = ,
[Ie=176(De)~7 E (De) ;h(DZ)

which proves the theorem.

For a given set M C NND(ky,...,k,) define its polar set

N ={BeNND(k,...,k))|<M,B> <1 VYV Me M}

and consider for fixed matrices K, € R¥*% (¢ =1,...,n) the mappings (£ =1,...

NND(k;) — NND(s)

Je: B o
M, — Jo(My) = {E)KEFMg Ky)™' if M, € Ag,

else

We now define a function J from NND(ky,...,k,) into NND(s1,...,8,) by
J(M) = (J1(M1), ..., Ju(Mp))T  forall M € NND(ky,...ky)
then the dual problem of the maximization problem
Maximize jo J(M)
(P) subject to M e M
is given by (KTNK = (K N, Ky,..., KT N, K,)T)
Minimize 1/j°(KTNK)
(D) subject to N e N

(see Pukelsheim (1980)). We thus have the following theorems
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Theorem 5.4. For every vector M = (M,...,M,)T € M and for every vector N =
(N1,...,N.)T € N we have

j°J(M) < 1/5°(KTNK)
with equality if and only if M, € Ak, (¢ = 1,...,n) and the matrices C = J(M) and
Di=K tT Ny¢K; satisfy the conditions

(1) 1= Zzn: Be trace (M[ Ny)
=1

(2) MyNy = K(C,KFNe (£=1,...,n)

(3) §e(Cp)js(De) = trace (CFDy) =1

Proof: From Pukelsheim (1980) we have (£ = 1,...,n) trace (M] N;) > trace (C} Dy)
with equality if and only if MyN; = K,C,K] N;. Observing the definition of the set A/ we
obtain

1> <M,N >= Zﬂg trace (MlTNg) > Zﬂg trace (C;FDg)

=1 =1
> Y Beie(Ce)ig(De) 2 §(C) - j°(D)
=1

where the last inequality follows from (5.5). The conditions (1), (2), (3) correspond to the
equal signs in this inequality (note that the products j¢(C¢)j;(De¢) must have a common

value, which corresponds to equality in (5.5) and that this value is 1 by (1) and (2))

Theorem 5.5.

1
o J(M) = min —————
fon (M) Nex j°(KTNEK)

Proof: Consider the logarithms of the above functionslog joJ(M)and —log j°(KTNK).
By a similar argument as in the proof of Proposition 5.2 it can be shown that the function

log joJ(M) is concave on M C NND(kq,...,ky). Define the functions

0 ifAeMCNND(ky,... kn)

oo else (A € Rkixk1 x| | x REnXEn)

-]
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log joJ(A) if A=(A1,...,A.)T, A¢ € Ag,
9(4) =

—00 else (A € RF1Xk1 x| x REnXkn)

and assume at first that M N PD(ky,...,k,) # 0. By a slight modification of Fenchel’s
Theorem (Rockafellar (1970) (note that we use a “weighted” scalar product < z,y >=

> Biziy; instead of the common product) we obtain
=1

(5.9) sup{g(4) — f(4)} = min{f*(B) - ¢*(B)}

where f* and ¢g* are the conjugate functions of f and g. By definition we have for every

vector B = (Bj,...,By) with symmetric elements By

g*(B) =inf{< A, B> —g(A) | Acc Ax,, £=1,...,n}

= inf{z Beltrace (A7 Be) —log jeo Jo(As)] | Ae € Ak,, £=1,...,n}
=1

= Beinf{trace (A7 By) —log jeo Jo(As) | Ae € Ak,}
£=1

=1+ Y Belog j{(K{ BeKy) =1+1log j°(KTBK)
=1

where we have used the identity ({ =1,...,n)
inf{trace (4] By) —log jeo Ji(As) | Ae€ Ak, } =1+1logjs (K7 BeKy)

(which was proved by Pukelsheim (1980)) and Theorem 5.3. The functions f* and ¢* have
the same value at B and ;[B + B7T] and thus the minimization problem can be carried
out over the set of vectors whose components are symmetric matrices. Take an arbitrary

B # 0 with ¢*(B) > —oo and this property, then we have from the representation
f*(B)=sup{< M,B>| M e M}
that f*(B) is positive and that the function
h() = £*(aB) - ¢"(aB) = af*(B) — 1 - log a log j°(KTBEK)
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attains it unique minimum at « = 1/f*(B). This minimum is given by
log f*(B) —log j°(KTBK) =1log j°(KTNK)

where N = B/f*(B) € N. This proves the theorem in the case M N PD(ky,...,kn) # 0.
The second part (M N PD(ki,...,k,) = 0) is treated in the same way as in Pukelsheim
(1980) (apply all arguments of this paper to the components of the vectors) and therefore

omitted.

Theorem 5.6. Let M = (My,...,M,;)T € M where M; € Ak, (£ = 1,...,n) and let
C = JM) = (KfM{K,)™,...,(KIM;K,)™")T. Then M maximizes the function
j o J if and only if there exist generalized inverses Gy,...,G, of M,..., M, and a matrix

D € NND(s1,...,3s) such that

(A) 3(€)5°(D) = [[(e(Ce)ie(De))P = Be trace (CF D) =1
=1 £=1

(B) ) Betrace K] GeAiGyK(CeDiCe <1 forall A= (4i,...,4m)" € M
=1

(C) §e(C)jg(De) = trace (CFD) =1 (£=1,...,n)

Whenever M maximizes j o J there exist matrices Gi,...,G, fulfilling (5.10) and
(D1,...,Dy) with these properties and we have for every matrix A also maximizing j o J

equality in (B).

Proof: For the direct part let M = (Mj,...,M,)T denote an optimal matrix. By a
similar reasoning as given in Pukelsheim (1980) it can be shown that there exist generalized

inverses Gi,...,G, of Mi,..., M, and an optimal solution of the dual problem N =
(N1,...,Nz)T such that

(5.10) Zﬂgu?Nwz = Zﬂgu{G{MgNgMngUg for all Up € Rk‘ (E = 1, ‘e ,n)

=1 £=1
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Let D = (KlTNlKl, e ,K,'I;NnKn) = KTNK. Since N is a optimal solution of the dual
problem (D) and M is an optimal solution of (P) we have equality in Theorem 5.4 which
shows (A) and (C)

1=3j(C)i*(D) = [ [(je(Ce)je(De))? =) Be trace (C7 D)
=1 =1

From condition (2) of the same theorem we obtain (by multiplying with N/ 2%y
M{N;M; = I(gCgDzCzKlT (fz 1,...,n)
and from (5.10) it follows that

z B¢ trace (KEG[A[G{K[C[D[C@) = E B¢ trace (AgG{MzNgMer)
(5.11) =1 n =1
' = Y B¢ trace (AeNg) =< A,N ><1

£=1

To prove the converse direction let Gy, ...,Gpn, D = (Dy,...,D,)T as stated in the theorem
and define N = (Nl,... ,Nn)T by Ny = G?KzCzDeCeKéTGg. From M, € AK[ we have
KIGKC¢=1I; € PD(s;) (£ =1,...,n) which shows (observing (C) and Theorem 5.3)

i*(KTNK) = [[ 52K Nekoy = [[ 32 (Do) = [[ de(Co™ = 1/5(C)
£=1 =1 =1

From condition (B) it follows that N € M which shows that M is the optimal solution of

the problem (P) and N is the optimal solution of the problem (D).

Whenever M and A = (4y,...,A,)T are optimal we have from (2) and (3) of Theo-
rem 5.4 and (5.11)

Zﬁg trace (KEG[A[G?K[C[D[C[) = Zﬂg trace (A{Ng) =1
£=1 £=1

which completes the proof.

We are now going back to the optimal design theory and the situation considered in

section 1 to section 4. Recall that the regression functions are given by

fo(z) = (fu(e),.. ., fur(2))T  £=1,...,n,
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the set M is now given by
M = {M() = (My(£),...,M.(6))T | € is a probability measure on X'}

and a design is called j-optimal for the class F, with respect to the prior 8 (for the
estimation of the parameter combinations K7 61,...,KT6,)if My(§) € Ak, (£=1,...,n)
and ¢ maximizes j o J(M(£)), where j is defined by (5.4). Then we have the following

Theorem.

Theorem 5.7. A design £ is j-optimal for the class of F,, with respect to the prior g if

and only if there exist generalized inverses G1,...,Gy of Mi(£),..., My(§) and a vector
D = (Dy,...,D,)T such that

§e(Ce)js(Dy) = trace (CFDy) =1
> Be trace (£ (2)G] KiCeDoCeK[ Gefe(z)) <1 forallz € X

£=1

where we have equality in this equation for all support points of every design which is

j-optimal for the class F, with respect to the prior 3.

Remark. Note that the support points of the optimal design have to satisfy the equation
Y Befi (2)Nefo(w) =1
=1

whenever N = (Ny,...,N,)T is an optimal covering cylinder of f(X)
(i.e. < f(z)fT(z), N > = BBefF (z)Nefe(z) < 1for all z € X).

For the j, criteria given in (5.2) Pukelsheim (1980) showed that the polar function of j,
is given by sj, where p+q = pq and that D € NN D(s) solves the equation j,(C)(j,)°(D) =
trace (CTD) = 1if and only if D = C?~!/trace (C?) (p > —00). Let us consider the case

p = —1 and let K, = A, € R*¥*3¢ then we have the following corollary which contains
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Theorem 2.1 as the special case s; = ... = s, = 1 and is used in the proof of Theorem 2.3

(7e(C) = j-1(C), £=1,...,n).

Theorem 5.8. A design ¢ (for which A} 6, is estimable £ = 1,...,n) is A-optimal for
the class F,, with respect to the prior 8, if and only if there exist generalized inverses

Gi,y...,Gn of M1(€),..., Myp(€) such that

iﬂl trace (A{G[f[(d))f}(.’l))G?Ag)

<1 forallze X
trace (AT M, As) - oren®

£=1

where we have equality if and only if z is a support point of an A-optimal design for

the class F,, with respect to the prior 3.
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