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ABSTRACT

The paper begins with a general, though ideosynchratic, discussion of noninformative
priors. This provides the background for motivating the recent and ongoing elaborations
of the reference prior method for developing noninformative priors, a method initiated
in Bernardo (1979). Included in this description of the reference prior method is a new
condition that has not previously appeared. Motivation for this new condition is found, in
part, in the Fraser, Monette, Ng (1984) example.

Extensive discussion of the motivation for reference priors and the specific steps in the
algorithm are given, with reference to new examples where appropriate. Also, technical
issues in implementing the algorithm are discussed.
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1. Introduction

1.1 Perspective on Noninformative Priors

In some sense, Bayesian analysis is a distinct field only because of noninformative
priors. This can certainly be argued from a historical perspective, noting that for virtually
200 years — from Bayes (1763) and Laplace (1774, 1812) through Jeffreys (1937, 1962)
— Bayesian statistics was essentially based on noninformative priors. Even today, the
overwhelming majority of applied Bayesian analyses use noninformative priors, at least in
part. Indeed the only proper priors that are commonly used in practice are those in the
early stages of hierarchical models, and these can virtually be thought of as part of the
model. (Of course, thinking of such hierarchical distributions as priors rather than, say,

random effects models is more natural and is inferentially superior.)

On a philosophical level, things are a bit murkier, but one can still argue for the
centrality of noninformative priors. Basically, Bayesian analysis with proper priors is not
clearly distinct from probability theory. Indeed, there have been a multitude of Bayesian
analyses done throughout history that were viewed as simply being probability analyses.
Bayesian analysis with noninformative priors typically does not fit within the usual proba-
bility calculus, however. Some Bayesians use foundational arguments to attempt to exclude
noninformative priors from consideration, but this also is murky. While axiomatic perspec-
tives typically do suggest that priors should be proper, sensible axiomatics do not rule out
proper finitely additive distributions, which operationally can be equivalent to noninforma-
tive priors: cf., Cifarelli and Regazzini (1987), Consonni and Veronese (1989), Heath and
Sudderth (1978), Hill and Lane (1984), Stone (1979), and Veronese and Consonni (1986).

Finally, even from a pragmatic viewpoint, it might pay to strongly associate Bayesian
analysis with use of noninformative priors. How often do we hear “I’'m not a Bayesian
because statistical inference must be objective” or “I use Bayesian analysis if I actually
have usable subjective information, but that is very rare.” Statements such as these
are, of course, contestable, but the rejoinders “Objectivity is a useless pursuit,” and “It

may be hard, but you always must try to quantify subjective information,” are much less



effective arguments than “If your statement were true, the best method of inference would

nevertheless be Bayesian analysis with noninformative priors.”

It is important, of course, to keep a balanced perspective. Thus today it is obviously
to the advantage of Bayesians to claim as their own all true probability inference and
to promote the use of subjective priors (especially for problems such as testing of precise
hypotheses in which there are no remotely sensible objective answers). And it is important
for noninformative prior Bayesians to acknowledge that they are treading on “improper”
ground, upon which they do not have the automatic coherency protection provided by
proper priors. The noninformative prior Bayesian can run afoul of the likelihood principle
(see Berger and Wolpert, 1988, for discussion), marginalization paradoxes (Dawid, Stone,
and Zidek, 1973; but see Jaynes, 1980), strong inconsistency or incoherency (cf. Stone,
1971 and 1979), and can even encounter the disaster of an improper posterior (see Ye and

Berger, 1991, for an example.)

In recognition of these dangers, there are two types of safeguards that are typically
pursued by noninformative prior Bayesians. The first, which is the subject of this paper,
is the development of a method of generating noninformative priors that seems to avoid
the potential problems. The second safeguard is to investigate robustness with respect
to the prior, possibly by Bayesian sensitivity studies but more commonly by frequentist
evaluation of the performance of the noninformative prior in repeated use. This last type
of safeguard is obviously controversial and must be used and interpreted with caution, but
it has historically been the most effective approach to discriminating among possible non-
informative priors. (Note that the perspective of this second safeguard is that of studying
a particular — or several — noninformative priors for a given model, and evaluating their

sensibility or performance.)

1.2 Perspective on Reference Priors

Bernardo (1979) initiated the reference prior approach to development of noninfor-
mative priors, following in the tradition of Laplace and Jeffreys. This tradition is the

pragmatic tradition that results are most important; the method should work. If examples



are found in which the method fails, it should be modified or adjusted to correct the prob-
lem. Thus Laplace (1774, 1812) found that, for the problems he encountered, it worked
exceptionally well to simply always choose the prior for 6 to be the constant 7(6) = 1 on
the parameter space ©. For very small sample sizes, however, it was observed that this
led to a significant inconsistency, in that the answer could change markedly depending
on the choice of parameterization. (A constant prior for one parameter will not typically

transform into a constant prior for another).

This led Jeffreys (1937, 1962) to propose the now famous Jeffreys prior, 7(§) =
\/det(1(6)), where I(6) is the Fisher information (see (1.3.1)) and “det” stands for de-
terminant. This method is invariant in the sense of yielding properly transformed priors
under reparameterization, and has proved to be remarkably successful in one-dimensional
problems. Jeffreys himself, however, noticed difficulties with the method when 6 is multi—

dimensional, and would then provide adhoc modifications to the prior.

Bernardo (1979) sought to remove the need for adhoc modifications by systematically
dividing multi-dimensional § = (6,62, ...,0;) into the “parameters of interest” and the
“nuisance parameters,” developing the noninformative prior in corresponding stages. As
with Jeffreys, this approach was based on information concepts, and indeed the approach

yielded the Jeffreys prior in usual one-dimensional problems.

Over the subsequent years and scores of applications, including Bayarri (1981, 1985),
Bernardo (1981, 1982, 1985), Bernardo and Girén (1988), Eaves (1985), Ferrandiz (1982),
Mendoza (1987, 1988), and Ye and Berger (1991), the reference prior method has been pro-
gressively defined and refined. The papers recording the evolutions in the method that are
summarized here include Berger and Bernardo (1989, 1991a, 1991b), Berger, Bernardo, and
Mendoza (1989), and Ye (1990). It is noteworthy that the primary impetus for refinement
has come from examples, especially the continually-being—invented “counterexamples” to
noninformative priors. This explains some of the apparent arbitrariness in the details of
the current reference prior method; where different choices were possible, it was through
extensive study of examples of application that the ambiguity was resolved. This ongo-

ing process is reviewed in this paper, with several previously unpublished conditions and



examples being highlighted.

The above should not be construed as an admission that the reference prior method is
solely adhoc. Far from it, the method is grounded in a very appealing heuristic which even
today is the source of new insight. For instance, the condition (2.2.5) in Section 2.2 has
only recently been added to our description of the reference prior method. This condition
arose out of study of the delightful Fraser, Monette, Ng (1984) counterexample (discussed

in Section 3.2), the resolution of which required us to return to the fundamental heuristic.

1.3 Perspective on Methods for Deriving Noninformative Priors

First, it is important to clarify that we are concerned here with methods of developing
noninformative priors, not noninformative priors themselves. A method takes as input the
statistical model (possibly including the design and/or stopping rule) and possibly the
actual data, and produces as output a prior distribution. (Ultimately, of course, it is
the posterior distribution which is desired; in some situations it might even be possible
to directly develop a noninformative or reference posterior.) Thus the Jeffreys “method”
takes the sample density f(z|f) for the data X € X, computes the Fisher information I(9),

i.e. the (k x k) matrix with elements

I,-,-(O) =—F, <5£;T logf(Xle)) , (1.3.1)

with Ey denoting expectation over X with 6 given, and finally produces the prior density

(6) = /det(I1(8)). (1.3.2)

In comparing methods of producing noninformative priors, a variety of criteria are involved.

The three most important criteria are simplicity, generality, and trustworthiness.

By far the simplest method is to follow Laplace and always choose m(f) = 1. In
practice this is, indeed, often quite reasonable, since (as partly argued by Laplace) pa-
rameterizations are often chosen to reflect a vague notion of prior uniformity. This simple
choice fails on enough problems of interest, however, that a more reliable general method

1s needed.



On the simplicity scale, the reference prior approach is at the opposite extreme. In-
deed, computation of a reference prior is so complex that it typically requires the involve-
ment of a research statistician. Of course, for each statistical model computation of the
associated reference priors need be done only once, with the resulting reference priors (or

perhaps posteriors) being made available in the literature.

In terms of generality, Laplace’s method and the reference prior method are virtually
universally applicable. The Jeffreys method is quite universal, but does require existence
of I(#) and, typically, additional regularity conditions such as asymptotic normality of the
model. Other methods vary widely in terms of generality, some applying only in univariate
problems, some requiring special group invariant or transformation structures, etc. Our

goal has been the development of a universal method.

Trustworthiness of the method is a rather nebulous concept, essentially referring to
how often the method yields a noninformative prior with undesirable properties. Un-
desirable properties include impropriety of the posterior (clearly the worst possibility),
inconsistency or incoherency of resulting statistical procedures, lack of invariance to repa-
rameterization, marginalization paradoxes, lack of reasonable coverage probabilities for
resulting Bayesian credible sets, and unremovable singularities in the posterior. The best
way to gauge the trustworthiness of a method is to try it on the large set of challenging
“counterexamples” to noninformative priors that been developed over the years. In this
sense the reference prior method is very trustworthy; it does not yield a bad answer in any

of the counterexamples.

Conspicuously absent in this discussion of methods for developing noninformative
priors has been the notion of how to define “noninformative.” Most methods begin with
some attempt at measuring the amount of information in a prior or the amount of influence
that the prior has on the answer. One could debate the sensibility or value of each such
measure (and, of course, we are supporters of the measure underlying reference priors)
but, on the whole, we feel that this is a somewhat tangential issue. No sensible absolute
way to define “noninformative” is likely to ever be found, and often the most natural ways

give the silliest answers (cf. Berger, Bernardo, and Mendoza, 1989).



Another aspect of this is the debate over the name “noninformative” versus, say,
“reference.” Many object to the former, feeling that it carries a false promise. Reference
priors are sensibly named (see Bernardo, 1979) and less objectionable in this regard. Other
names such as the “standard” or “default” prior have been proposed, the idea being that the
profession should ultimately agree on a standard default prior for use with each particular
model. Trying to change historical nomenclature is, however, generally a waste of time,
so we have chosen to continue using “noninformative” to refer to the general area, and

“reference” to refer specifically to reference priors.

No attempt is made here to survey the wide variety of methods for deriving a non-
informative prior and to evaluate them by the above criteria. The methods include those
in Akaike (1978), Box and Tiao (197;3), Chang and Eaves (1990), George and McCulloch
(1989), Geisser (1984), Good (1983), Hartigan (1964, 1983), Jaynes (1968, 1983), Novick
and Hall (1965), Rissanen (1983), Rosenkrantz (1977), Villegas (1977, 1981), and Zellner
(1977).

It is of interest to briefly discuss one other method for deriving noninformative priors
that is currently being intensely studied by a number of statisbticians, and which incor-
porates the distinction between parameters of interest and nuisance parameters. This is
the “frequentist coverage of credible sets” method. The idea is to consider 100(1 — a)%
one-sided Bayesian credible sets for the parameter of interest, arising from use of the non-
informative prior, and to compute the (asymptotic) frequentist coverage of the sets. A
prior for which this coverage is (asymptotically) 1 — « for all values of 6 is considered to
be optimally noninformative. The literature on this approach includes Stein (1965, 1985),
Tibshirani (1989), and Ghosh (1991). (See also, Eaton, 1982).

The simplicity and generality of this method are not yet fully clarified. In one-
dimensional problems it again yields the Jeffreys prior. In two—dimensional problems, with
a parameter of interest §; and nuisance parameter 63, it does provide a partial prescription
for determining the noninformative prior (cf., Tibshirani (1989) and Ghosh (1991)). First,

one must reparameterize so that 6, is orthogonal to #; (i.e., so that I(6) is a diagonal



matrix). Then the method specifies the noninformative prior to be any prior of the form

71'(01,02) = g(Gz)v I11(9) (133)

Methods for choosing g and extending this to higher dimensions are still under develop-
ment. Due to these uncertainties and the considerable difficulty (often near impossibility)
of orthogonalizing, the practicality of the method is uncertain, but it seems to work very
well when it can be applied, and may have something very interesting to say about the

reference prior method (see Section 3.3).

2. The Reference Prior Method

2.1 Introduction and Notation

In Section 2.2, the general reference prior method will be described. This method is
typically very hard to implement. For the regular case, in which asymptotic normality of
the model holds, a considerable simplification of the algorithm occurs. This simplification

is given in Section 2.3, which is a review of Berger and Bernardo (1991a and 1991b).

We assume that the 6; are separated into m groups of sizes nj,ns,...,nn,, and that
these groups are given by
01y = (61,---,0n,), 02y = (Ony41,- -, Onytny),
by = (Onii41y 50Ny -5 O0m) = (ONp_ 1415+ -5 O8),

J
where Nj = ) n;. Also, define

=1
9[]] = (0(1), ce ,9(]-)) = (91, v ,9NJ. ),
O~i) = (Bi41)5- -5 (m)) = (ON;415- -+, O0),
with the conventions that 6o} = 8 and ) is vacuous.

We will denote the “Kullback-Liebler distance” between two densities ¢ and h on ©
by

D(g,h) = /@ 9(6) log[g(6)/(8)]de. (2.1.1)
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Finally, let Z; = {X3,...,X:} be the random variable that would arise from # condi-

tionally independent replications of the original experiment, so that Z; has density
t
p(zl0) = [ f(x:l6). (2.1.2)
=1

2.2 The General Case

The general reference prior method can be described in four steps. Justification and

motivation will be given in Section 3.

. 0
Step 1. Choose a nested sequence {0*} of compact subsets of © such that U et =e.
=1
(This step is unnecessary if the reference priors turn out to be proper.)

Step 2. Order the coordinates (61, ... ,6;) and divide them into the m groups (1) -+ O(m)-
Usually it is best to have m = k, and the order should typically be according to inferential

importance; in particular, the first parameters should be the parameters of interest.

Step 3. For j =m,m —1,...,1, iteratively compute densities 7rf(0[~(j_1)]|9[j_1]), using

75 (B i—1)) 85-11) o 7510 (815110125 (B5) 165—1y), (22.1)
where ¢, 41 =1land hf is computed by the following two steps.

Step 3a: Define p¢(f;)|6};-1)) by

pt(8()|6j~1]) ox exp {/p(zt|€[j])logp(9(]-)|zt,0[j_1] )dzt} , (2.2.2)

where (using p(-) generically to represent the conditional density of the given variables)

p(z:|0p5) = / p(ze|6)5 11 (Bs) 6157) 61 s,

(2.2.3)
P(0(5) |21, 615-17) o< p(2¢|805)pe(0 (5015 -17)-
Step 3b: Assuming the limit exists, define
B30 |6i—x1) = lim pe(6(s)16);-1y)- (2.24)

8



Comment: In (2.2.2), p; is only defined implicitly, since p(6; 7 12¢,6[5-1)) on the right hand
side also depends on p; (see 2.2.3)). In practice, it is thus usually very difficult to compute
the p; and find their limit. In the regular case discussed in the next section, however, this

difficulty can be circumvented.
Step 4. Define a reference prior, 7(#), as any prior for which
EXD(74(8]X),n(8)X)) — 0 as £ — oo, (2.2.5)
where D is defined in 2.1.1 and EX is expectation with respect to
v'e) = | flaloynt)as
(writing 7f(6) for mf (B(~016}0]))- Typically one determines 7(8) by the simple relation

£
- my(6)
m(f) = thm (67’

(2.2.6)

where 6* is any fixed point in © with positive density for all m¢, and then verifies that

(2.2.5) is satisfied.

Comment: Note that (2.2.5) really defines a reference posterior; we convert to a reference

prior mainly for pedagogical reasons.

2.3 The Regular Case

If the model is regular, in the sense that the replicated p(z:|6) is asymptotically normal,
then Step 3 in Section 2.2 can be done in an explicit fashion. The following notation is

needed, where I(6) is the Fisher information matrix with elements given by (1.3.1) and

5(8) = (1(6))~*. Often, we will write just I and S for these matrices.

Write S as

A AL, ... AL,

A21 A22 ... AfnZ
S= . ) .

Aml Am2 e Amm

so that A;; is (n; X n;), and define
S; = upper left (N; x N;) corner of S, with S,, =5, and
H; = SJTI.



Then the matrices
hj = lower right (n; x nj) corner of Hj,j=1,...,m

will be of central importance. Expressions for these matrices are given in the Appendix.
In particular, hy = Hy = A7 and, if S is a block diagonal matrix, (i.e., Aij = 0 for all
i # 7) then h; EA]-_jl,j =1,...,m.

Finally, if ©* C ©, we will define

©*(0151) = {0(i+1): (6315 95+1), O~ (j+1))) € ©F for some Oty }; (2.3.1)

we will use the common symbols

1 ifyeQ
0 otherwise,

|A| = determinant of A, Ilg(y) = {

1-1 1-1
and will adopt the conventions that ) (-) =0 and [](-) = 1.
=l

=]
Step 3 from Section 2.2 can, in the regular case, by replaced by the following, which
is essentially taken from Berger and Bernardo (1991b).

Step 3': To start, define

T (Ofm(m—1)] 6m—11) = 710 (B(m) 1Om—17)
_ |hm(9)|1/2101(0[,,,_1])(9(m)) (2.3.2)
fe‘(g[m—ll) |hm(0)|1/2d0(m)

Forj=m—-1,m~2,...,1, define

(8 16ri_a1) i1 (O~ 1611) exp{4 E;[(log |h;(6)]) |6y, ooy _.y)(00))
Ao Torto, o P (S EL{(log [, (0)D16; Y0

(2.3.3)

where
E;jl9(8)l6;] = / 9(0)7541 (811163 ) By (2.34)
{61~51:(81,01~51) €O}
(Note that it is easy to check, by integrating in turn over 8(m), O(m—1)s-- -, 0(j), that 7r;-
defines a probability distribution.)

10



The calculation of the m—group reference prior is greatly simplified under the condition

|hj(6)| depends only on 6}, for j =1,...,m. (2.3.5)

Lemma 1. If (2.8.5) holds, then

! _ L |hz(9)|1/2 |
(0) - (z].=11 f(—)'(o[,-_ll) IhZ(e)I1/2d0(,)> 16 (9) (236)

Proof. Using (2.3.5) it is clear that
E;llog |h;(6)116;)] = log |25(8)].
The result is immediate from (2.3.3). O

3. Motivation for the Reference Prior Method

3.1 Information and Replication

For simplicity, suppose there is a single parameter 6 with a compact © (or that we are
operating on the compact ©' C ©). Suppose that it is desired to define a noninformative
prior, m(f), as that prior which “maximizes the amount of information about 8 provided
by the data, x.” The most natural measure of the expected information about 6 provided

by X, when 7 is the prior distribution, is (Shannon, 1948; Lindley, 1956)
I? = EXD(ﬂ'(€|X), 7(6)), (3.1.1)

where D is the “Kullback-Liebler distance” defined in (2.1.1) and EX stands for expecta-

tion with respect to the marginal density of X,
e) = [ flaloym(o)as.

Unfortunately, basing the analysis on I% is not very satisfactory, as is discussed in
Berger, Bernardo, and Mendoza (1989). Indeed, it is shown therein that the 7(8) which
maximizes I¢ (possibly with 8 restricted to the compact ©F) is typically a discrete distri-
bution, even when © is, say, a connected subset of Euclidean space. Clearly such a 7(6)

would be a very unappealing noninformative prior.
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Bernardo (1979) considered a variant of this approach, defining
If = E% D(n(8|Z;), n(6)), (3.1.2)

where Z; consists of ¢ replicates of X as discussed in Section 2.1. The underlying idea
is that, as t — oo, Z; will typically provide perfect information about 8, in which case
I¢ = tlirgo If can be thought of as the missing information about § when n describes the
initial state of knowledge. Thus the 7 maximizing I?, could reasonably be called “least

informative.”

Unfortunately, it is typically the case that I’ is infinite for almost all 7, so that this
approach also does not work. However, it suggests finding, for each ¢, the prior #; which
maximizes I, and then passing to a limit in ¢. Using a variational argument it can be

shown, under certain conditions, that m; satisfies

m(6) o exp {/p(zt|0) log W(G]zt)dzt} . (3.1.3)
This equation, reproduced in (2.2.2) for the multiparameter case, is the heart of the refer-

ence prior algorithm, and (2.2.4) defines the limit in ¢.

As observed in Section 2.2, (3.1.3) only defines m; implicitly. However, as t — oo, both
p(2¢]0) and m(6|2;) will typically converge to their asymptotic distributions, and (3.1.3) will
become an explicit equation. For instance, in the regular case, 7(8|2:) can be approximated
for large t by a N(8|6;, 15(8;)) distribution (i.e., a normal distribution with mean equal
to f;, the m.l.e., and variance %S(ét), with S being the inverse of the Fisher information

at 9t), so that (3.1.3) becomes (with hopefully understandable abuse of notation)

7i(6) o exp { / p(z:16) log N'(8]0, %S(ét))dzt}

=exp { / p(0:]6)log N'(6)6:, %S(ét))dét} | (3.1.4)

=exp { f p(8:16) [log \/% — %log S(6;) — zs’éét)(ét - 9)2] dét} :

But p(6;]8) can be approximated for large t by a A/ (64)9, $5(0)) distribution, so that (3.1.4)

12



becomes

t A 1 A
74(8) o< 1/ ——exp{ [ N(6:]8, =S(8)) | —= log S(8,) — ——(b, — 6)2| { 4,
(@) o1/ 5= p{/ (0116, ())[ 5500 - 55750 )]} -

= \/;i;exp {—31og S(8)} exp{—1},

the approximation to the integral over the first term following from the fact that A(6;]6, 25(6))
is converging to a point mass at §. Thus we have that, for large t, 7,(6) is approximately
proportional to

exp{—3log S(6)} = S(6)™*/* = \/I(9),

which is thus the reference prior.

For the case of two parameters, § = (8y,6,), with m = 2 stages to be used in Sec-
tion 2.3, the argument proceeds by first determining m(62]61), the conditional reference
prior for 6, assuming that 6; is given. This is done exactly as in the previous univariate

argument, and results in the analogue of (2.3.2).

The idea ‘is then to use m(62/6;) to integrate 6; out of the model, leaving a marginal
model p*(2¢]61), for which a reference prior 7(6;) can (as t — o) be found. The overall
reference prior on © is then m1(0) o m3(6]61)7(61), which is the analogue of (2.3.3);
the expression for 7(f;) in (2.3.3) still needs to be explained, however. This arises from
the same type of asymptotic argument, noting that the asymptotic marginal posterior
distribution of 6y, given z, is V' (61161, %S’l(é)), where 51(0) is the upper left element of
S(6) and 6 is the m.l.e. Then, starting with the analogue of (3.1.3),

re(61)  exp { / p*(24]61) log (6, |zt)dzt}

& exp p*(2:161) log N'(6, 6, 151(9))dzt}

= exp } p(9|01)logN(91 161, 151(9))019}

exp{ [ p(16)73(82 61 )dﬁz] log N'(6; |6, %Sl(é))dé}
= exp { / T9(62]61) [ / p(8]6) log N'(6, 64, %Sl(é))dé] doz}
o exp{—1 / m3(62161) log |S1(6)|d8- },

13



the last step foliowing from the same type of argument as did (3.1.5). This is essentially
the expression for 7(8;) in (2.3.3).

Extension to more than two groupings and multi-dimensional groupings is straight-

forward. The result is the algorithm described in Section 2.3.

3.2 Compact ©¢ and Condition (2.2.5)

In Berger, Bernardo, and Mendoza (1989) it was shown that, for noncompact O,
there typically exist priors for which I? in (3.1.2) is infinite, making useless any attempt
to define “least informative prior” directly through I?. The most direct way to circumvent
the problem is to operate on compact ©%, passing to the limit as ©¢ — ©. The issue, then,
is how to choose the ©f. Usually the choice does not matter, but sometimes it does (cf.,
Berger and Bernardo, 1989 and 1991a). And even when the choice does matter, it seems

to require quite pathological choices of ©¢ to achieve different results.

Choosing the ©f to be natural sets in the original parameterization has always worked
well in our experience. Indeed, the way we think of the ©f is that there is some large
compact set on which we are really noninformative, but we are unable to specify the size
of this set. We might, however, be able to specify a shape, Q, for this set, and would then
choose ©f = £Q N O, where £Q consists of all points in Q multiplied by .

Condition (2.2.5) is a new qualification that we have added to the reference prior
method. The motivation for this condition is that the pointwise convergence in (2.2.6),
that we had previously used in defining the method, does not necessarily imply convergence
in an information sense, which is the basis of the reference prior method. Note that (2.2.5)

is precisely convergence in the information measure defined by (3.1.1).

Because this is a new condition in the reference prior method, we present two examples,

one in which the condition is satisfied and one in which it is not.

Example 1. Suppose X = © = (—00,00) and X given 6 is A'(6,1). Define ©¢ = [—£,4]. It

14



is easy to apply the reference prior method here, obtaining

7t(6) = -2—12 on ©F,

V] _ f($|9) ) on OF
) = o) ety @

m(0) =1, =(flz) = f(=]6),

and
v'@) = [ relorte)as = LD _2CE2D),

where ® denotes the standard normal c¢.d.f. Thus

et CE
D(t(6)z), n(8]x)) = /wf(alx)log %da

£ I
- /_l T x{(_ '(I‘fz_e 5y oe((#(¢— =) ~ &(~¢ — 2)))ds

= —log([®(£ — z) — ®(—£ — z))]),
and
EfD(x(8]1X), =(6|X) = / p'(2)D(w{(6]z), n(6]2))dz
- _512 /_ Z[cb(e — z) — &(—£ — z)]log([®(£ — z) — B(—L — z)))dz

= - /1 oo[‘I’(yﬂ) = ®((y — 2)0)] log([2(y¢) — &((y — 2)0)])dy,

the last step using symmetry and making the transformation y = (¢ — z)/£. Break this
integral into f13 + f3°°. Since —vlogv < e~! for 0 < v < 1, the dominated convergence
theorem can be applied to the first integral to show that it converges to 0 as £ — co. For

the second integral, the inequality

for large v can be used to prove convergence to 0 as £ — oco. Hence Condition 2.2.5 is

satisfied. O

Example 2. Fraser, Monette, and Ng (1984) considered a discrete problem with X = @ =
{1,2,3,...} and
f(z|6) = § for = € {[3], 26, 26 + 1},
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with [v] denoting the integer part of v (and [3] separately defined as 1). Note that, when
z is observed, § must lie in {[], 2z, 2z + 1}, and that the likelihood function is constant

over this set. It is immediate that, if one used the noninformative prior 7() = 1, then

m(0|z) = 3 for 6 € {[Z], 2z, 2z + 1}. (3.2.1)

This is a very unsatisfactory answer, as discussed in Fraser, Monette, and Ng (1984)
and Berger and Wolpert (1988). As a simple example of this inadequacy, consider the
credible set C(z) = {2z, 2z + 1}, which according to (3.2.1) would have probability 2/3
of containing 8 for each z. But it is easy to check that the frequentist coverage probability

of C(z), considered as a confidence set, is
Py(C(X) contains 6) = L for all 6.

This is an example of “strong inconsistency” (see Stone (1971) for other examples) and
indicates a serious p)roblem with the noninformative prior. For later discussion, it is inter-
esting to note that the noninformative prior 7(8) = =! performs perfectly satisfactorily
here, resulting in posterior probabilities and coverage probabilities that are in essential

agreement (see Berger and Wolpert, 1988).

Now, to apply the reference prior method to this problem one must first choose com-
pact subsets ©¢. Clearly any such sets will here be finite sets, and it can easily be shown
that the 7f(6) must be constant on finite sets. If now one attempted to pass to the limit

in (2.2.6), the result would be the unsatisfactory () = 1.

This turns out, however, to be a situation in which the limit from (2.2.6) violates
(2.2.5). To see this take, for instance, the ©% to be ©¢ = {1,2,...,2¢}. As previously

mentioned, 7¢(6) then becomes uniform on ©¢, so that (3.2.1) is modified to be

5 for 6 € {[£],22,2z + 1} ifz <4

2(8]) = 3 for 8 € {[£],2z} fz=14
1 for 6 = [Z] fl<z<4l+1
nonexistent f4l+1< .
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Also, it is easy to see that

_ 1/¢ ifz<?
0\ ey ) 2/(30) ifz=1¢
pi() = f(z|0)ri(6) = 1/(3¢) ifb<z<4l+1
6=1 i
f4l+1<a.
It follows that

log(1) =0 I:lf.'L‘ </
D(wf(alz), 7(0|z)) = Zﬂf(ﬂm)l og Wl((;lx)) iggg{z) i;:.’f <4/ 41

0 if40+1 < z,

and

E¥D(f(8]X), n(8|X) = pr(w)D(wf(em), (6]z))

_ 2 log( ) + Mil 37 08(3) (3.2.2)

z= £+1

= 32_810g (2> + —= (3£+1) og(3)

— log(3) as £ — oo,

so that (2.2.5) is violated.

At this point, all that can be concluded is that a reference prior, as we have defined it,
does not exist. There is a fascinating hint, however, that our approach of approximating
by compact sets and passing to a limit in “information distance” may be too crude in
this situation. The hint arises from consideration of priors 7(6) oc §=°. Repeating the
computation done earlier for a = 0 yields the interesting fact that the analogue of (3.2.2)
does not converge to 0 for & < 1 but does converge to 0 for @ = 1. This suggests that a
more clever truncation or way of looking at the truncated problems would yield 7(0) oc 671
as the reference prior (which, as mentioned earlier, is perfectly satisfactory), but we have

been unable to devise such a formulation. O

We have concentrated on condition (2.2.5) here because this is the first discussion
of it in print. Our feeling, however, is that it would be highly unusual for 7(0), defined
by (2.2.6), to lead to a violation of (2.2.5). Hence we hesitate to recommend routine

verification of the condition, unless there is reason to suspect some pathology.
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As one final comment, the need to use (2.2.5) rather than (2.2.6) to define a limit in
£ suggests that an analogous condition might be needed to replace the pointwise limit in ¢
in (2.2.4). As we have no examples of the necessity of such, however, we have stayed with

the simple (2.2.4).

3.3 _Parameters of Interest and Stepwise Computation

As mentioned in Section 1.2, the separation of # into parameters of interest and nui-
sance parameters has been a cornerstone of the reference prior method. In the notation of
Sections 2.1 and 2.2, 6 would be divided into m = 2 groups, with 6(;) being the parameters
of interest and 62y being the nuisance parameters. We begin the discussion of this with a

historical example, that will subsequently be put to a new use.

Example 3. Neyman and Scott (1948) introduced an example that has since become a
standard test for all new methods of inference. The model consists of 2n independent

observations,

Xij ~N(pi,0?), i=1,...,n, j =1,2.

Reduction to sufficient statistics X = (Xy,...,Xn, 5%, where X; = (Xia + Xi2)/2 and
E E (Xi; — X;)?, results in the density

i=1j5=1

f(zlpy, ..o pay o )_ —]:—ne P{—'_[ +2E($1 i) :l}a (3.3.1)

k being a numerical constant. Note that ES? = no?. Finally, for the prior

T(f1y. .oy fin,0) =0 %, (3.3.2)

it follows immediately that

§* 42 i(f,- — mf] } (3.3.3)

1 1
T(p15- -5 pin, 0]2) X s exp ~5o2
and that the posterior mean of o2 is

E[o®|z] = s*/(n + a - 3). (3.3.4)
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The original interest in this example, from a noninformative prior perspective, is that

the unmodified Jeffreys prior is
T(f1y ey fin,0) = Vdet] o« o~ H) (3.3.5)

leading to a posterior mean for 02 of E[o?|z] = s?/(2n — 2). This would be inconsistent as

n — oo, since S2/n — o2 with probability one (frequentist) so that $2/(2n — 2) — o2 /2.

Bernardo (1979) and Jeffreys (for related problems) overcame this difficulty by sepa-
rately dealing with 6(;) = o and 6(3) = (p1, ..., #tn). To apply the reference prior algorithm

to these two groups, compute I (0) and write it as

6= (" 5.

where I;1(8) = 8n/o? and

2/a? 0 |
I*(9) = . (3.3.6)
0 2/a?
Computation yields
|h1(6)] = 8n/o? and |hy(6)] = 2™ /o*™, (3.3.7)

so that condition (2.3.5) is satisfied. Choosing
Of = (071,80 x (=£,£) x ... x (—£,0) (3.3.8)
(virtually any choice would give the same answer here), Lemma 1 can thus be applied to

yield, on ©f,

8 2 2 2n
() P A e = ke/o, (3.3.9)
Jiei/8nfo?de  [Z,... [°,\/2n]0%dy, ... du,
where k¢ is a constant. Finally, applying (2.2.6) (verification of (2.2.5) is rather tedious
here), yields 7(0) = 1/o.

This reference prior is perfectly satisfactory, yielding a posterior for which the posterior
mean is the very sensible s?/(n — 2). Thus if 02 (or o) is the parameter of interest with

(B1,- -, pn) being nuisance parameters, all is well with the reference prior algorithm.
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Unfortunately, this simple method of grouping does not always work. Suppose, for
instance, that 61y = p1 and 6(3) = (p2, ..., tn, ), i.e., that p; is the parameter of interest

with the rest being nuisance parameters. Now, I(8) becomes

0-(49 1)

2
= 0

where I11(0) = 2/0? and

I(8) = o 2 . (3.3.10)
o? 8n
2

Thus h1(8) = 2/0? and hy(f) = n2("+2) /g?". Define ©¢ = (—£,£) x ©*, where O* =
(—£4,€) X ... x (—£,£) x (£71,£). The start of the iteration for the reference prior yields (see
(2.3.2))

. [r2(nFD) [ 2n
75(0(2y10(1)) = lo=(6
it fel—l ff[ e ffz V2t fo2ndyy . dp,do )

k
= —lo(6(z)).

Since h1() does not depend on 83y = yy, it is easy to see that (2.3.3) becomes
k
5(6) = —1o:(6).
o
Passing to the limit in £ results in the reference prior n(8) = 1/o™.
For this prior, a standard Bayesian computation yields that the marginal posterior

for p1 given z is a t-distribution with (2n — 1) degrees of freedom, median Z;, and scale

parameter s?/[2(2n — 1)]. Thus, for instance, a 95% HPD credible set for y; is

f] + t(Zn-—l)('975)

C(%,s) = <51 - t(2n—1)('975)\/'2(T—_15’ m) ’

where t(3,-1)(.975) is the .975 quantile of a standard ¢ with (2n — 1) degrees of freedom.

Now, from a frequentist perspective, it is easy to see that (X1 — p1)/(S/v/2n) has a
standard ¢-distribution with n degrees of freedom. It follows that C(X,, S ) has frequentist

coverage probability

Po(C(Yl, S) contains [Ll) = 2Fn (1 / (2—nn_—1)t(2n_1)(.975)) - 1,
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where F, is the standard ¢ c.d.f. For large n, F, is approximately the standard normal

c.d.f. @, and ¢(3,_1)(.975) = 1.96, so that
— 1
Py(C(X1,S) contains p;) = 20 (3(1.96)> —1=0.83.

This, again, is a strong inconsistency, indicating that the noninformative prior is highly
inadequate. It is of interest to note that 7() = 1/ would here result in perfect agreement

between posterior probability and frequentist coverage. O

The above example clearly demonstrates that it is not sufficient to merely divide 6 into
parameters of interest and nuisance parameters. Once separation of § into more groups is
considered, the natural suggestion is to completely separate the coordinates into % groups

of one element each.

Example 3 (continued). If one sets m = k, letting each coordinate of 8 be a grouping for
the reference prior algorithm, it can be checked that 7(6) = 1/0 is the resulting reference
prior regardless of the ordering of the coordinates of §. This one-at—a—time reference prior

is thus excellent for this problem.

Example 4. In Ye (1990), the development of reference priors for problems in sequential
analysis is considered. If N is the stopping time in a sequential problem with independent

observations, the Fisher information matrix is
1(6) = (EoN)11(0),

where I;(6) is the Fisher information for a sample of size one. Then the Jeffreys prior

becomes
m(60) = (E¢N)¥/2\/det(11(9)),

which can easily be terrible if k is large because of the presence of (EeN)¥/2, Grouping
and iterating the reference prior method will typically reduce the power of k /2, but does
not necessarily cure the problem (see Ye, 1990, for examples). But if one uses the one—at—

a-time reference prior, then under reasonable conditions (see Ye, 1990) the result is

7(0) = v/ EgN=*(9),
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where 7*(6) is the one—at—a—time reference prior for the fixed sample size problem. This is
a very reasonable prior. (Of course, use of this method of determining a prior violates the
Stopping Rule Principle, but this appears to be one of the unavoidable penalties in use of

noninformative priors.) O

Other arguments for use of the one-at—a-time reference prior can be found in Berger
and Bernardo (1991a and 1991b). Bayarri (1981) gives an example where at least 3 group-
ings are necessary (and the one-at—a—time reference prior is fine). The bottom line is that
we have not yet encountered an example in which the one-at-a-time reference prior is
unappealing, and so our pragmatic recommendation is to use this reference prior unless
there is a specific reason for using a certain grouping (see Berger and Bernardo, 1991b, for

a possible example).

There remains the problem of how to order the parameters before applying the one—
at—a—time reference prior algorithm. Currently, we recommend ordering the parameters
according to “inferential importance,” but beyond putting the “parameters of interest”
first, this is too vague to be of much use. Using an average of the reference priors arising
from the various acceptable orderings has some appeal, but seems a bit too adhoc. In
practice, we have typically computed all one-at—a-time reference priors (and, indeed, all
possible reference priors). We have not yet encountered an example in which this could
not be done. Having a variety of possible noninformative priors is actually rather useful,

since it allows a sensitivity study to choice of the noninformative prior.

The recent advances in the asymptotic frequentist approach to determination of a
noninformative prior, discussed in Section 1.3, have further muddled this issue of ordering

of the parameters, as the following Lemma shows.

Lemma 2. Suppose 6* = (67,03), with ©* = OF x ©F and I(6*) diagonal. Suppose the
reference prior algorithm of Section 2.3 can be applied, and that the choices m = 2, 01y =
01 = 03 and O(3) = 6; = 60}, and ©° = Of x Of, where Of C OF and Of C O, are made.
Then the reference prior, as defined by (2.2.6), satisfies (1.8.3), assuming the limit exists.

Proof. Since I(6*) is diagonal, it is easy to see that hy(0) = I1(8) = I;2(6*) and hy(6) =
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I2(8) = I11(6*). First, (2.3.2) yields

\/I22(0 191(02 A /I22(0)1 l(ﬂ )
62 Vv 122(6) d92 g95(61) Oz

m3(62161) =
Next, observe that
Ef{(log(n (0)/6:] = [ Tog(Tua(@)nf(6al6r) = 55(61).
2

Thus (2.3.3) yields
75(62161) exp{395(61)} Lot (62)10: (61)
Jo: exp{394(61)}d6,

exp{3 5(91)}191(91
(91)fe[ exp{1¢%(61)}db; -/ I22(0) 191(02

= ¢%(61) - V'I22(6) 1o2(62).
Passing to the limit in £ (which is assumed to exist), yields (with g%(6;) — ¢(6,))
m(6) = 9(61)v/I2(6) = g(63)/T11(6*), (3.3.11)

which is of the form (1.3.3). O

m1(6) =

This lemma shows that if 6] is the parameter of interest and 6 is an orthogonal
nuisance parameter, and if the ©¢ are chosen to be product sets in this parameterization,

then the reverse reference prior (with the nuisance parameter being ordered first) is that

which is suggested by the asymptotic frequentist coverage argument.

In Section 1.3 we mentioned the difficulties with proceeding in this fashion: it is un-
clear what to do in higher dimensions and orthogonalizing the parameters is very hard.
Nevertheless, the situation is far from clear, and we cannot categorically state which or-

dering of parameters is best.

As a final comment on this issue, note that the reverse reference prior method, as
given in Lemma 2, is of interest for application of the asymptotic frequentist coverage
method of determining a noninformative prior, since it specifies how g(,) (see 1.3.3) and

(3.3.11) should be chosen. This is left unspecified in the frequentist method.
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3.4 Technical Considerations

In computation of the reference prior in the regular case, the two most difficult steps
would appear to be evaluation of the expectation E]‘f in (2.3.3) and passing to the limit
in (226) Fortuitously, the latter typically makes the former relatively easy. This is
because the expectation in (2.3.3) is with respect to 41, which typically is tending to-
wards an improper prior as £ — co. When this happens, it will usually be the case that

Ef[(log |75(6)])|61;] can be expanded in a Taylors series as
K¢+ Cp(6) + Dy(0),

where Ky — 00, Cp — C, and Dy(f) — 0 as £ — co. When inserted into (2.3.3), the K,
term typically cancels in the numerator and denominator, and the Dg(6) term is typically
irrelevant (both because of the exponentiation of the E']‘f term). Thus the contribution of
the E]‘f term to the final answer will be exp{3C(6)}. Many variants on this theme are
possible. What is important is the recognition that (i) exact computation of the Ef is
typically not needed — computing the first few terms of a Taylors expansion (in £) usually
suffices; and (ii) since the expansion is then being exponentiated, all terms except those

going to zero (in £) are important.

The computation of the {h;} is greatly simplified by the expressions in the Appendix.
In a nonregular case, one has to replace the asymptotic argument (outlined in Section
3.1) that leads to the {h;} with asymptotics appropriate to the model. Note that, at a
minimum, this requires knowing the asymptotic posterior distribution for a given model.
See Bernardo (1979) for an example of determination of a reference prior in a nonregular
case. (Example 2 was, of course, a nonregular case, but because ©f was a finite set one

could avoid asymptotics and directly compute the n¥.)
3.5 Other Issues

3.5.1 Prediction and Hierarchical Models

Two classes of problems that are not covered by the reference prior methods so far
discussed are hierarchical models and prediction problems. The difficulty with these prob-

lems is that there are unknowns (that are indeed even usually the unknowns of interest)
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that have specified distributions. For instance, if one wants to predict ¥ based on X when
(Y, X) has density f(y, z|6), the unknown of interest is Y, but its distribution is condition-
ally specified. One needs a noninformative prior for 6, not Y. Likewise, in a hierarchical
model with, say, ui,ps,...,u, being iid. MN(£,72), the {y;} may be the parameters of

interest but a noninformative prior is needed only for the hyperparameters ¢ and 72.

The obvious way to approach such problems is to integrate out the variables with
conditionally known distributions (¥ in the predictive problem and the {u;} in the hier-
archical model), and find the reference prior for the remaining parameters based on this
marginal model. The difficulty that arises is how to then identify parameters of interest
and nuisance parameters to construct the ordering necessary for applying the reference

prior method; the real parameters of interest were integrated out!

We currently deal with this difficulty by defining the parameter of interest in the
reduced model to be the conditional mean of the original parameter of interest. Thus, in
the prediction problem, E[Y|6] (which will be either 8 or some transformation thereof ) will
be the parameter of interest, and in the hierarchical model E[y;|¢,72] = ¢ will be defined
to be the parameter of interest. This technique has worked well in the examples to which

it has been applied, but further study is clearly needed.
3.5.2 Simulation

Various difficulties can be encountered in construction of the reference prior. For
instance, I(#) might not be computable in closed form. One possibility to overcome this
problem would be to compute the reference prior by simulation. This is particularly true
for problems in which the actual Bayesian analysis requires computation by simulation in
any case. Adding the additional integrations needed to compute, say, I (8) is typically only
a moderate complication in such problems. This relative ease in computation would extend
to cases such as those covered by Lemma 1. If the full iterative reference prior algorithm
of Section 2.3 needed to be applied, however, and I(d) were not available in closed form,

the difficulties would probably be too complex.

25



3.5.3 Invariance

When #(0) = \/(TI(G) is the reference prior (typically recommended only for one-
dimensional problems), one automatically has invariance with respect to one—to—one trans-
formations of §, in the sense that the reference prior for a different parameterization would
be the correct transform of (). For the iterative reference prior of Section 2.3, certain
types of invariance also exist. For instance, in the case of two groupings, 6(;) and 62y,
the reference prior is invariant (in the above sense) with respect to choice of the “nuisance
parameter” (), and is also invariant with respect to one-to—one transformations of 0(1)-
The reference prior can depend dramatically, however, on which parameters are chosen
to be (). Some results on invariance for more than two groupings are known, but the

general issue is still under study.

APPENDIX

With the notation of Section 2.3, define B; = (A4j14;2...4j-1), § = 2,...,m, of

sizes (nj X Nj_y). It is straightforward to verify that, for j =1,...,m
hj = (Aj; — BjH; 1 Bj)™ (AL1)

and

H= (Hf—1+Hj—lB§thfo—1 - f—l_Bﬁ'hf), (A12)

—h jB 3 H j—1 h j
where any entry containing a factor of Hy is to be omitted. Thus one may calculate the

matrices Hi,..., Hp,, and hence hy,..., hy, iteratively.

In the important special case where each n; = 1, no matrix inversions are needed
above, so that calculation of the h; is trivial if S is available. An even greater simplification

occurs if, in addition,
Bit1 =(ciB;, Aiy1 i) (A1.3)
for some constant ¢;. Then, (Al.1), (A1.2), and (A1.3) can be used to show that
hiv1 = [Aig1 i1+ G Aii — 2¢iAiy1 i — hi(ciAi — Aigr )7L (Al.4)

This is particularly useful when (A1.3) holds for all 7, which often occurs in patterned
covariance matrices, since then (A1.4) can be used to iteratively determine all the h;,

starting with Ay = A7, and defining ¢; = 1.
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