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Abstract

The problem of selecting the most probable cell, more generally the problem of parti-
tioning £ multinomial cells according to the values of the cell probabilities is considered.
Bayes rules are obtained for the general ranking problem under a general class of loss
functions. A sequence of parametric empirical Bayes selection rules is proposed and
shown to be asymptotically optimal of order O(e™°") for some positive constant ¢. Also
the problem of selecting the most (least) probable cell and simultaneously estimating
the associated probability of the selected cell is considered. For this problem also a se-
quence of parametric empirical Bayes rules is proposed and shown to be asymptotically
optimal of order O(n™1).
Key Words: Selection and ranking, Simultaneous selection and estimation, Bayes

rules, Empirical Bayes rules.
AMS 1985 subject classification: 62F07, 62C12.

1 Introduction

Selection and ranking problems arise in many practical situations where the tests of homo-
geneity do not provide the answer the experimenter wants. In this paper, we study several
problems of selection and ranking of cell probabilities of a multinomial distribution. We
consider a multinomial population with k (> 2) cells. Let IIy,II,,..., IIx be the cells with
associated probability vector p = (p1,...,px), where Ele pi=1, p;>0,fori=1,...,k.
Let ppy) < ppaj--- < Py denote the ordered values of the parameters. The cell associated
with py) is called the most probable cell and the cell associated with ppy is called the least
probable cell.

Single-stage and sequential selection rules for multinomial distribution have earlier been
studied in the literature. For selecting the most (least) probable cell, Bechhofer, Elmaghraby
and Morse (1959) have considered a single-sample procedure through the indifference zone
approach. Gupta and Nagel (1967), Panchapakesan (1971) and Gupta and Huang (1975)
have studied this selection problem using the subset selection approach. Sequential selection
procedures have been investigated by Cacoullos and Sobel (1966), Alam (1971), Alam, Seo
and Thompson (1971), Ramey and Alam (1979, 1980), Bechhofer and Kulkarni (1984),
among others.

*This research was supported in part by NSF Grants DMS-8702620, DMS-8923071, and DMS-8717799
at Purdue University.
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In this paper we first consider the general problem of partitioning the & cells into r
non-empty, mutually exclusive subsets, Sy, S2,...,5,, where 57 is of size {1, S9 is of size t3
and so on. Based on statistical observations we would like to partition the k cells into these
r subsets, so that S is the set of the t; least probable cells, S5 is the set of the next ¢, least
probable cells ... and §; is the set of the £, most probable cells. When » = 2 and 1, =1,
this reduces to the problem of selecting the most probable cell.

In many situations, an experimenter may have some prior information about the param-
eter of interest, and would like to use that information for making an appropriate decision.
In such cases, one may wish to use the Bayesian approach. In Section 2, the problem is
described and a Bayes rule is derived, assuming that the unknown parameter p has a con-
jugate prior. In Section 3, it is assumed that the prior is partially known. In this case we
consider the situation where one is repeatedly dealing with the same selection problem in-
dependently. In such instances, at each stage, one would like to use the past information to
derive a rule which is close to a Bayes rule. This approach is known as the empirical Bayes
and is due to Robbins (1956, 1964). Empirical Bayes rules have been derived for subset
selection goals by Deely (1965), for selecting good populations by Gupta and Hsiao (1983)
and by Gupta and Leu (1983). Gupta and Liang (1986, 1988) have considered the problem
of selecting good populations and the problem of selecting the best binomial population
using the empirical Bayes approach.

Gupta and Liang (1989) have derived a sequence of parametric empirical Bayes rules for
selecting the most (least) probable cell. Their loss function for selecting the most probable
cell is piz) — p; and for selecting the least probable cell is p; — pj). In Section 3, we generalize
their results and prove that the sequence of empirical Bayes rules proposed is asymptotically
optimal of order O(e™°") for a more general loss function, where ¢ is some positive constant
and where n denotes the number of past observations.

In Section 4, we consider the problem of selecting the most (least) probable multinomial
cell and simultaneously estimating the probability associated with the selected cell in a
decision-theoretic framework. A Bayes rule is derived when the unknown parameter p has
a conjugate prior. Then a sequence of parametric empirical Bayes rules is constructed and
is proved to be asymptotically optimal of order O(n™1).

2 Bayes Rules

Let X; denote the number of counts in the cell II; based on N independent trials, for
¢t =1,2,...,k. Then the distribution of X = (X1, Xs,...,X}) is given by the probability
function,

Hi:l Zi:

0 otherwise.

f(zlp) =

{—#ﬁ ks if 0<2; <N VY iand Y, 2 = N;

Let pp) < ppg).-- < p be the ordered values of the parameters py,ps,...,pr. We
assume that there is no prior knowledge about the exact pairing between the ordered
and the unordered parameters. Our goal is to partition the & cells into r mutually ex-
clusive subsets, S1,952,...,5, such that S, is the set of the t; cells associated with the
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probabilities pp), p[a); - - - P[ty)» S2 is the set of the cells associated with the probabilities
Dty +1]2 Plts+2]> - - - » Pt +15) @0nd Sy is the set of the cells associated with the probabilities
Plk—tp+1]s Plk—t,+2)s - - > P[k]- Hlere 21,%2,...,%, are positive integers fixed in advance, such
that > 7t = k.

Let & be the sample space of the random vector X = (X7, Xs,...,Xk), and let

A={(51,8,...,8,): SinS;=0, Vi#j and |S)| =1, SiC{1,2,...,k} Vi }

be the action space and

Q={ (Br,p2 s PR) Dby pi = L, 20 V }

be the parameter space.

We assume that the prior distribution of the parameter P follows a Dirichlet distribu-
tion, G = G(.|a), with the hyperparameters o = (a3, as,...,a;), where a1, ay,. .., are
positive constants. Let ap = Zle a;. The density of the parameter vector P is given by
o(p) = { ﬁé(la—lfbﬂfﬂp?"l ifp;, >0 fori=1,2,...,k and Efﬂpi =1
0 otherwise.

Let L(.,.) : @ x A — R be the loss function. We assume that the loss function
is non-negative, permutation invariant and “increasing”. Mathematically, we write these
conditions as:

[C1] L(p,a) >0 V pef and a€ A
[C2] L(zp,7a)=L(p,a) VY peQ; a€.A and for each permutation .
Here 7(a) = (7rSl,7r5'2,...,7rST) and for any S C {1,2,...,k}, S = {i1,42,...,%,} then
78 = {m(%1), 7(i2),...,m(ig)}.
[C3] Let p=(p1,p2,---,pk) and p; <p;; a € A, a=(5,52,...,5) and j€S,,i€
Sry, 71 < 7. Let m;; be the permutation which interchanges the ith and jth co-ordinates
then,

L(p, mi5a) < L(p,a).
[C4] There exists a positive constant 7, such that for every a € A

/LH"(;}, a)g(p)dp < co.

Condition [C1] says that the loss function is non-negative; [C2] says it is permutation
invariant; [C3] implies that the loss function is “monotone”. The (1+7)-integrability in [C4]
is used later to prove the asymptotic optimality of the proposed empirical Bayes selection
rules.

Let X = z be the observed vector. Now we prove that any decision rule that “ranks”
the cell II; according to the rank of z; + o; in z1 + 1,22 + @z, ...,z + ai is a Bayes rule.

Theorem 2.1 :

Let X have a multinomial distribution with parameters (N,p). For the loss function as
given in C1-C{ above and for the Dirichlet prior G(.|a) on P, we consider the decision
rule, 6(z) = (S1(z),So(z),...,Sr(z)), which is such that for every vy > 71, and every
i1 €8y, and j € Sy, 2+ a; L x5+ . Then §(z) is a Bayes rule.
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Proof: Let B be the class of non-randomized decision rules defined as follows:

B = {5(@) = (51(z), ., 5:(2)) :

forevery 1<ri<r <r
minies,, () (i + o) 2 Maxjes, (z)(z; + 25), Vz € X

To find the Bayes rules, it is enough to consider the non-randomized rules. First we
prove that if a non-randomized rule 6 is not in B, then there is a rule in B which has smaller
Bayes risk than the Bayes risk of §. Then we prove that all decision rules in the class B
have the same Bayes risk, and this would complete the proof of the theorem.

For a decision rule §, let 7(6) be the associated Bayes risk and 7(6|z) be the posterior
expected loss for given X = z. Then

r(¢l2) = [ L(p, 8(2))g(pladdp and () = Br(81X))

where g(p|z) is the posterior density of P for given X = g.

We assume that the decision rule § is not in the class B. Thus, there exist 20 =
(29,29,...,29) € X and r,72, 1< 71 <7y <rsuchthat 29+ o > 2? + a; for
some ¢ € Sy, (2%) and j € S,,(2°) .

Next we construct a decision rule §’ whose Bayes risk is smaller than the Bayes risk of
6. Let §'(z) = (51(2), S2(2), - - -, 5:())

51.(z% = Sn(2z®) Vm#r and m#£r,
5,(2%) = ($n(z°) ~{H U}
51,2 = (Sn(2®) - {71 U{a}

and 6'(z) = 6(z) V z #2°

To prove that the decision rule §’ has smaller Bayes risk than the decision rule 6, it
is enough to prove that, r(6|z) — r(é'|z) > 0 for all z. For z # 2%, 6(z) = &(z) thus,
r(6|z) = r(8'|z). The posterior density of P is given by,

k
g(plz) = R(z) [ PPt
t=1

F(ao + N)
Ty D + o)

and the posterior expected loss of the rule § is given by,

where  A(z)

k
r(0l) = h(z) [ L(p.d(2) [ ri=dp

Hence

k o .
(610 = r(#1g%) = he®) [ (L0 - D, M LA dp

Pi>P;

k 0 B
+ h(z% [L(p, 8(z%)) — L(p,&'(z°))] T[ o+ dp.
’ P;>pi t=1
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Since L is invariant ([C2]), interchanging the variables p; and p; inside the integral, we get,
he) [ 150,66 ~ L8 ()] H et
p;j>

o z04oi— Otaj-1
= ) [ L2 8(27) = Lz 6 ()] [T sttty
pi> i i)

This implies
r(6]2°) — (8'|z°)
Ot qi—-1 2%4aj—1 204a;-1 2940;—
= h(e®) [ [L(p8(%) = Lp, S NI Ty T - T
P

i>Dj

0 -
[T pit*dp.
oy

Since p; > p;, it follows from [C3] that
L(p,8(z°)) ~ L(p,&'(z°)) > 0 .
Also for 2 + a; > 29 + a;, and p; > p; we have

29 +o;—1 -’E?+Olj—1 _ zg-+a]--—1 = +oi—1

From the above inequalities we get,
r(62°) - r(§'|z°) > 0.

Hence r(8) > r(¢’'). Since there are only a finite number of elements in &, by the same
method we can obtain a decision rule in B which has smaller Bayes risk than §. It is
straightforward to see that all the rules in B have the same Bayes risk. And this completes
the proof. ad

Remark 2.1 :
It should be noted that the Bayes rule is not necessarily unique.

Remark 2.2 :
The class of decision rules B, described in the theorem above, contains all the non-randomized
Bayes rules.

3 Empirical Bayes rules

Now consider a situation in which one repeatedly deals with the same ranking problem
independently, and assume that the prior is partially known. In such situations, one can
use the empirical Bayes approach of Robbins (1956, 1964). Using this approach Gupta and
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Liang (1989) have derived parametric empirical Bayes rules for selecting the most (least)
probable cell. Their loss function for selecting the most probable cell is Pk — pi and for
selecting the least probable cell is p; — pp;). These loss functions do satisfy all the conditions
mentioned in Section 2.

We assume that the prior is still a Dirichlet prior, but the hyperparameters a1, as,. .., o
are unknown. We consider two cases, (1) o is known and (2) ag is unknown.

Let X; = (X1, X2j, ..., Xk;) denote the observable random vector at stage j and P; be
the unobservable probability vector, for j = 1,2,3,....... Here X;; represents the number
of counts in the ith cell at jth stage. Let X, X,,..., X, be the past available observations,
and X, = X = (X1, Xs,...,Xk) denote the present observation.

Notice that

_Na,-

EX;; o

Vi=12,....,kand V j=1,2,...
For the case when ag is known, define
Gin = N1 Qg Xim (1)

where, X;, = %Z;-l:l Xij. Thus for every i, E&;, = «; .
When «g is not known, to estimate ay,as,...,a, we need to consider the higher
moments. Following the notations in Gupta and Liang (1989), define

_ 1 1 & _ _

in = - iy Min ==Y X%, Zin=[NXin— Min]Xin,
X n;xj n; L, Zm=[N M| X (2)
Yin = [Miy— XN - (N -1)X2. (3)

Let i1 = EXin = Newag?, pin = EMin, = Najog + N(N — Dai(es + 1)ag(ao + 1)1 .
Then, Z;,, Yin and Z;, /Yy, are the moment estimators of L;1, L;o, and «; = Ly / L;o, where
Lin = (Npaix — pio)pir and Lip = (piz — par )N — (N = 1)pdy.

For the case when ag, a1, ..., ar are unknown, define

(4)

A= Z’m/y;n if }fzn > 0;
m 0 otherwise.

Now, for Case 1, we propose the sequence of the empirical Bayes rules {§,}$° which
“ranks” the ith cell according to the rank of z; + 64, in z1 + G5, T2 + Gon, ..., 2Tk + Gpp.
Let

6n(2) = (S1n(2), S2n(2), - - -, Sra(2)),

where S1,(z) contains the cells corresponding to (z + &)np (2 + &gy - - -5 (2 + &)pgy)y and
so on. Here (z + &), (2 + @)z}, -+, (z + &)y are the ordered values of z1 + @1, 22 +
GQ2ny. 3Tk + Gpn. In case of ties we use randomization. For Case 2, we propose the
sequence of the empirical Bayes rules {6/ }9°, which ranks the ith cell according to the rank
of z; + &, in &1 + &y, %2 + &Yy, ..., Tk + &}, . The optimality of a sequence of empirical
Bayes rules can be judged by considering how large its Bayes risk is as compared to the
minimum Bayes risk at the nth stage. In this connection, we define,
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Definition 3.1 :- A sequence of empirical Bayes rules {6,} is said to be asymptotically
optimal at least of order (B, relative to the prior distribution G if

r(G,bn) — r(G) L O(Br) as n — oé,

where r(G) is the minimum Bayes risk, r(G, §) is the Bayes risk of the rule §, and {8,} is
a sequence of positive numbers such that lim,_,o, B, = 0.

Theorem 3.1 :
The sequence of empirical Bayes rules {6,}5° defined above is asymptotically optimal of
order O(e™°") for some positive constant c.

For proving the theorem we need the following lemma due to Hoeffding (1963).

Lemma 3.1 (Hoeffding):
IfY1,Y2,...,Y, are the independent random variables such that for each i there exists real
numbers a; and b; such that P(a; <Y; < b;) =1 then for anyt >0

P(Y —p > t) < e 200 (bime)) ™!
where Y = ™ Y;/n and p = EY.

Proof of Theorem 3.1: Let ¢ = (21,%2,-..,Zp41)- For 1 <1 # 1 <k, define

rtoa <zt oy

n . $l+&ln2xt+dtn
=% :

Let 6g be a Bayes rule and let (&) be its Bayes risk. Then

r(G,b,) — r(G)
n+1

= Y [ 8a)) = LBy ez [T £21p,)9(0,)d0,
cexntl Jj=1
n+1
< Z / |L(£n+17 671(@”4—1)) - L(En+1’ 6G(‘§n+1))II(Ul¢tAn)("£) H f(:y] |Z__)J)g(23]) dpj,
:EGXTL+1 j:l
where Ip(. ) denotes an indicator function of the set D.
Now using the Holder’s inequality we have
™G, 8,) - 1(G)
n+1 l—l—n
| X 500D = Dy bl TT £Gaslp)0(p) d,
:EEXn+1 j=1
i _
I+7

n+1

<1 Z /IUz—,‘:A{',(Z’)Ef(@jlgj)g(%)dfj



3 EMPIRICAL BAYES RULES 8

Also,
n+1
> 1By 50@ni)) = L@,y 5@ N T Faslp,olp,) do,
§€Xn+1 ]':1

<2t / [sup L(p, a)]'"*"g(p)dp.
RN « ot 4
The supremum is taken over all a € A. Since A is finite and by the Assumption [C4] on
the loss function, the right hand side of the above inequality is finite, say mg.

n+1 n+1

> /IUt¢tA{‘t(§) II f(zile;) 9o dp, < >0 > /IAg(g)Hf(@jlzgj)g(yj) dp,
gEX"+1 Jj=1 l#tgeX"+1 Jj=1
= Y P(AR).
1£t
Let

€ = min{|z; + ap — Ty — oy : |2+ oy — @y — oy # 0}

Then to prove the theorem, it is enough to show that each term in }7, ., P(A%) is O(e™").
Without loss of generality, let us assume that { = 1 and ¢ = 2. Then,

P(AT,
= P(Xpt11+ 610 > Xnp12+ G2 and Xpy11 + 01 < Xpy12 + a2)
< P(bgn — dup— g+ a1 < —¢) (e =€/2)
_ 1 (X —Xyy) 1
= P (n;[ N ao[a2 a1]] < —e
< O™,

The last inequality follows from Hoeffding’s result (Lemma 3.1). Here ¢ = 2¢2[2/N + (o +
a2)/ap]™t. This proves the theorem. O
Now we establish the asymptotic optimality of the sequence of empirical Bayes rules

{65

Theorem 3.2 :
The sequence of empirical Bayes rules {6;,}§° is asymptotically optimal of order O(e~") for
some positive constant c.

We need the following lemma due to Gupta and Liang (1989).

Lemma 3.2 :

Let b be a positive constant. Then,

a)P(Zin, — Liy < =b) < 3e7%" = O(e~%");  b)P(Zin — Ly > b) < 3e~bn = O(ebin);
¢)P(Yip — Liz < —b) < 3e~b%™ = O(e~bn); dYP(Yin — Lig > b) < 3e7bn = O(e~bm);
where b; = b2[2N4(N + p;1)?~! > 0.
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Note that it follows from the above lemma that for a given ¢ > 0, there exists a positive
constant ¢; such that P(|Z;, — Lii| > €) < O(e™™) and P(|Yin — Liz| > €) < O(e‘cln)
Before proving the theorem we also need the following lemma.

Lemma 3.3 For every ¢ = 1,2,...,k and for every ¢ > 0, there exists a constant ¢ > 0
such that

P(&, — ai > €) S O(e™") and P(64, — s < —€) < O(e™").

Proof: We show that P(é&}, — a; > €) < O(e™*") for some ¢ > 0. The same technique can
be used on the other term to prove that it is also of order O(e").
Note that, by the definition of &,

P&, — a; > ¢€)
P(dgn_ai>€7 1/in>0)"'13(0’2:'71'_a'i>€7 Y;nSO)

S P(Zzn—(az+€)xn>0)+P(Kn_<_O)
= P({(Zin— Lix) — (a5 + €)(Yin — Li2) > [(0i + €)Lia — L] ) + P(Yin, <0)
= P (Zm —Li > (o + 6)52'2 — Lil)
i+ €)Lig — L
+P (0 + (¥in - L) < L2422 baly 4 gy, <)
Since [(a; + €)Liz — Li1]/2 > 0, the result follows from Lemma 3.2. 0

Now we proceed to prove Theorem 3.2.
Proof of Theorem 3.2:
As in Theorem 3.1, it suffices to prove that for each 1 <¢t, [ <k ,t # 1,

P(Xpy1p+ > Xpqap+ oy and Xppq 4+ &), < Xpg1:+ 84,) < O(e™7).
Without loss of generality, let us assume { = 1 and ¢t = 2. Then we only need to prove that
PXi4+a1 > Xg4ag, Xi+48), < X+ é,) is of order O(e™°") for some positive

constant ¢. Let ¢ = min{|z; + oy — z¢ — a¢| : |21 + o4 — 2; — oy| # 0}, then

P(X1+a1 > X9+ a3 and Xl‘i'd,ln < Xg-l-d’zn)

< P([ah, — 61,] — a2 —a1] > ¢) (e =€/2)
< P(dgn ag > )+P(d'1n—a1<——%>.
Now the result follows from Lemma 3.3. This completes the proof of the theorem. a

4 Simultaneous Selection and Estimation

In this section we consider the problem of selecting the most (least) probable multinomial
cell and simultaneously estimating the probability associated with the selected cell. Cohen
and Sackrowitz (1988) have considered the problem of selecting the population associated
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with the largest mean and simultaneously estimating the mean of the selected population.
They derived results for the case where £ = 2 and the distributions associated with the
populations are normal or uniform. Gupta and Miescke (1990a) extended their results for
the case £ > 3. Recently Gupta and Miescke (1990b) solved the problem of selection and
estimation for the best binomial population under general decision-theoretic framework.

First we consider the problem of selecting the best cell, the cell associated with Pl =
max p; and simultaneously estimating the probability associated with the selected cell. Ac-
tion space for this decision problem is represented by

A={(s,p):s€{1,2,....,k},p€[0,1]}.

An action a = (s, p) represents the selection of sth cell and p as the estimate of the proba-
bility of the selected cell. We assume that the loss function is of the following form,

L(p:(s,p)) = L1(p, s) + L2(ps p), (5)

where L;(p, s) denotes the loss due to selecting the cell II as the best cell and Ly(ps, p)
denotes the loss due to estimating the cell probability ps by p. As in the previous section
we assume that the probability vector P has a Dirichlet prior. As has been pointed out
by Gupta and Miescke (1990a, 1990b), the decision theoretic treatment leads to “selection
after estimation” rather than “estimation after selection”. This phenomenon also holds in
the present case for the general loss function (5).

Lemma 4.1 :
Let p;(z) minimize E[Ly(P;,5:)|X = z] for i = 1,2,...,k. Let s*(z) which minimizes
E[Li(P,s)+ Ly(Ps,ps)| X =z} for s =1,2,...,k. Then the Bayes rules at X = z is

6(z) = (s*(2), Psr(2)(2))-

In general, it is hard to find the Bayes rule for a general loss function. We consider
the following specific loss function. Let Li(p,s) = py ~ ps and La(ps,p) = co(ps — p)%,
where ¢ is a positive known constant. For each ¢ = 1,2,...,k, it is easy to see that
Pi(z) = (i + 2;)/(a0 + N). Let a! be the posterior expected loss if the ith population is
selected and if p;(z) is used to estimate the probability associated with that cell. Hence

+ N —o; —z )0+ ) o+
a; = (ag - + C,
O et N (0o + N+ 1) aot N

where C = E{max;<;j<t P;|X = z}. Let a; = a} — C. The above lemma and the discussion
leads to the following theorem.

Theorem 4.1 :
The Bayes decision rule selects the cell m; for which a; = min;a;. The Bayes estimate of
the probability of the ith cell is given by pi(z) = (o + ;) /(o + N).

In many situations we may not know the parameters of the prior but we may have data
or information from past experience. To derive a sequence of empirical Bayes rules we need
to get the estimates of the parameters ay, @s, ..., ;. We define the estimates as in Section
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3. Let {677 }5°; 6371(2) = (s3(2), Doz (z))s be the sequence of empirical Bayes rules defined
as follows:

For the case when og is known we define, s}(z) € {1,2,...,k} which minimizes
i = (00 + N — Gin — 2:)(Gin + T:)  Gin + 2
o 0 (a0+N)2(a0+N+1) ag+ N

and pin(z) = (Gin + zi)/(ao + N). For the case when og is not known we define, s%(z) €
{1,2,...,k} which minimizes

(dé)n + N - &;n - m")(&{m + .’171;) _ d:n + z;
(60 + N)*(ég, + N +1) 6o, + N

and Pin(z) = (84, + 2:)/(8py + N), where 64, = T, &,

The optimality of a sequence of empirical Bayes rules can be judged by considering how
large its Bayes risk is as compared to the minimum Bayes risk at the nth stage. In this
connection, we define,

Gin = Co

Definition 4.1 :- A sequence of empirical Bayes rules {6,}5°; 6n = (sn(2),ps,(2)) is said
to be asymptotically optimal at least of order (3, relative to the prior distribution G if

T(G76n) - T(G) < O(ﬂn) as n — 00,

where v(G) is the minimum Bayes risk, r(G, §) is the Bayes risk of the rule §, and {f3,} is
a sequence of positive numbers such that lim,,_,o B, = 0.

We have the following result about the asymptotic optimality of the sequence of the
empirical Bayes rules.

Theorem 4.2 :

The sequence of empirical Bayes rules {651} defined above is asymptotically optimal of
order O(n™1).

For proving this theorem we need the following lemmas. For sake of simplicity of notation,

we Write Pgx () for Psx (£)(2) and Pye(g) for Por(z)(2).

Lemma 4.2

E |Lsy(x)=s )| Bogx) = Por30)” = Borx) = Por00)?]] = B [Ty 0020 00) B 00) — Bovx))?] » (6)
where the above expectation E is taken with respect to X = (X1, X0, 00 X ng1)

Proof: The proof follows from straightforward computations. a

Lemma 4.3 For eachy =10,1,...,N

1 &, +y o; +y > -1
tP CC - t)dt< 7
L e (g — e > ) de < o), ™)

and

1 Ginty ity -1
tP (ol —t)dt < :
J Q&+N RS ) <o) )
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Proof: Foreach y=0,1,...,N,and ¢t € (0,1),

Ginty ity )
p(om™¥ _ t
(agn+N P

P (d;n(ao + N) + y(ag - dan) - a’i(dan + N) > t(dIOn + N)(CYO + N))

< P((&}, — ai)(ao+ N) — (y + :)(a5, — @0) > tN(ag + N))
. tN R tN(ag+ N)
¢ Py ar> D) 1P (a0 < 0TI
< (a « 5 + Qg ap 2y + @)
N tN n tN(a0+N)
¢ Pt D) 45, (o< 0N
< P(ozm a; > 2)+E,_1P G, —oy < 2%y + 1) ,

where the last inequality is obtained by the definition of &;,, ao and an application of
the Bonferroni inequality. Let ¢’ = min{N/2,[N(ao + N)]/[2k(y + )]} and m/ such that
0 < m' < min; L;2. We consider the term P(|&}, — oy > ¢'t). Then as in Lemma 3.3,

P(la), —a| > t) < P(|Zin — auYin| > m't) + P(Yi < m)
< 126—0"15271, + 3e—c"(m'—L52)2n,

where ¢/ = min; min{[2N4(N +u;1)?]7t, (27Y/m/)2[2NY(N+pn)?]7L, (2 tatdm/)2[2N4Y(N +

pa)?)71} .
Since for any C} > 0, [y te"%"" = O(n~1). It follows that

1 i +y ai+y ) -1
tp(Sinty < .
/o <&6n+N ot N L HsomT)

Similarly it can be shown that

1 & +y a; +y 1
in - —t)dt < .
/otp(d{)nnLN 010+N< ) <0(™)

This completes the proof of the lemma. a

Proof of Theorem 4.2: Let {657 }52; be the sequence of empirical Bayes rules, §3¢(z) =
(87(2), Psx(2)(2)) and & be the Bayes rule defined in Lemma 4.1.

r(85) = 1(8) = F [Iuyx)=or(x)) [Bosx) = Por()? = (o) = o)
+E [I(s;().f)#s*(zf) [Co(ﬁs;(zf) = Psr(x))” — co(Bsr(x) — Por(x))” + Por(x) — Ps;(a:)”

IN

k
co ) E(pin — 5:)* + (o + 1)P(s(X) # 57(X)), (by Lemma 4.2).

=1
As we proved in Section 3 we can prove that P(si(X) # s*(X)) < O(e™%2™) for some
positive constant ¢;. To prove the theorem we need to prove that E(p;, — p;)? is of order
O(n~Y)fori=1,2,...,k.
Now we consider two cases: Case (1) ag known, and Case (2) ag not known.
Case 1:
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In this case,

Gin + X Lot X
a+ N’ P ot

~

~ -1 e
Pin = and  &n = N7 apXiy

fort=1,2,...,k. Hence
1

E(pimn — 9:)° = mE(&m T
B B(Ri— EXa)?
Nz(ao +N)2 mn 21
= 0O(n™).

This completes the proof for this case.
Case 2:
For the case when «pg is not known, as in the proof of the Case 1,

1

2
s 2 oty _
Bl - 7 ZE 7255 - 24 pex=w)

N
Qin + 9y o; +y > / < Gin + Y a; + ¥y
< tP < —t)dt+2 tP >
- yz:%[/o (a0n+N Gt N bont+ N oo+ N
< O(n™Y), (by Lemma 4.3).
This completes the proof of the theorem. ad

The problem of selecting the least probable cell and simultaneously estimating the prob-
ability associated with the selected cell can be treated similarly. Let the action a = (s,p)
represent the selection of sth cell and p as the estimate of the probability associated with
the selected cell. As before let the loss function be of the following form,

L(]}’ (3,p)) = LI(E,S) + I’2(psap)’ (9)

where L;(p, s) denotes the loss due to selecting the cell II; as the least probable cell and
Lo(ps,p) denotes the loss due to estimating the cell probability ps as p. Lemma 4.1 holds
true in this case. We consider the specific loss function

L(p,(s,p)) = ps — ppa) + co(ps — p)*.

Let b. be the posterior expected loss if the ith population is selected and if p; is used to
estimate the probability associated with that cell. Hence

(g + N —a; —z;)(o+2;) o+
(a0+N)2(a0+N+1) ag+ N

b,-ICO

2

-

where C/ = E{mini<;<x P;|X = z}. Let b; = b} + C’. The following theorem is analogous
to Theorem 4.1.

)l
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Theorem 4.3 :

The Bayes decision rule selects the cell m; for which b; = min;b;. The Bayes estimate of
the probability of the ith cell is given by p;(z) = %ﬁ-ﬁv"

In the situation when we do not know the parameters of the prior but we may have the past
experience, to derive the sequence of empirical Bayes rules, we need to get the estimates

of the parameters aj,as,...,or. We define the estimates as in Section 3. Let {§3¢2}$°;
6572 (z) = (53*(2), Psse(z)), be the sequence of empirical Bayes rules. For the case when ag
is known, let s3*(z) € {1,2,...,k} which minimizes

b = o (G0 N = &in = 2i)(@in + ) | Gin + T
T (a0 + N)2ao + N +1) ap+ N

and Py, = (G&in +2;)/(co+ N). For the case when g is not known, let s3*(z) € {1,2,...,k}
which minimizes

o (B N =l = n )@y b ) | &yt
T (Gt NSt N 1) G N

and pin = (&, + i)/ (80, + N).
Then we have the following result about the asymptotic optimality of the sequence of
the empirical Bayes rules.

Theorem 4.4 :

The sequence of empirical Bayes rules {6:%2} defined above is asymptotically optimal of
order O(n™1).
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