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ABSTRACT

The bootstrap has been proven to be a powerful tool for the nonparametric esti-
mation of standard errors and confidence limits in situations where the sample consists
of independent observations. Recently, block-resampling schemes have been proposed in
order to apply the bootstrap to time series problems. In this report, the different vari-
ants of resampling schemes for stationary time series are compared, and examples of their
implementation are presented using real and simulated data sets.



1. Introduction: The bootstrap in time series problems

The problem of nonparametrically estimating the variance and/or the sampling distribution
of statistics based on data X7, X2, ..., Xy is considerably more difficult in the case the data are
not independent. Let us first consider the simplest such case where X1,..., X are observations
from the (univariate) m-dependent stationary sequence {X,,n € Z}, and the statistic of interest
is the sample mean Xy = N1 -V, X;. Recall that a sequence of random variables {X,,n €
Z} is called (strictly) stationary if, for all n € N, the joint distribution of (Xg, Xx41,+ .+ Xktn)
does not depend on k; a stationary sequence is called m-dependent if the set of random variables
{X,,n=~1,-2,...} is independent of {X,,n = m,m+ 1,...}. In this setting, independence
can be thought of as 0-dependence.

It is easy to see that EXy = u, where u = EX;, and that (due to stationarity)

0% = Var(VNXy) = Var(X;) + 2 iv:(l - %)Cav(Xl, X1+i) (1)

=1

In fact, taking into account the m-dependence, it is implied that
o} = Var(VNXy) = Var(X1) + 2f:(1 - -;V)Cov(Xl,XH.,-) (2)
i=1
since Cov(X1,X14¢) = 0, for ¢ > m. Hence, it is immediate that Xy i L, i.e. the sample
mean is consistent. It is also easy to show that X is asymptotically normal, so to obtain
confidence intervals for u we would just need a consistent estimate of 02, = limy_,o 0% =
Var(X1)+2X 7%, Cov(Xy, X144).
Looking at the classical (i.i.d.) bootstrap estimate of variance of v N Xy, it is apparent that
it would asymptotically converge to Var(X;), and therefore it would be inconsistent for 0.
The reason of course is that the classical bootstrap resampling scheme is valid for independent
data, and is insensitive to their ‘time-order’. In other words, the classical bootstrap procedure
utilizes the data only through the empirical distribution that they define. This empirical
distribution is an approximation to the first-marginal distribution of the sequence {X,}, and
hence, based on it, we can not expect to estimate a parameter like 0% which depends on the
(m + 1)th-marginal distribution of the m-dependent observations (and on the whole infinite-

dimensional joint distribution for observations with more general dependence structure).
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Recently Kiinsch(1989) and Liu and Singh(1988) have independently proposed a block-
resampling scheme that takes care of this problem by working with empirical estimates of
the b-dimensional marginal distribution of the sequence {X,}, where b is an integer that is
allowed to increase with the sample size N. This method (hereafter termed the ‘moving blocks’

method), can be described as follows:

o Define B; to be the block of b consecutive observations starting from X;, that is B; =
(Xiy..oy Xiyp—1), wherei=1,...,qand ¢ = N — b+ 1. Sampling with replacement from
the set {By,...,B,}, defines a (conditional on the original data) probability measure P*
which is used in the ‘moving blocks’ bootstrap procedure. If k is an integer such that
kb ~ N, then letting &1,...,& be drawn i.i.d. from P*, it is seen that each &; is a block
of b observations (&;1,...,&p). If all I = kb of the §; ;’s are concatenated in one long
vector denoted by Yi,...,Y, then the ‘moving blocks’ bootstrap estimate of the variance
of VNX N is the variance of \/i}—’l under P*, and the ‘moving blocks’ bootstrap estimate
of P{VN(Xn ~ p) <z} is P*{VI(¥i - Xy) < z}, where V1 = } !, V..

As a final step, confidence intervals for 4 can be obtained either by means of the Central
Limit Theorem using the ‘moving blocks’ bootstrap estimate of variance, or by approx-
imating the quantiles of the distribution P{+/N(Xy — p) < z} by the corresponding
quantiles of P*{v/1(¥; — Xn) < z}. If P* probabilities turn out to be cumbersome to
analytically calculate, one can always resort to Monte Carlo, i.e. drawing a large number
of samples éj), .. .,E,Ej) iid. from P*, where j = 1,...,J, and evaluating the required
probabilities or quantiles empirically from the Monte Carlo set of the J re-samples. It is
obvious that taking b = 1 makes the ‘moving blocks’ bootstrap coincide with the classical

(ii.d.) bootstrap of Efron(1979).

It can be shown (cf. Lahiri(1990)) that a slightly modified ‘moving blocks’ bootstrap esti-
mate of sampling distribution turns out to be more accurate than the normal approximation,
under some regularity conditions, resulting to more accurate confidence intervals for . The
modification amounts to approximating the quantiles of P{v/N. (XN — u) < 2} by the corre-
sponding quantiles of P*{VI(¥; — E*Y}) < 2}, where E*Y; denotes the expected value of Y]
under the P* probability (conditional on the original data).
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To illustrate the ‘moving blocks’ method, consider the following numerical example taken
from Politis and Romano(1989). A sample Y¥3,..., Y100 was generated from the moving average
model: Y; = Z; + Z;-1 + Zi—2, where the Z,’s are i.i.d. N(0,1). By observing that 5 120 Y; ~
319 Z;, it is immediate that Var( £ 512Y;) ~ 9. A plot of the ‘moving blocks’ bootstrap
estimate of the variance of 11—0 190 Y; as a function of the block size b is shown in Figure 1. As
expected, the classical (i.i.d.) bootstrap (that corresponds to the choice b = 1) underestimates
the variance, yielding an estimate about 3. The ‘moving blocks’ bootstrap with b near the value
10 seems to give the most accurate estimate, while taking a greater b worsens the approximation,
and for b > 20 the ‘moving blocks’ correction is totally lost.

In Politis and Romano(1989,1990), the ‘blocks of blocks’ resampling scheme was introduced,
in order to address the problem of setting confidence intervals for parameters associated with
the whole (infinite-dimensional) distribution of the X3, X, . .. observations. A prime example of
such a parameter is the spectral density function of the {X,,} sequence, evaluated at a point. As
a by-product, the ‘blocks of blocks’ method also provides more accurate confidence intervals for
parameters associated with a finite-dimensional distribution of the observations, as compared
to confidence intervals obtained by the normal approximation. Examples of such parameters
include the autocovariance Cov(Xo, X,) and the autocorrelation Cov(Xo, X,)/Var(Xo) at lag
s. The ‘blocks of blocks’ scheme is a generalization of the ‘moving blocks’ method, and the two
coincide if the parameter under consideration is the mean EXj.

The ‘blocks of blocks’ resampling scheme will be discussed in the next section, together
with a general description of the method and its properties. Also discussed is a related re-
sampling scheme, the ‘stationary bootstrap’ (cf. Politis and Romano(1991)), that has the
additional property that the pseudo-sequence obtained by resampling is stationary, as is the
original sequence. In addition, some interesting applications and examples of the aforemen-
tioned resampling schemes will be presented, where again the objective is to construct accurate
estimates of sampling distribution for statistics that are smooth functions of sample-mean type
estimators.

Although our main emphasis is in nonparametric estimation, let us mention here that,

analogously to the independent case, a parametric bootstrap can be formulated for time series



models as well. For example, if it is assumed that the time series is Gaussian, with mean zero
and autocovariance sequence R (unknown), bootstrap replications can be constructed by simu-
lating Gaussian time series with mean zero and estimated autocovariance R, (cf. Ramos(1988)).

For completeness, let us also describe how the classical (i.i.d.) bootstrap can be successfully
applied to a certain class of time series models, in the same way it is applied to regression
problems. These models are characterized by the fact that they are generated by a ‘white’
noise sequence (also called the ‘residuals’), that is just a sequence of i.i.d. random variables.
Although this noise sequence is not directly observable (as is in the classical bootstrap setting),
it is in general estimable. The empirical distribution of the estimated residuals is then used in
the same fashion the empirical distribution of the sample is used in the classical bootstrap.

To fix ideas, suppose {Y,,n € Z} is a stationary autoregressive process of order p, i.e.
Y, = Y0, a;Y, i + e,, where a = (ay,...,a,) is a p-dimensional unknown parameter, and
the residuals e, are i.i.d. with (unknown) distribution F, such that Fe, = 0 and Ee2 = 1.
After observing a finite sample, the problem at hand is to establish confidence intervals for
the parameters a1,...,a,, or for some other related quantity, e.g. h(ay,... ,ap), Where h(-)
is a smooth function. The bootstrap algorithm in this situation would be the following (cf.
Freedman(1984), Freedman and Peters(1986), Efron and Tibshirani(1986), Swanepoel and van
Wyk(1986), Bose(1988)).

¢ Suppose that a sample Yi_p,...,Yn is observed and the least-squares estimates & =
(@1,...,ap) are calculated based on the Y3, ... , YN observations. Then, estimates of the
residuals are formed by letting é, = Y, — Y @Y, ;, for n = 1,...,N. Define the
centered estimated residuals as &, = ¢, — ﬁ nN=1 é,, for n =1,...,N, and let F’N()
denote the distribution function that puts mass 1 /N at each &,. Now let e},..., ey be an
i.i.d. sample with distribution Fy. Finally generate the resampled sequence Y,* as follows:
Let ¥ = Y,, forn = 1—-p,...,0, and let ¥* = SraaYr  +ei, forn=1,... N.
Based on the Y7*,...,Y% re-sample, new least-squares estimates a* = (a3, .. .,@p) can

be computed, and the bootstrap estimate of the (multivariate) sampling distribution of

VN(a — a) is the (conditional on the data Y, ...,Yy) distribution of VN(a* — a).

It has been shown (cf. Bose(1988)) that the bootstrap approximation of the sampling dis-
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tribution of the & estimate is quite accurate; indeed, under some conditions, it is more ac-
curate than the asymptotic normal distribution for 4. In addition, the bootstrap estimate
of the covariance matrix of & is the (conditional on the data) covariance matrix of a*, and
the bootstrap estimate of the sampling distribution of v N(h(éy,...,a,) — k(ag,...,a,))
is the (conditional on the data) distribution of v/ N (h(a}, ..., ay) = h(é,...,ap)).

The above boostrap algorithm can be easily generalized to mixed autoregressive moving
average models, in which the residuals can be estimated in a similar way (cf. Box and
Jenkins (1970)). It can also be generalized to nonlinear autoregressions, e.g. of the type
Y, = f(Yn-1,...,Yn—p) + €g, provided the function f can be estimated comsistently. Exam-
ples (with p = 1) of assumed models for the function f include a smooth parametric model,
e.g. f(z) = aicos(z — ay), where ay,a; are the unknown parameters, or a threshold model
(cf. Tong(1983)), e.g. f(z) = a1z, if ¢ > a, and f(z) = agz, if < a, where a,a;,0,
are the unknown parameters. Alternatively, f could be estimated nonparametrically, using
methods of nonparametric regression such as kernel smoothing and multivariate splines (cf.
Friedman(1991), Lewis and Stevens(1990)). Finally, it should be mentioned that in Franke and
Hérdle (1987) the ideas related to bootstrapping a nonparametric regression (cf. Hardle and

Bowman (1988)) are applied in the setting of kernel smoothed spectral estimation.



2. The ‘blocks of blocks’ general resampling scheme

A general resampling procedure for stationary time series, termed the ‘blocks of blocks’
resampling scheme (cf. Politis and Romano (1989, 1990)), will now be outlined, and some
examples of its implementation will be presented. The ‘blocks of blocks’ scheme is a non-
parametric procedure that yields confidence intervals of asymptotically correct coverage for a
parameter associated with the infinite-dimensional joint distribution of the terms in the time
series.

Let X4,...,Xn be observations from the (strictly) stationary multivariate time series
{X,,n € Z}, where X; takes values in R%. The time series {X,,n € Z} is assumed to have a
weak dependence structure. Specifically, the a-mixing (also called strong mixing) condition will
be assumed, i.e. that ax(k) — 0, as k — oo, where ax(k) = sup, g [P(AN B) — P(A)P(B)|,
and A € FO_, B € F° are events in the o-algebras generated by {X,,n < 0} and {X,,,n > k}
respectively.

With the o-mixing assumption there is associated a certain notion of asymptotic indepen-
dence of the ‘future’ of X} with the ‘past’ of X,. Examples where ax(k) = O(k~?), for some
A > 0, include (but are not limited to) a Gaussian time series with a sufficiently smooth spec-
tral density, or a time series generated by an ARMA (autoregressive moving average) model
with innovations that have a general absolutely continuous distribution. In particular, Gaus-
sian ARMA processes with bounded spectral density have the o-mixing coefficients (iecreasing
geometrically, and a moving average (MA) process of order p will have o x(k) =0,Vk > p.

As a first step, let us set up the estimation problem in the following manner. Suppose
p € RP is a parameter of the m-dimensional joint distribution of sequence {X,,,n € Z}, where
m could be infinite. Foreach N = 1,2,...let B; a1 be the block of M consecutive observations
starting from (¢ — 1)L + 1, i.e., the subseries X(i-1)L+1> - - » X(3-1)L+M> Where M, L are integer
functions of N. Define T; s = ém(Bim,L), where ¢pr : RM — RD is some function. So for
fixed N, the T; a1 for i € Z constitute a strictly stationary sequence. In practice we would
observe a segment X4,..., Xy from the time series {X.}, which would permit us to compute

Timr fori=1,...,Q only, where Q = [N‘TM] + 1 and [] is the integer part function. Also,



define the general linear statistic:
1 &
In = ) Y T ()

Under broad regularity conditions Ty is a consistent estimator of u. Loosely stated, these
regularity conditions consist of a weak dependence structure (allowing the variance of Ty to
tend to zero as N — o0), and a condition of unbiasedness or asymptotic unbiasedness of T as,z,
ie., ETy mp = pyor ETy p 1, — pas M — oo.

Some examples of time series statistics that can fit in this framework are the following. For
the examples assume X, is univariate, that is d = 1.

(I) The sample mean : X = £ YN, X;. Just take M = L = 1 and ¢p to be the identity
function.

(II) The (unbiased) sample autocovariance at lag s: =S N7° X;X;4,. Take L = 1,
M =s+1and ¢pm(z1,...,2Mm) = T1Z01-

(III) The lag-window spectral density estimator, where we take

L(i—1)+M )
> WXt (4)
t=L(i—1)+1

1

ém(Bim,L) = E Y

i.e., Tj,pr,.(w) is the periodogram of block B; sz of data ‘tapered’ by the function Wt(M), and
evaluated at the point w € [0,27]. (Note that the symbol ;j denotes the unit of imaginary
numbers v/—1, in order to avoid confusion with 1, the block count.)

Note that in example (I), 4 is just F X7, i.e. it is a parameter of the m-dimensional marginal
distribution of sequence {X,,n € Z}, with m=1. Similarly, in example (D), p = EXpX, is
a parameter of the m-dimensional marginal, with m=s 4 1, and in example (III), u is the
spectral density evaluated at the point w, i.e. a parameter of the whole (infinite-dimensional)
joint distribution of {X,,n € Z}.

With the objective of setting confidence intervals for u, the ‘blocks of blocks’ bootstrap

procedure goes as follows:

o Define B;; to be the block of b consecutive T m,1’s starting from T; m,r; that is, let
Bjp = (TjmLs- -, Tj—145,m,1). Note that there are ¢ = Q — b + 1 such Bis,i=1,...,q.
Sampling with replacement from the set {Bi,...,By} defines (conditionally on the
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original observations Xjy,..., Xn) a probability measure denoted by P*, which is used in
the ‘blocks of blocks’ bootstrap procedure. Let Y, ..., Y bei.i.d. samples from P*, where
k is of the same asymptotic order as @ /b, (for instance, let k = [@Q/b]+1). Obviously, each
Y; is a block of size b which we denote as Y; = (yi1,...,¥:). Let us concatenate the y;;
in one long vector of size | = kb denoted by T¥,..., T}, where T} = y,,, for r = [i/b],v =
i — br. Now both P*{/I(T} — Tn) < 2} and P*{/I(T} — E*T}) < z} constitute ‘blocks
of blocks’ bootstrap estimates of P{v/Q(Tn — p) < z}, where T} = + YL, T, and the
variance of \/ZTI* under the P* probability constitutes the ‘blocks of blocks’ bootstrap

estimate of the variance of \/QTx.

As can be easily checked, the ‘moving blocks’ technique is a special case of the ‘blocks
of blocks’ resampling scheme, as applied to the sample mean example (I). Under mixing and
moment conditions, consistency of the ‘blocks of blocks’ bootstrap estimate of sampling distri-
bution was proved in Politis and Romano(1989,1990) in the general case (where m might be
infinite). This is summarized in the following theorem, in which it is assumed that D = 1, that

is, p € R.

Theorem 1 Suppose the stationary sequence {X,,n € Z} is a-mizing, with ax(k) = O(k™?),
for A > M&Pr""sl, where ng is an integer with ng > 2, and 0 < 6§ < 2,C > 0 are some
constants. Also suppose that E|Ty p,p|*™% < C, for all M, and that ETimrp = p+0(Q1?)
and limy oo Var(ﬁ Y2, Tim 1) exists and equals o2 > 0.

If M = o(N) and L ~ aM, for some a € (0,1], and b — oo with b = o(Q/2), then as
N - oo, Var*(\/ifl_“l*) £, o2 , where Var* denotes the variance under the P* probability, and

the following are true:
sup [P*{VI(T} ~ E*T}) < o(Var*(VIT}?))'/%} - P{VQ(Ty - ETn) < w0}l 20 (5)

sup |[P{VI(T; - Tn) < 2} = P{VQ(Tw — ETn) < o} L5 0 ()
where E* denotes expectation under the P* probability.

If in addition ETy pp = p + O(Q"l/ %), then pu can be substituted instead of ETx in equations

(5) and (6).



To actually compute confidence intervals using the (5) or (6) approximations, one has to
compute the corresponding quantiles of P*{/I(T}— E*T}) < 2(Var*(vIT}))/?} or PH{/I(T}—
Tn) < z}. As mentioned previously, this is usually done by Monte-Carlo, that is, drawing a
large number of independent samples from P* (that are refered to as re-samples), and looking
at the quantiles of the resulting empirical distribution. Finding a constant C* that satisfies
P*{E*T) < T} + C*} = 1 —¢, would then immediately imply that P{ETy < Ty 4 C*} ~ 1—¢,
and, also that P{u < Ty + C*} ~ 1 — ¢, the latter provided ETy arz = p + 0o(Q~1/2), that is,
if the bias of the estimator T3 as, is of smaller order than its standard deviation.

To fix ideas, suppose we are looking for a 95% equal tailed confidence interval for y, under
the assumption ETy a1 = p + o(@~1/2). Other types of confidence intervals (e.g. symmetric
around pu or smallest length) can be treated in the same way. Starting with tﬁe approximation
975 = P*{VI(T} — E*T}) < 2*} ~ P{/Q(Tx — p) < *}, note that [=1/2z* 4 E*T} is just
the .975 quantile of the bootstrap distribution P*{T}* < z}. Similarly, define y* such that
1=1/2y* + E*T} is the .025 quantile of P*{T}* < z}. Then, the 95% equal tailed confidence
interval for p is [Ty —2*//@, Tn—y*/+/@]. This, in the terminology of Hall(1988), is a ‘hybrid’
bootstrap confidence interval based on the approximation (6). Using the approximation (5)

would lead to a ‘bootstrap-t’ confidence interval.

An important observation is that Var*(VIT}) = ¢34 (3 Yt T — EXTF)?, and
E*Ty = 21_1 5 ;'-;;l-"'b T; m,L, both of which can be computed without resampling. The

variance estimate Var*(\/l-T*) is asymptotically equivalent to the estimate VJAGK(\/@TN) =

PN (- Z;_i*‘b ,M,L — Tnv)?, which is refered to as the ‘blocks of blocks’ jackknife estimate
of variance.

Let us break for a moment to illustrate the practical implementation of the block-resampling
scheme just presented by means of an example. Consider the Canadian Lynx data (annual
number of lynx trappings in the Mackenzie River for the period 1821 to 1934), that are available
to all users of the S statistical language (cf. Becker, Chambers, and Wilks(1988)). It is
important to note that the Lynx data have been shown ( cf. Subba Rao and Gabr (1980)) to
be non-linear (and non-Gaussian), and hence would not succumb to usual linear parametric

modeling, such as fitting ARMA (autoregressive moving average) models.
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Suppose that we are interested in obtaining a 95% confidence interval for the mean of the
annual number of lynx trappings, i.e. £X;, where the data Xi,...,X714 are pictured in Figure
2. Note that X114 = 75 2in Xi = 1538.018.

The first step is to compute a variance estimate for v/114X114. Using the estimator Vy4ox,
(the bootstrap estimate Var*(\/ZT ") is practically indistinguishable from Viack for all b =
1,2,...,40), involves chosing the design parameter b appropriately. Different choices of b lead
to quite different estimates as shown in Figure 3.

Now, it is known in this case that to have a variance estimator with asymptotically smallest
Mean Squared Error (M.S.E.) it is necessary that 5% ~ %(Zg‘;_w |s|R(s))?, where 02 =
limp oo Var(vVNXy), and R(s) = Cov(X1, X14,) (cf. Kiinsch(1989)). This is hardly a new
result, since, for the particular case of the sample mean, Vyacox is essentially a nonparametric
estimate of the spectral density at zero, smoothed by Bartlett’s kernel. A rough estimate of
% _ o |8|R(s) based on the sample autocovariances can be obtained. However, 0%, is unknown.
In fact, this is exactly what Vyaox asymptotically estimates. Looking at the variability of
Viack for different choices of b, indicates that this route for choosing b is really a vicious
circle.

Therefore, the choice of b requires a heuristic guess based on studying the data more deeply.
In the case of the lynx data, looking at the estimated sample autocovariance sequence R(s) =
iﬁzﬁ‘;_lle;XiH,I, or at its unbiased version ﬁmR(s), is particularly enlightning. In
Figure 4, a plot of R(s)/R(0) is presented, i.e. the sample autocorrelation sequence. There is
a clear indication of a certain cyclic behaviour with a period of about ten years (cf. Cambell
and Walker (1977) and the references therein). Bearing in mind that Var(vNXy) = R(0)+
2 N-1(1 - ﬁ)R(z), it can be seen that chosing b = by effectively retains only the first b,
autocovariances in the summation. But by the almost-periodicity of R(s), one expects that
there will be a lot of cancellations among the terms in the above sum. Hence, it would be
advisable to let b be of the order of two or three cycles, in order to allow for the cancellations
to take place. We would opt to take b = 25 in this case, leading to a variance estimate of

2,873,828.

Returning to the problem of determining b via minimum M.S.E. considerations, it is quite
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interesting that simultaneously trying to solve for b and Viack the equation presented in Figure
3, and the equation 53V2, 5 = (3N/4)R?, with B = 2320, s(1 — s/40)R(s) = —30, 533,255
being an estimate of 3 52 |s|R(s) using Bartlett’s kernel, actually leads to b = 22 and an
estimated variance of 2,853,373 (taken from Figure 3 with b = 22). However, it should be noted
that due to the asymptotic nature of this way of determining b (and due to the high variance
of R) we would not a priori trust this result if it were not supported by some other reasoning
regarding the process.

Now that a variance estimate for X is available (the variance estimate is 2,873,828/114 =
25209, and the standard deviation estimate is 158.8), a 95% confidence interval for EX; using
the Central Limit Theorem would be [1226.8, 1849.3]. Note that this confidence interval could
be inaccurate because the distribution of the lynx data seems to be excessively skewed (see
Figure 5). This observation amounts to worrying about the rate of convergence in the Central
Limit Theorem, which is made worse by the dependence among the data.

A traditional way out of this difficulty is the use of transformations. In the literature (cf.
Subba Rao and Gabr(1980), Cambell and Walker(1977)) it is suggested to use the logarithmic
transformation on the data X3,..., X114. However, this would lead to a confidence interval for
FElog X3, that does not immediately relate to a confidence interval for EX;. Alternatively, one
can use a transformation on X and the é-method (cf. Miller(1986)). Using the logarithmic
transformation on X (and the asymptotic normal distribution of log Xn) leads to the [1256.3,
1882.9] 95% confidence interval for EX;, which is markedly different from the interval based
on a normal approximation for Xy.

The question then is: which of the two confidence intervals is better? The bootstrap solves
this dilemma, because it automatically captures the skewness without the need for transfor-
mations. Heuristically, it is like if the bootstrap implicitly employs an ‘optimal’ in some sense
normalizing transformation before constructing its distribution estimate (cf. Efron (1979, 1982,
1987)).

In Figures 6 and 7, histograms of the ‘moving blocks’ bootstrap distribution of Xy are
presented for two bootstrap simulations. The choice of desigﬁ parameters was for Figure 6,

k = 20, b = 25, and the number of bootstrap replications was J = 500; for Figure 7, k = 5,
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b= 25, and J = 100. The 95% bootstrap (hybrid) confidence intervals for EX; were [1233.37,
1826.07] (Figure 6), and [1221.03, 1862.62] (Figure 7). Note that because in general | = kb
is not equal to ), the bootstrap confidence limits can not be ‘read’ immediately from the
histograms. A re-normalization is in order, as discussed after the statement of Theorem 1.

It is apparent that the bootstrap confidence intervals are quite close to the confidence
interval derived by the Central Limit Theorem. This could be guessed by looking at the
bootstrap histograms which do not appear to be too skewed (the histogram of Figure 6 has
coefficient of skewness 0.333, compared to 1.33 of the empirical distribution of the lynx data).
It is also apparent that a reasonably accurate bootstrap confidence interval can be obtained
by as few as 100 Monte Carlo replications (although it is always advisable to take a larger
number).

It is interesting to note that if y is a parameter of the m-dimensional marginal distribution
of sequence {X,}, with m finite, then M could be taken to be a fized constant equal to m, and
L can be taken equal to one in the ‘blocks of blocks’ procedure. In this case, and under some
additional regularity conditions (including that ETy ar,1 = p, and that a(k) has an exponential
decay), it has been proved (Lahiri(1990), Politis and Romano(1990)) that the approximation
provided by equation (5) is more than first-order accurate. This fact establishes that the
bootstrap approximation (5) is preferable to the normal approximation provided by a Central
Limit Theorem for T, especially if there is significant skewness in the distribution of the
T; pm,L's.

The reason that (5) provides a more accurate approximation than (6) is that E*T} =
Tn+0,(b/Q),i.e. the distribution of T} under P* possesses a random bias of significant order.
This bias is associated with the ‘blocks of blocks’ resampling scheme that assigns reduced weight
to Ti,m,L’s with ¢ < bor ¢ > @ — b+ 1. In other words, if we let P* be the limit (almost sure
in P*) of the proportion {=!(number of the T}’s that equal T;p7,1) as | — oo, (and assuming
no ties among the T;a,1’s), although P¥ = b/R, with R = b(Q — b+ 1), for any i such that
b< i< @Q—b+1, this proportion drops to P? =i/R,for any i < b, and P* = (Q — i + 1)/R,
forany ¢ > Q — b+ 1.

A way to dispense with this difficulty is to ‘wrap’ the Ti,m,1’s around in a ‘circle’, that is, to
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define (for ¢ > Q) T;m,L = Tiq.M,L, Where ig = i(mod@), and Toar,r = Tq,am,z. This idea is
incorporated in the following general formulation which, for reasons to become apparent later,

will be called the stationary (blocks of blocks) resampling scheme.

o With the T as,1.’s defined for all 7 as above, define the B;; as previously, but note that
now for any integer b there are @ such B;;,7 = 1,...,Q. Let p be a number in [0,1].
Independent of Xi,...,Xn, let Ly, L,,... be a sequence of independent and identically
distributed random variables having the geometric distribution, so that the probability of
the event {L; = n} is (1—p)"~!pfor n € N. Independent of the X; and the L;, let I, I, ...
be a sequence of independent and identically distributed variables which have the discrete
uniform distribution on {1,..., N}. Now, a new pseudo-sequence 77, ..., T3 is generated
in the following way. Sample a sequence of blocks of random length by the prescrip-
tion By, 1,,B5,L,,.... The first Ly observations in the pseudo-sequence T7,...,T5 are
determined by the first resampled block By, z,, the next L, observations in the pseudo-
sequence are the observations in the second resampled block Bp,,r,, and so on. The
process is stopped once ¢ observations in the pseudo-sequence have been generated. It
is not hard to see that the pseudo-sequence T7,..., & is stationary, conditionally on the

original data.

This method of resampling and generating T}, ..., T} defines a (conditional on the orig-
inal data Xy,...,Xn) probability measure P*. If we define Té = jé- E?ﬂ T¥, then it is
easy to see that E*TA = Tn, where E* denotes expectation under the P* probability.
Hence, the stationary blocks of blocks bootstrap estimate of P{/Q(Tw — p) < z} is
P{VQ(T — Tn) < z}.

Under mixing and moment conditions, it can be shown (cf. Politis and Romano (1991)) that
the stationary bootstrap estimates of variance and of distribution are consistent. Considering
the Lynx data again, a problem equivalent to determining b in the ‘moving blocks’ or ‘blocks of
blocks’ boostrap presents itself, namely choosing the design parameter p. It can be shown (cf.

Politis and Romano(1991)) that the stationary bootstrap estimate of the variance of VN X N

14



can be analytically calculated by

N-1
Vses. = R(0)+2 > hn(i)R(3) (7)
i=1

where hn(2) = (1 — -]’\7)(1 —-p) + -]’v(l — p)NV—i, Note that in the stationary bootstrap there are
blocks of random length. Since the average length of these blocks is 1/p, it is expected that
the quantity 1/p should play a similar role as the parameter b in the moving blocks method.
In Figure 8, the Vsi.p. variance estimates are pictured for different values of p between 0 and
1/2. Choosing p = 0.05 corresponds to a variance estimate of 2,335,502.

It should be stressed that all the abovementioned block-resampling methods give valid
results for statistics that are smooth functions of sample means, since ‘the bootstrap commutes
with smooth functions’ (cf. Bickel and Freedman (1981)). In addition, the moving blocks and
the stationary bootstrap methods have been shown to work with statistics that are representable
by smooth functionals, i.e. that can only be approximated by sample means (cf. Kiinsch(1989),
Liu and Singh(1988), Politis and Romano(1991)), as is, for example, a trimmed-mean.

It should also be pointed out that the ‘blocks of blocks’ method is asymptotically correct
in the general case where u € RP, in which case T and the T; m,L’s are multivariate. Denote
p®, TI(\? ), etc. to be the nth coordinate of ¢, T, and so forth. The following multivariate the-
orem was proved in Politis and Romano(1990), while a similar result is true for the multivariate

stationary bootstrap (Politis and Romano(1991)).

Theorem 2 Suppose the stationary sequence {X,,n € Z} is a-mizing, with ax(k) = O(k=*),
for A > M’?—"'Q, where ng is an integer with ng > 2, and 0 < § < 2,C > 0 are some constants.
Suppose that E|T1(33[,L|2”°+5 < C, for all M, and for all n = 1,2,...,D. Also suppose that
ETipmr = p+0(Q™/?) and limy_,e0 C’ov(\/LQ- 2, Tz(,g,})L, —\/12—5 2, Tz(,ﬁ}?L) ezists and equals
2((,70”)’(”2), with ™ 5 o foralln=1,2,...,D.

If M = o(N) and L ~ aM, for some a € (0,1], and b — oo with b = o(Q'?), then as
N — o0, Cov*(\/ZTl*) il Yoo, where Cov* denotes the covariance matriz of \/iTl* under the
P* probability, and the following are true:

Sup) |P{VITY = B*TF) < (Cov*(VIT})) 2%} — P{V/Q(Tw — ETw) < £42} 50 (8)
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sup |P*{VI(T} — Tv) < 2} - P{VQ(Tn - ETn) < 2} = 0 (9)
zeRD

where (C’ov*(\/l_Tl*))l/ 2 and 2(1)42 represent the ‘square root’ of these positive definite matrices
given by some decomposition procedure, and the (ny,ny) element of C’ov*(\/l-T,*) can be com-
puted analytically as 2 7, (3 Tisit T_7'(,7}\143 L — EXTrmhyd Yt TJ-(;‘}?L ~ BT ™)y,

If in addition ETy\ pmp = p+ o(Q‘l/ %), then p can be substituted instead of ETN in equations
(8) and (9).

An important implication of theorem 2 is that by the multivariate blocks of blocks resam-
pling scheme we can get asymptotically correct approximations to the sampling distributions of
continuous functions of T. For example, with no extra effort we can get approximations to the
distribution of max,=12,.. 0{vVQ@ |T](\? ) ,u(”)l}, which allows for the possibility of constructing
simultaneous confidence intervals for all coordinates of u (cf. Politis and Romano (1990)). In
particular, in Politis, Romano, and Lai (1990), the case where y is the spectral or cross-spectral
density function sampled at a grid of points was studied, with the objective of setting uniform
confidence bands.

As our final example, consider the important case where the parameter of interest is the
autocorrelation coefficient at lag s, i.e. the parameter p(s) = R(s)/R(0), where R(s) = EXoX,
and for simplicity it is assumed that EXp = 0. In that case, the linear statistic Ty is (s + 1)-

dimensional, with T = 5= " N7° X; Xi4n1,and L=1, M = s +1 and ¢{(z1, ..., n) =
Ty, for n = 1,...,8 + 1. It is easy to see that Tjﬁ;‘), for n = s 4+ 1, is just the sample
autocovariance R(s) at lag s. Via the ‘blocks of blocks’ resampling scheme applied to the
linear statistic Ty, accurate confidence intervals for the autocovariances can be obtained, as
well as variance estimates of the sample autocovariance estimates. Considering the complicated
form of the asymptotic variance of the sample autocovariances (that involves estimates of the
fourth order cumulants, cf. Anderson(1971)), the advantage of using an automatic procedure
like the bootstrap is apparent.

Now the estimator p(s) = T¢+Y/ T is a smooth function of the linear statistic Tn, and
its statistical properties can be analyzed via the ‘blocks of blocks’ bootstrap. Of course, if we
are only interested in p(s), a 2-dimensional linear statistic, consisting of just T](\} ) = R(0) and

T](\; ) = R(s), would suffice. The advantage of considering the (s+1)-dimensional statistic T
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is that we can instantly obtain simultaneous confidence intervals (confidence band) for p(k), &k =
1,...,s (and for R(0)), that are not available by classical methods (cf. Priestley(1981)). An
obvious use of such confidence bands is in testing hypotheses regarding the covariance structure.

The way this can be done is as follows. For concreteness, assume that we are looking
for a 95% confidence band for p(k),k = 1,...,s. That is, we are looking for two sequences
c1(k), co(k) such that P{Vk € {1,...,s} : p(k) — e1(k) < p(k) < p(k) + c2(k)} = 0.95. To
start with, apply Fisher’s z transformation to approximately stabilize the variance of the es-
timates at different lags, i.e. let ((k) = }log }_Lz}%, and (k) = Zlog ii";(z ,fork=1,...,s.
Then, by the ‘blocks of blocks’ bootstrap, obtain an approximation to the distribution of
the ‘maximum modulus’ VN maXg=1,..s ]é (k) — ¢(k)|. This immediately leads to a uniform
width (i.e. e1(k) = ¢1 and ca(k) = eg,k = 1,...,3) and symmetric (i.e. ¢1(k) = ca(k))
confidence band for ((k),k = 1,...,s, and can be translatedto a confidence band (of non-
uniform width) for p(k),k = 1,...,s. Alternatively, we can get a (non-symmetric in gen-
eral) equal-tailed uniform width confidence band for {(k),k = 1,...,s, by finding bootstrap
approximations to z and ¥ such that P{\/J_V_ma.xk=1,,,_,s(f(k) - ¢(k)) < z} = 0.975, and
P{v/N ming=,...,({(k) — (k) < y} = 0.025.

As an illustration, a time series Y3, ..., Y200 Was generated according to the model
Xt - 1.352Xt_1 + 1.338Xt_2 - 0.662Xt_3 + 0.240Xt_4 = Zt - 0-2Zt—1 + 0'04Zt—2
Y: = Xo| X

where the Z;’s are independent normal N(0,1) random variables. A plot of the Y1,..., Yoo data
set is presented in Figure 9, and Figure 10 contains a histogram of the empirical distribution
of the data, that reflects the non-normal distribution of the Y;’s.

In Figures 11 and 12, 95% equal-tailed confidence bands are set for ¢(k) and p(k),k =
1,...,10, via the ‘blocks of blocks’ bootstrap, with design parameters, b = 15,k = 20, and
number of bootstrap replications J = 500. Observe that although the estimates ¢ (k) and p(k)
are indistinguishable, (a consequence of the fact that Fisher’s z transformation is almost an
identity for |p(k)| < 0.4), the corresponding to them confidence bands are quite different. In
fact, the confidence band for (k) is constructed so that it has the property of uniform width

along k, which can not be carried over to the band for p(k).
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In both figures, the middle curve can be considered to be the ‘true’ values of ((k) and
p(k). These are really estimates of ((k) and p(k) obtained by generating a Y; time series of
length 20,000. From this extra long stretch of the ¥; time series, one hundred approximately
independent series of length 200 were extracted in order to get an empirical estimate of the
distribution of the ‘maximum modulus’, to be compared to its boostrap approximation.

In Figures 13 and 14, histograms of the boostrap and the empirical estimates of the dis-
tribution of \/JVmaxk=1,m,s |é(k) — ¢(k)| are pictured. Maybe due to the small number (one
hundred) of available series, the empirical distribution has a shorter right tail than its bootstrap
counterpart. This implies that the bootstrap confidence band would be more conservative (i.e.
wider) than a confidence band based on this empirical distribution, provided the latter was

somehow available.
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