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1. Introduction

There is an extensive literature about the mathematical properties of orthogonal poly-
nomial and its applications in various areas. In the wide class of orthogonal systems the
classical polynomials are of particular interest: the Jacobi polynomials P,(,a’ﬂ )(:v), orthog-
onal (on the interval [—1,1]) with respect to the measure (1 — z)*(1 + z)?dz (o, 8 > —1),
the Laguerre polynomials lea)(:c), orthogonal with respect to the measure z*e~*dz (on
[0,00), > —1), and the Hermite polynomials which are orthogonal (on the real line) with
respect to the measure e=*"dz. Characterizations of these polynomials are given in Al-
Salam (1990) and Chihara (1978); see also the recent monograph of Van Assche (1987). In
this paper we will present a new characterization of the classical orthogonal polynomials
which is based on the sequence from the recurrence formula (Section 3) and allows a very

easy derivation of the asymptotic distribution of the zeros of the polynomials (Section 4).

2. Preliminaries

Let & = (—00,00),[0,00) or [0,1] and p denote a probability measure on X with

all moments existing. The Stieltjes transform of p has the following continued fraction

expansion

tdp(z) 1 Gl ¢l
(2) 0, 1] /0 z—z |z—11 =]z —...
where (3 = p1, {j=¢;—1p; (1 22), ¢j=1—-p;, 0<p; <1

Cdp(z) 1 di|
b X=0 hal kNP APl A3 B2
(b) ooy [ Do A
where d; > 0.

* du(z) 1 a| az |
X =(— =

(c) (=00, 00) /_ooz——:c |z —b —|z—by —|z—b3

where a; > 0.

The quantities {p;}i>1, {di}i>1, {ai,bi}i>1 can be expressed by determinants of the mo-
ments of the measure p (see Lau (1989) or Perron (1954)). In this sense every probability

measure on [0, 1], [0, 00), (—0c0, c0) is characterized by the sequence {p;}i>1, {di}i>1, {ai, bi}i>1
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respectively. If this sequence is finite (i.e. p; € {0,1}, di = 0 or a; = 0 for some i) the
corresponding measure has finite support which is given by the zeros of the polynomial in
the denominator of its continuous fraction expansion. The following Lemma. is concerned

with the support of a reversed terminating sequence. Its proof is given in the appendix.
Lemma 2.1

a) Probability measures (on [0,1]) corresponding to the sequences (pi,...,pm,0) and

(Pm,---,p1,0) have the same support.

b) Probability measures (on [0,1]) corresponding to the sequences (pi,...,pm,1) and
(¢my---,q1,1) have the same support.

c) Probability measures (on [0,00)) corresponding to the sequences (di,...,dn,0) and

(dm,...,d1,0) have the same support.

d) Probability measures (on (—o0, o)) corresponding to the sequences ( Zl ro Zm’
1y ceey my
and [ %™ 0 90 0 have the same support.
bm+1, ceey bz, b

The following Lemma gives the sequences corresponding to classical orthogonal poly-

nomials (see Van Rossum (1953)).
Lemma 2.2

a) The corresponding probability measure (on [0,1]) of the sequence

_ k __ Btk
T atft2k+ 1 PUT L ok

P2k (k>1)

is the “Jacobi” measure with density proportional to z?(1 — z)* (a, 8 > —1).

b) The corresponding probability measure (on [0, 00)) of the sequence
dzk:k, de_1=a+k (kZl)

is the “Laguerre” measure with density proportional to z*e~%(a > —1).
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¢) The corresponding probability measure (on (—o0, o)) of the sequence

(k> 1)

ar =

DN &

is the “Hermite” measure with density proportional to e~

3. Characterization of the classical orthogonal polynomials

Consider a measure p on [0,1] with infinite support and corresponding sequence
P1,D2,... (note that p; € (0,1) because p has infinite support). Define pn,(n € N)
as the probability measure (on [0,1]) which corresponds to the “truncated” sequence
P1,P2,.--,P2n—1,0 and uf as the measure which corresponds to the reversed sequence
P2n—1,P2n—2,---,P1,0. Replacing the {p;}i>1 by {di}i>1 we have a similar definition on
the half line [0, 00). For a probability measure on (—oo, 00) we define u, as the probability
coy Qp—1 0 ) and pR

measure which corresponds to the truncated sequence bl, b b
1y ey n—1 n

as the measure corresponding to the “reversed” sequence (az_l’ ’ Z;’ bOl ) From
the continued fraction expansions given in section 2 it is ObVigl,lS that ,the s’upport of the
measure [, is given by exactly n points (n € N) and by Lemma 2.1 it follows that the “re-
versed” measure pf has the same support points as pn,. In what follows we are interested

in measures g (on [0,1], [0,00) or (—oo, 00)) for which the truncated and reversed measure

12 puts equal masses on its n support points, i.e.
R 1 R
(3.1) pn({z}) = — Ve € supp(u,).

This result has a geometric interpretation which we illustrate for the case [0,1]. The

other cases are similar. Let My, denote the moment space

Man = {(c1,...,Con)lci = /:Eidu, i=1,...,2n}

generated by probability measures. For each (c1,...,c2,) € M, there corresponds a
boundary point (e1,...,¢2n—1,¢5,) for which ¢,, is a minimum. This corresponds to the

“lower principal representation” of ci,...,¢zn—1 or to (p1,...,p2n—1,0). Let D, denote
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the nth orthogonal polynomial corresponding to ¢;,...,¢czn—1. The hyperplane supporting

My, at (c1,...,C2n—1,Cy,) is determined by Dfl and the corresponding face of M,, has
extreme points (z;,z7,...,22"), ¢ = 1,...,n. The measure uf which puts equal masses

on its support points can be viewed as the “center” of this face.

The classical orthogonal polynomials can essentially be characterized as the unique
polynomials whose corresponding probability measure yu satisfies the condition (3.1) for all

n € N. More precisely we have the following theorem.

Theorem 3.1

a) A probability measure p on [0,1] satisfies (3.1) for all n € N if and only if x has the
“Jacobi density” proportional to 2#(1 — 2)* (o, 8 > —1).

b) A probability measure y on [0, 00) satisfies (3.1) for all n € N if and only if x has the
“Laguerre” density proportional to %(%)“e"z/ﬂ (a>~1,8>0).

c) A probability measure p on (—o0, 00) satisfies (3.1) for all n € N if and only if 4 has

2
the “Hermite” density proportional to exp |— 22 a>0,b€R).
Ja

Proof: We will only give a proof of a); parts b) and ¢) are proved in the appendix. In
the first step we will show that the measure with density proportional to z?(1 — z)® has

in fact the property (3.1).

The measures p, and uf have the same support by Lemma 2.1. For the calculation

of the weights of uf we consider the Stieltjes transform of pE: namely,

“ uB({z; Cn(z

The demonimator D, (z) is the Jacobi polynomial G ’q)(z) on [0,1] with parameters
p=a+pB+1and ¢ = +1 (see Abramowitz and Stegun (1964), p. 782). We will show
that the numerator C,(2) = Gﬁlp_’ql)(z) with parametersp=a+8+3and ¢=+2. In
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this case we obtain for the weights of u at the support points z1, 2,
,U,S({.'IJZ}) = @(z)(z - xi)lz:z;

Co(zi)  GEHPHPH(g))

cy Ty

EDa(Dsmes LG ()|,

S|

where we have used the identity %G%p’q)(z) =n szp_'i'lz’q+1)(z).

In order to show that Cp(z) = GELP_’ql)(z) with parameters p=a+ f+3 and ¢ =5 +2
we consider the reversed sequence

(n) _ L n—t (n) _ o Btn-it1
o = P e S T ¥ ltat g D TP S ) Ya+ 8
(¢ = 1,...,n) and obtain by an even contraction for the Stieltjes transform of uZ
n R 1 R
pn({zi}) j/ pin ()
@ = —_—— = —_—
(2) ; z — T 0 Z—
_ 1| &6 A Con—3Can—2| _ Chr(2)
lz—=C Tlz—C—C Tlz=C—C |z~ Can—2 ~ (2n-1 Dn(z)

where (; = ﬁgn), G = ﬁgn)ﬁff)l (¢ > 2), Dp(2) =[[iny(z —zi) and for k= 3,...,n

=K ( -~ - _42n¥2k+3C2n—2k+4 vo. —Can—3Can—2
Ox(z) z — Can—2k42 — Can—2k+3

_ 72— Can—2 — (2 )
(see Perron (1954) or Wall (1948)). Here we have used the usual notation for the continuant

K which is also defined in the appendix. Thus we have for the polynomials C,(z) the
following recursive relation

Ci(z) = 1, Co2) = 2~ Con—z— Canmr = B+2

a+pB+4
Ck(z) = (Z - 52n—2k+2 - §2n—2k+3) Ck—1(Z) - §2n—2k+352n—2k+4 Ck—2(2)

Comparing this with the recursive relation of the Jacobi polynomials on [0, 1] with
parameters p = a + f + 3, ¢ = B + 2 we find (see Abramowitz and Stegun (1964), p.782)

Ci(z) = GEAPTSAHD (4



For the reverse direction we now show that the Jacobi measure is definitely deter-
mined by the condition (3.1). To this end consider an (infinite) measure p on [0,1] with
corresponding sequence p1, pz, ... and for n € N let u, and u2 denote the measures corre-
sponding to the sequences (p1,...,p2n-1,0) and (p2n—1,--.,p1,0). The Stieltjes transform

of the reversed sequence is given by

z—z  |lz—| 1 — | z ... —|1

1 d R 1 — .
(32) B(z) = / dup(@) _ 1 pen-il pmaal ol
0

where v; = ¢;pj—1 (j > 2). On the other hand pZ puts equal weights on its support points

Z1,...,Z, and we obtain

®(z) = ;1;2 z—lwi = %[n 1 (n—1) (Zaz,) "2

=

+(n—2) Zwi:cj z"_s...] H(z—:c,)

1<

(3.3)

Because the measures pf and p, have the same support (Lemma 2.1) we see from the

continued fraction expansion of the Stieltjes transform of the measure p,

H(z—:vj):z”— ZC] 2"t 4 ZZC,C] 2"
j=1 j=1

i=1 j=i+2

which yields

n n n n n n

By a combination of the equations (3.2) and (3.3) and a comparison of the coefficients of

n

2™~ 2 and 2™ ~? in the polynomials of the numerators we now obtain the following equations
foralln > 2
2n—1 2n—1
nl 2 v)=C-1D X
J=2 J=1
(3.4)

. (2712—:1 2%31 7i7j> —(n—2) (2151 21531 Ci§j>

i=2 j=it+2 i=1 j=i+2
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2n—1 2n—1 2n—1 2n-1 2n—1 2n-1

Observing the identities ) (j =pan—1+ Y y5and Y, 3 GG= X X w4+
& :

j j=2 i=1 j=i42 =2 j=i+2
2n—2
P2n—1 ) <j which follow readily from Lemma 2.1, we obtain from (3.4) the equations
=2
2n—1
(n — Dp2n—1 = 22 ¥i
]:
(35) 2n—2 2n—1 2n—1
(n=2)pana| > 7 1=23 X v for all n > 2.
;=2 i=2 j=it2
We will now simplify (3.5) using that the equations must hold for all n > 2 which yields
(for n —1)
2n-3 2n—3 2n-3
Z v = (n —2)p2a-3, 2 Z Z Y% = (1 = 3)p2n-3(Y2n-1 + (n — 3)pan—s).
=2 i=2 j=it2

Thus (3.5) reduces to (n > 3)

(3.6)
{p2n-—1[(n — 1)+ pan—2] = pen—2 + Yon—2 + (n — 2)p2n—3

(n = 2)p2n—1((n ~ 1) + pan—2] = 2(n — 2)p2n—2 + [2q2n-2 + (1 — 3)][Y2n—1 + (7 — 3)p2n_s).
We now prove successively (for n > 2) that the solutions of the equation (3.5) or equiva-

lently (3.6) are given by

(n—=Dp2+ 72 (n—1)ps
(3.7) Pzn—1 (2n —3)p, +1 Pan—2 (2n —4)py +1

In the case n = 2 we obtain from (3.5) (note that this case gives only one equation for p;)

=2,3,...

p3 =72+ (1 — p3s)p2

which obviously gives (3.7) for n = 2 (the second representation in (3.7) is obvious for
n =2). Now assume that the representation (3.7) holds from 1 to n — 1 and consider (3.6)
for n. By straightforward calculations (using the induction hypothesis) we obtain

(2n - T)ps +1
(2n—6)ps +1°

(3.8) Yon—a + (7 — 3)pan—s = (1 — 2)p2n—s

Equating the two equations of (3.6), solving with respect to ps,—2 and using (3.8) it

follows
(3.9)
(2n — T)ps + 1] [ (2n—T)p2 +1
n—2 |1 n—3 — 2Pan— = -1 n—3 — P2n— .
P2n—2 |1+ pon—3 D2 5(2n—6)P2+1 (n ) |p2n—3 — p2 5(2n—6)p2+1
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Now observing the representations
2n—Tp2+1 __ pl(n—3)p2 + (1 — 7))
(2n—6)p2 +1  [(2n —5)pz + 1][(2n — 6)p2 + 1]

(2n—T)p2 +1 _ (n—3)p2 + (1 —72)
(2n —6)ps +1 (2n —6)p2 + 1

P2n—-3 — P2n-5

1- DP2n—5
(which follow from the induction hypothesis) we have from (3.9)
P2n—2[(n — 3)p2 + 1 —72][(2n — 8)p2 + 1+ p2] = (n — 1)pa [(n — 3)p2 + 1 — 7]

which reduces to

__(m—-1p
From the first equation given in (3.6) we now obtain (using (3.8)) by straightforward
algebra '
_(n=Upt 7
DP2n—1 (2n _ 3)p2 T 1

which shows that the solution of the equations (3.6) is given by (3.7). Because every
probability measure on [0,1] which satisfies (3.1) for all n € N must also satisfy the equa-
tions (3.6), we have shown that the corresponding sequence p1, p2, ... of such a probability

measure on [0,1] which satisfies (3.1) is determined by

(n —1D)pa + gaps (n—1)ps (n>2)

(2n — 3)p2 + 1 y P2n—2 =

Pan—1 = " (2n—4)p; +1

If we replace the free parameters py, ps by

B+1 1
=" =—— (a,0>-1
b1 a+B+2 D2 a+ﬂ+3(ﬂ )
we obtain
. n—1 _ p+n
DPoan—2 = 2n—1+a+ﬁ’ Doan—1 = 2n—+a+ﬁ

and by an application of Lemma 2.2a) the assertion of the theorem follows.

Corollary 3.2: The Jacobi polynomials can be characterized as the unique orthogonal

polynomials on [—1, 1] whose corresponding measure satisfies (3.1).
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The Laguerre polynomial can be characterized as the unique (up to a scaling factor)

orthogonal polynomials on [0, 00) whose corresponding measure satisfies (3.1).

The Hermite polynomials can be characterized as the unique (up to a linear transfor-

mation) orthogonal polynomials on (—o0, c0) whose corresponding measure satisfies (3.1).

Note that in the last Corollary we have considered the Jacobi polynomials on [~1,1]
while Theorem 3.1 deals with polynomials on [0,1] for which the derivation of the used
equations is easier. By a linear transformation we obtain the desired result on the interval
[—1, 1], where the p; are the same as on the interval [0,1] (see Skibinsky (1986)) and defined
by the continued fraction expansion of the Stieltjes transform

/1 du(z) 1| 26| 26|
1z—z |Jz4+1 -] 1 —=|z+1...

We remark that in Theorem 3.1 we required equation (3.1) to hold for all n € N. This
is equivalent to requiring that (3.2) equals (3.3) for all n. However in deriving equation (3.4)
we only compared the coefficients of 272 and 2" 3. Comparing the remaining coefficients
would actually overdetermine our parameters. We conjecture that parts a) and b) are true
if we require that (3.1) holds only for n =14 2™, m > 1 and c) holds if we require (3.1)

forn=2™, m > 0.

4. The asymptotic distribution of the zeros

This section deals with the asymptotic distribution of the zeros of the classical orthog-
onal polynomials. The results are well known (see Szego (1959) for the bounded interval or
Nevai and Dehesa (1979) for an unbounded interval). The proofs either require certain ex-
tremal principles from potential theory or are based on the three term recurrence relation
and quadrature formulas. An alternative approach was given by Gawronski (1987) which
uses a continuity theorem for the Stieltjes transform. The results of the previous section
allow very simple proofs of the asymptotic distribution of the zeros of classical orthogonal

polynomials.
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Theorem 4.1. Let P,(la’ﬂ)(:c) denote the Jacobi polynomial of degree n (a > —1, 8 > —1)
and N,(la’ﬂ)(f) the number of zeros of P,(,a’ﬁ)(x) not exceeding ¢ (€ € [—1,1]), then
1 1 [¢ do
1lim —N(®A) :_/ ——
A= e

Proof: From section 3 we know that the corresponding sequence of the Jacobi measure

is given by (Lemma 2.2)

B+n _ n
mitatf T oamiitatp

and that the Jacobi polynomials are characterized as the polynomials for which the measure

Doan—-1 =

corresponding to the truncated and reversed sequence

(m Hg)

(p2n—1a---ap170):(ﬁ s s Popn—1s

puts equal masses on its support points (namely, the zeros of P,(la’ﬁ )(3:)) From

A(n) _ _ n—t 5 = PAn—it]
P2’ = P2n-2i = Nn—)+1ltatp’ Pzz—1—P2n—21+1—2(n_i+1)+a+ﬂ

we have
(4.1) lim g7 = Am Pyt =3

Because the moments of a probability measure are continuous functions of the quantities
pi (see Skibinski (1986)) it follows from (4.1) that the moments of the discrete uniform
distribution on the zeros of P{** )(x) converge to the moments of the distribution which
corresponds to the sequence (%, %, ...). This distribution is the arcsine distribution (see for
example Lau and Studden (1988)) and is determined by its moments. It now follows from
the well known method of moments of probability theory (see for example Feller (1966)
p. 263) that the discrete uniform distribution on the zeros of pi? )(:c) converges to the

arcsine distribution, because its moments are converging.

Theorem 4.2. Let LS{")(z) denote the Laguerre polynomial of degree n(a > —1) and
N. éa)(f) the number of zeros of nga)(x) not exceeding £ (€ > 0), then

n—oo N

13
lim 1 Np(4ng) = Z/ x_1/2(1 — x)l/Zd:v (0<¢E<).
T Jo
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Proof Let zy,...,z, denote the zeros of L%a)(m). From Theorem 3.1 and Corollary 3.2
we see that the corresponding sequence of the discrete uniform distribution on the set
{& 1%, is given by

(d(n) dg?l) 1,0) where

dP =(n-i)jan dP, =(a+n—i+1)/dn (i=1,...,n)

and we obtain as n — oo

1 1
lim d = 7 lim dM =z

n—00 n—oo 2417 4

The only distribution (on [0,1]) with corresponding sequence (%, 1,...) is the distribution
with density z7Y/2(1 — 2)}/?(a = 1, B = —1 in Lemma 2.2a) and the assertion of the

theorem now follows by similar arguments given in the proof of Theorem 4.1.

The next theorem is proved in the same way as Theorem 4.1 and 4.2 and its proof

therefore omitted.

Theorem 4.3. Let H,(z) denote the Hermite polynomial of degree n and N,(£) the

number of zeros of H,(z) not exceeding £ (¢ € R), then

hm—N(\/_E) / V1—2? dz (-1<¢<).

5. Appendix

Proof of Lemma 2.1: We will only give a proof of a), all other cases are treated simi-

larly. The Stieltjes transforms of the measures u, and pZ corresponding to the sequences

(p1,p2,-+,Pm,0) and (Pm,Pm—1,---,p1,0) are given by
[due) N G 6l Gl
0

z—z lz =11 — |z — oo —|Tm
/dun(w) 1 eml oml 22
0 Z—Z |z—]1~|z—...—|rm

where (1 = p1, (; = p;(1 —pj-1), 7; = (1 — pj)pj—1 and T, is 1 or z corresponding to
the case m odd or even. The support points of u, and uf are given by the zeros of the

polynomials in the denominator (see Wall (1948))
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z -1 0 0
-¢ 1 -1
P (Z) =K ( _Cl _CZ LR _Cm ) — 0 "'<2 z
m z 1 zZ ... Tm . .
N : o- 0
-1
0 0 _Cm Tm
z =1 0 0
—Ppm 1 -1
_ —DPm  —Tm -2 | 0 —vm z
Qm(z)_K<z 1 z ... Tm)—
0
: -1
0 ... 0 —y2 ™

We will now prove by induction that the polynomials P, (z) and @, (z) are the same. For

m = 1 this is obvious and for m = 2 we obtain

Py(z) = z* — Z(Cl +() = 22 — Z(Pl + q1p2) = 22— z(p2 + g2p1)

=2* — 2(p2 + 1) = Q2(2)

For the step from m to m + 1 we have from the induction hypothesis (for m — 1 and m —2)

and by an expansion in the last row
_ G =Cm )L G e =l
Pri1(z) = Tmy1 K (z 1... Tm Cmt1 K z 1... Tm—1

_ —Pm —Ym ... 2 . —Pm-1 —Ym-1 ... 72
_Tm+1K<z 1 z... 'rm) Cm"'lK(z 1 zZ... Tm_1>

From the identity px = Yx41 + prpr+1(k = m,m — 1) we obtain
. —Ym+1 —Ym v T2 _ —Tm TYm—1 cee T2
Prt1(2) = Tmi1 K (z 1 Z ... Tm> Cmt1 K (z 1 Z ... Tm__l)

. —Tm-—1 —72 _ —Ym-—2 s T2
PmPm+1 [Tm+1K(z 1 ... Tm) ’ymK(z 1 ... Tm_l)]

13



= K (T T ) G K ()

— PmPm+1 I:Tm+1 I{(Z —Ym-—1 . cee =2 Tm) _Tm+17mK<1 —Ym-—2 5 . —72 Tm)]

_ —Cm+1 —Vmt1 - —T2 _ —Tm o Y2
= Tm+1 !K<1 z 1... Tm PmPm+15 1 Z ... Tm

_ —Pm+1 T Tm+1 e T2 —
=K (z 1 z ... Tm+1> = Qm+1(2)-

(Note that we have used the identity

—Ym —Ym-1 g _ —Ym —TYm-1 —72
K(z 1 zZ ... Tm_l)_Tm'HK(l z 1 ... Tm>

which can also be proved by induction and straightforward calculations.)

Proof of Theorem 3.1 b) and ¢)

The proofs that the Laquerre and Hermite densities satisfy (3.1) are similar to the Jacobi
case and are omitted. The proofs that these densities are determined by (3.1) are given

below.

Proof of part b). By a similar reasoning as in the proof of part a) we obtain the following

equations
2n—1
nd2n——1 = Z dz
=1
(5.1) for all n > 2
2n-3 2n—2 2n—-2
(n - 2) ( E d,) d2n—1 =2 E Z didj
i=1 i=1 j=i+2

2n-—3
which reduces to ( Y. di=(n-— 1)d2n,3)
i=1

(n —1)dan—1 = dapn—2+ (n — 1)dzn—3
(5.2) 2n—2 2n—2
(n — 2)(n — 1)d2n_1d2n_3 =2 Z E dzd]

i=1 j=i+t2
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For the second equation in (5.2) we obtain

(n — 2)(n - 1)d2n_1d2n_3 =

2n—4 2n-5 2n—4 2n—4
2 |dan—z Y ditdan—s Y dit » > did
i=1 i=1 =1 j=1+42

= 2(n — 2)d2n-2d2n—3 + 2(n — 2)dyn—3dan—s + (n — 3)(n — 2)dan—3dzn_s
and thus (5.2) is equivalent to

(n —1)dan—1 = dan—2 + (n — 1)dan_3
(5.3) for all n > 2
(n —1)d2n—1 = 2da2n—2 + (n — 1)d2n_s
By a straightforward calculation it can now be shown that the solution of the equations
(5.3) is given by
don—2 = (n —1)dy, dan—1 =di+(n—1)d;

and part b) of Theorem 3.1 now follows replacing d; and d; by the parameters of the
density proportional to %(%)ae_‘”‘/ﬂ(a > —1 B > 0), which yields d; = (1 + )8 and
do = 5.

Proof of part c). In the same way as in part a) we obtain the equations (for all n > 1)

n+1 n
n E b,‘:(n-I—l)Eb,‘
=1 =1
(54) n+1 n+1 n n n n—1
(n—l) EZ bibj_zai =(n—|—1) ZZ bibj—Za,-
1=1 j=141 1=1 =1 j3=141 =1

From the first equation we get immediately that b; = b2 = b5 ... and we let without loss
of generality by = by = ... = 0 (a non zero b only causes a shift of the distribution). But

in this case the second equation of (5.4) reduces to

n—1
2
an = p— ;ai (n>2)
which has the solution a, = na; for all n € N, and Theorem 3.1¢) is proved by an

application of Lemma 2.1 and a linear transformation.
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