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Abstract

In problems in which a psychological construct or latent trait is measured indirectly by a vector
of responses or observations " = (z1,...,2,) on each individual, a mixture model is often proposed
in which the distribution of the observation vector, across individuals, is viewed as the mixture of
some conditional distribution of the observation vector given the construct. The conditional distri-
bution of observations given the trait 6, is often assumed to factor as ¢™ (z™ | 61) = [ ¢ (i | 61)—
though it may be conceded that conditional independence does not hold—because it is too difficult
to work with the correct dependence model »™ (2" | 6;). We show that taking ¢" to be the product
of marginals of ¥™ is optimal, among conditional independence models, under criteria related to
the Kullback-Leibler distance. Our main results give conditions on »™ under which, as n — oo, the
¢"-based MLE 4, , is consistent under »", and the g"-based posterior wq(01]|z™) is asymptotically
normal, centered at éq,l and scaled by the ¢"-based empirical Fisher information. Sufficient condi-
tions for these results involve laws of large numbers for ™ which generalize “essential independence”
criteria used in the modeling of standardized achievement tests.

Often, »™ may be realized as the mixture over nuisance parameters Qg of some underlying
higher-dimensional conditional independence model p*(z"|6;,8%) = [T, pi(x;|61,8%). In this case
the assumptions may be moved from v™ to p™, where laws of large numbers hold naturally. Again,
we obtain consistency of éq,l, and show that when it is consistent it converges in distribution to
a mixture of normals. However, w,(8;|2") remains asymptotically normal, with the same center-
ing and scaling as before. This is significant, in that even when the full model p™ behaves well,
asymptotic inference based on the product-of-marginals likelihood ¢" yields different answers from
asymptotic inference based on the product-of-marginals posterior w,. Moreover, model-fit consid-
erations may be better served by asymptotic likelihood methods, which appear to be more sensitive
to the true dependence structure of the data than asymptotic posterior methods.

We illustrate our basic results with some models from item response theory, and illustrate the
extension to an underlying conditional independence structure with normal models in which either

the location or the scale is a nuisance parameter.

Keywords: structural robustness, nuisance parameters, dependence, marginal likelihood, latent

variable models, psychometrics, item response theory.
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1 Introduction, Motivations, Examples

Suppose we wish to measure a construct such as social adjustment, job satisfaction, school math
achievement, etc. To gain information about one of these traits, it is common to make a set of n
observations (administer a test of n questions, ask an expert to assess the severity of n symptoms,
etc.) on each individual. Often, the trait is then quantified as a latent (unobservable) random
variable ©®;. A numerical value is assigned to each observation used to measure Q;, giving rise
to random variables X" = (Xj,...,X,). Replications of (0, X3,...,X,) across individuals are
considered to be i.i.d.; and we will denote outcomes of random variables with the corresponding
lower case letter.

The “ideal” model often proposed for data like this is a mixture of conditional independence
models

m(@") = [ (@" 1)) dF(@) 1)

where F is the distribution of Oy, and 7™ (z" | 6;) factors as

(2 | 61) = [ ri o 1 60). @)

i=1

The main statistical task is inference about each individual’s unobserved é; from each individual’s
observed z", based on the particular form of the right-hand side of (2).

Conditional independence models are an attractive and convenient data analysis tool, and
are often assumed even though it may be agreed that (2) only approximately fits or reflects the

mechanisms underlying the data. Suppose the correct formulation is

m(@") = [v" (" 18:) dF(80), (3)

where the conditional model for X™ given 6, is some dependent »™ (2" | 6;) whose structure is not
known in detail. How far could an analysis based on (1) and (2) go? We identify the product of

one-dimensional marginals ¢" (2" | 61) = [i=; ¢ (zi | 61), where
¢ (2:]61) = / v (2" |01) doy ... dzioy doigy ... o, 4)

as the optimal choice for 7™ (2" | 8,) under two different criteria; and we give conditions under which

asymptotic inference (as n — oco) based on the product of marginals ¢" may still be successful. In
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particular we show the effects of an analysis based on ¢™, when in fact the data came from »",
on asymptotic likelihood inference and asymptotic posterior inference. We also indicate some
limitations on how much can be learned or predicted from this wrong-model analysis.

There are two ways in which »™ may arise in applications. Let us first consider the case in which
well-defined nuisance parameters prevent v" from factoring. In a test of school mathematics achieve-
ment, an examinee’s performance on each question may also be affected by his verbal ability (since
the questions and test instructions are written in English), by test anxiety, by special background
knowledge not related to general math achievement, etc. Thus the unidimensional parameter 0
should be regarded as the first coordinate in a vector valued parameter @_i‘i = (01,04,...,04), and

the “ideal” density in (2) should be replaced with the conditionally independent density
" (2" 189) =TI pi (w: 169) (5)
=1

and hence
v (@ 16) = [ (27 168) aF(edion). (6)

Typically the dimensionality d of 8% will be too high, or the details of the marginals for X;
in (5) will be too complicated, to simply estimate éf and then “throw away” ég Moreover, since
03 = (82,...,84) represent nuisance factors not directly related to the trait of interest 6;, the
psychometric orthodoxy strongly favors the unidimensional model (2). Indeed, the practitioner
will sometimes concede that the data is mildly multidimensional, in the sense of (5), but continue
to use a fictional conditional model of the form (2) on the grounds that the more parsimonious
unidimensional model (2) is simply not far wrong. Interest in this kind of analysis has been
expressed by Ackerman (1987), Drasgow and Parsons (1983), Harrison (1986), Wang (1986, 1987),
and Yen (1984).

Note that two kinds of nuisance parameters may be contemplated here. The first kind have a
sustained influence on the distribution of X™ as n — oo: For instance, language ability will tend
to help on every question in a math test. The second kind asymptotically attenuate in the sense
that as n increases the distribution of X" becomes less and less sensitive to their variations. An

example in the educational testing context is specialized knowledge in a given subject area on a



general test. One expects that the specialized knowledge will be helpful on a cluster of questions
but not on later or earlier questions (e.g. Rosenbaum, 1988; Stout, 1990; Wainer et al., 1990).

v (2" |61) may also arise in settings for which (6) is not plausible. If the construct being
measured is not sufficiently well-defined for (1) and (2) to hold with respect to a unidimensional
01, it may not be clear that there are meaningful secondary traits @3 for which (5) can be written.
The correct model would seem to be (3) in which v™ does not factor and does not arise by mixing
out nuisance factors as in (6). Reiser (1989) reports results which suggest that major depressive
disorder, as defined by the American Psychiatric Association’s DSM-III criteria, may fall into this
case. Thus it is also important to understand inference based on the model (1) and (2) when (3)
holds but »™ (™ | 1) does not factor, and little further structure can be posited.

We shall restrict our attention to cases in which @; or Q‘li have continuous distributions dF (6, ) =
w(61)d6; and dF(8%) = w(83)d8?. Our main interest is asymptotic inference, as n — oo, based
upon the conditional independence model ¢" (2™ |61) = []=, ¢ (z; | 61) instead of the correct,
conditionally dependent v™ (z" |6;). If a “full model” p" (_a;" | Qi‘l) = [Ti=1 p: (:z:,- | Qii) is assumed
to exist, it follows that

v @ 16) = [ (2" 168)  (88161) dod (7)

and, with the help of Fubini’s theorem,
6 (i 160) = [ pi (o 168) (85 161) de ()

Note that, although we refer to 6; as unidimensional throughout this paper, the new results here
all have obvious extensions to the case in which 6, is really of fixed dimension d; > 1.

In Section 2 we consider two criteria for choosing 7™ in (2), both related to the Kullback-Leibler
distance. The first is an estimation criterion: we show that ™ = ¢™ results from minimizing what is
essentially a Bayes risk over the collection of product densities. The second is a hypothesis testing
criterion: we show that Stein’s test based on ¢” is near asymptotically minimax, under a uniformity
assumption. It must be noted that in practice, the selection of r™ in (2) is itself often subject to
uncertainty, in that the r;(-|0;) are typically selected from a parametric family ry (-|6;) whose

parameters g;,...,q, are estimated from (some subset of) the data. This part of the problem



is important but we do not address it here. Instead, we provide an indication of what is “best
possible” in that we work with the conditional independence likelihood ¢™ that is closest to the
correct dependence model. There is some evidence that this “best possible” case is approximately
achieved in certain applications (cf. Wang, 1987).

In analyzing inference based on ¢", it is more straightforward to first suppress consideration
of the full model p™ (g" | Qf). Stout (1987, 1990) has developed a criterion for binary data z™
called essential independence which identifies #; as the “dominant latent trait” in the sense that
conditioning on 68, stabilizes linear combinations of the z;’s as n — oo. This criterion may be

interpreted for more general 2" as imposing a law of large numbers (LLN) on »™:

lim Var (-}z-zn:ai(X,-) 01) =0 (9)
i=1

n—o0

for all bounded sequences of functions {a;() : ¢ = 1,...,00}. The condition (9) was applied
by Junker (1991) in the educational measurement setting to the analysis of maximum likelihood
estimators for §;, based on ¢™ when in fact ™ (2™ | 6,) is dependent. Equation (9) imposes conditions
on the dependent likelihoods v™ (z™ | 6, ) only; it does not make the further conditional independence
assumptions (5) and (6). In this sense, (9) may be contemplated whether or not the full model p™ is
assumed to exist. However if (6) does hold then (9) may be interpreted as requiring that influence
of Qg on the distribution of X™ attenuates as n — oo.

In Section 3, making only assumptions on »", we show that the ¢"-based MLE 9q,1 is v™-
consistent for 6, (converges to #; in v"-probability), under conditions including laws of large num-
bers related to (9). We also give an asymptotically normal approximation to the ¢"-based posterior
wq(61]z™) under these conditions, centered at §,; and scaled according to the ¢"-based empirical
Fisher information.

In Section 4 we establish v™-consistency of 9q,1 without the LLN assumptions for »", as long
as regularity assumptions on p" are made uniformly on compact sets of Qg. We also show that if
8,1 is consistent, then it converges in distribution to a mixture of normals. On the other hand,
wq(01|2™), the distribution of ©; given z", is still asymptotically normal, with the same ¢"-based
centering and scaling as before.

Sections 3 and 4 form two parts of a complete whole. Section 3 addresses the case in which



no underlying conditional independence model p” is assumed to exist, as well as the case in which
p" exists and the nuisance parameters attenuate. Section 4 addresses the case in which it is
reasonable to assume the existence of mathematically well defined nuisance parameters in p®,
without necessarily assuming they attenuate. The results of Sections 3 and 4 are illustrated in
Section 5 with some models from item response theory, and with normal models in which either
the location or the scale is a nuisance parameter. In Section 6 we consider some implications of our
results. /

Our results are interesting for several reasons. First, the weak law of large numbers appears to
be a much stronger assumption than expected: assuming only a weak LLN for v™ gives consistency
for éq,l and asymptotic normality for w,(61|2"). Second, when the assumptions are moved from v"
to p", the posterior normality results depend crucially on using the empirical Fisher information
to scale the distribution. Substituting the expected Fisher information for the empirical one leads
to a result that is not useful. Third, even when the full model p” behaves well, ¢"-based likelihood
inference is different from ¢™-based posterior inference: the asymptotic distribution of éqJ is a
mixture of normals, whereas the posterior distribution w,(8:|z™) continues to be normal with the
“independence-based” location and scale parameters. This is true even though the scale for both
theorems is determined by the ¢™-based empirical Fisher information. Based on “i.i.d.” intuition
one expects Bayes and ML inference to be asymptotically equivalent, but this is a practical situation
in which both analyses can be carried out on the same model and give different answers.

The present paper complements two existing literatures in the large sample theory of inference.
One the one hand, Berk (1966) characterized the asymptotic carrier (support set) of the posterior
distribution under a wrong-model analysis in which both the correct and incorrect models involve
ii.d. data. Yamada (1976) extended this characterization to situations in which both the correct
and incorrect models may have more general dependence structures, but in this general setup the
asymptotic carrier of the wrong-model posterior is difficult to actually calculate. It is interesting
to note that Yamada’s “sufficient condition for general cases” requires a condition like (9) to hold
uniformly in the parameter of interest. We drop this uniformity requirement and focus on situations

in which the correct model involves some form of dependence while the incorrect model assumes



independence. In addition, we obtain consistency and asymptotic distribution results for maximum
likelihood and posterior distribution estimators.

On the other hand, the techniques used here are based on the clear description of Laplace’s
method by Walker (1969). A consequence of our results is that asymptotic posterior normality
in the wrong model is rather insensitive to the true dependence structure of the data. This is
consonant with Chen (1985) who shows that the success or failure of Laplace’s method in estab-
lishing asymptotic posterior normality is an analytic property of the model and the particular data
sequence observed, not a property of the true probability structure of the data. The work of Kass,
Tierney and Kadane (1990) is also relevant here. In this context, we show that under (9) and re-
lated conditions, data sequences on which asymptotic ¢"-based posterior normality can be observed

are quite common under »™.

2 The Best Independence Model

2.1 An estimation interpretation

As discussed in Section 1, we would like to base inference for 8y on an objective function 7" (2™ | 6;) =
[Ty i (z; | 61), even though »™ (z™ | 1) is the correct likelihood. When p™ is assumed to exist, we
would like 7™ to be as close as possible to p”. When p™ cannot be assumed to exist, we would like
r™ to be as close as possible to v".

Recall the Kullback-Leibler distance D ( f||g) = E[log(f(X")/9(X"))], where X™ has density
f(-). See, for example, Section 4 of Bahadur (1971) for basic properties of D (:||:). Densities
minimizing a Kullback-Leibler distance come up in various contexts, including minimax hypothesis
tests, see Huber and Strasser (1973). Indeed, it follows from Stein’s Lemma (Chernoff, 1954;
Bahadur, 1971) that every Kullback-Leibler number is the exponent for the probability of type
II error for some simple versus simple hypothesis test. When it is helpful to remember which
parameters are fixed in the integration, the fixed parameters will appear as subscripts; for example

D (") = Do, (v77) = [log ZELI" (2 1) g™

Proposition 2.1 Dg, (v"||r™) is minimized over r™ by taking r™ = q".
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Proof. Following Aitchison (1975), we note that, by (4),

n '3 n n ql zl 0
Do (1) = Do, (v7l4")+ 3 [log LELA
1—1

= Dy (V"1 ¢") + ZDol (allre),
i=1
which is clearly minimized by taking r; = ¢; in each term of the summation at right. O

gi (z; | 61) dz;

A measure of the discrepancy between 7" (- |6;) and p” ( | Q‘ll) at each value of 6; is
R, (5",) = E [ D(g, o) (8" 7™)|61] , (10)
which may be interpreted as the Bayes risk in estimating p™ ( | Qi'l) by 7™ (- | 61).
Proposition 2.2 The Bayes risk Rg, (p™,r") is also minimized over r™ by taking r™ = ¢".

Remarks. Proposition 2.1 can be made to follow from Proposition 2.2 by expanding the integral

defining Dg, (v™| ™) and noting that

Do, (v*|7") = E [iD(pz'II ) 91] — E[D (p"[|v")| 6]
1

= R91 (pn’ ,rn) - R91 (pn,Vn) . (11)

Proof. We note that

-R01 (Pn, rn)

/ Dyg (2711 7) w (28 161) dtf
> [ Dys illr o (8 101) at

1—1
Z R01 (pia Ti) .
i=1

The summands may be decomposed, with the help of Fubini’s theorem and (8), as Ry, (pi,7;) =

Ro, (pi, @) + D (4]l ;). Both terms are nonnegative, so the sum is clearly minimized by taking
r;=g¢q;. O

Propositions 2.1 and 2.2 show that the best choice of r™ (z™ | 8y) is ¢" (2™ | 61) = [Ti=; ¢ (z: | 61),
where g; (z; | 61) is the i** marginal of v™ (2" |8;) specified in (4). However in practice r™ is used
precisely because v™ is not known; thus 7 must be somehow estimated from (a subset of) the data
also. In the present paper we neglect this part of the problem and focus on what the “best case”

analysis under ¢™ would be.



2.2 A Stein’s Lemma interpretation

The basic data analyzed with (1) and (2) consists of i.i.d. vectors

(GII,X}), evey (Glm’ X.;)’

from m individuals, where the subvectors X7 are actually observed, one for each individual, and the
O, are latent (unobserved) variables. Consider a statistical test which helps determine whether the
fictional likelihood r™ is “close enough” to the true, dependent likelihood v™. A pair of hypotheses

which leads to another interpretation of the Kullback-Leibler numbers we have calculated above is
Ho : w(61)v™(X"|61) versus Hy : 7(01)r"(X"|61)

where r§, = " (2" | 6;) is any fixed independence density, and 7 is any marginal density for 6;. Let

@ be the indicator function for a rejection region for Ho, which we denote by A, neglecting the

<e},

for Ho, where D’ = D(w||7) + [ D(v ||75, )w(61)df:. It is well known that Stein’s test has type II

possibility of point masses requiring randomization.
Stein’s test for Hy vs. Hy has the acceptance region

T v X7 615)w(615)

1
-_ O
m 218 (X5, 7(65)

- D

AStein ‘rrgl £ {

error satisfying

—m(D'+e —m(D'—
[1 B 0(1)]6 D) < P‘”‘& (AStein 'rrgl,c) < e,

As a result, if we choose ¢ so that Stein’s test is level a, and we let AWT‘?1 be the acceptance region
for some other level a test ¢ then from the proof of the lower bound part of Proposition 3.C in

Clarke and Barron (1990), we have that

D'+e
.P'rrg1 (A(p'rrgl) 2 em( + )[Pwy";l (A<p1-1-31) - Pwyg (AStein — ,e)]'

1 0

Since P“”’31 (AW,{;]) is greater than 1 — a, Stein’s test is level o, and the probability of of type II

error in Stein’s test is bounded above by e=™(P'~9), we have that
-2
Pfrr,’,‘1 (Aso‘rr",‘l) 2 (1 - 20[)6 mEP"'T{;'] (AStein ‘r'r";1 ,c) ‘ (12)
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Now replace the 1 —2a by 1 — 2a — 7, where 7 is small enough that (12) remains nontrivial, and let
I’ be a collection of densities of the form of H; above, containing wgg, - Consider the simple versus
composite hypothesis test

H:w(6,)vg, versus K:1(6,)ry €T.

Proposition 2.3 Assume there is an 1 > 0 so that (12) holds uniformly over I then the Stein test

based on Agiein wal e is near asymptotically minimaz in the sense that
11

en0t Mmoo M

lim lim L <10gmmmax P rrg (Ay) — log Py, (Agtein wif, ,E)> =0. (13)
61

Remarks. Thus, for some choices of I', the Stein test for Hy versus H; with 7 = w and T, =

g, » is near asymptotically minimax. We note that the probability of type I error for the near
asymptotically minimax test is
71015

le,) ”)’

where D = [ D(v ||g7 )w(61)d6:, which is a large deviation. Typically (e.g., Stroock, 1984) there

PHO(AC) = Pwugl (

will exist a rate function I, such that
L1 ¢
mh—Irnoo E log PHO(ASteiIl wqg1 ,c) = L.
This means that we have, in principle, exact rates for the decrease of probabilities of errors for the
minimax test.
Proof. A minimax test achieves max, minﬂglep Pfrgl (A3) = 1 —min, MaXrrn €T Pﬂgl (Ay). Typ-

ically such tests exist (e.g. Lehmann, 1959, p. 341). For fixed ¢ > 0,

1 1
—logmin Jmax, Prrp (4p) < —log max, Prrp (AStein rrg. o)

1
< —log max e ™D'-9)
m 7'1-";161‘

—D t ¢

since min.,rgj er D' = D, by choice of 7 = w and rg = gp - For a lower bound we note that by the

uniformity of (12) over I' that

1 1 —2
oy log m(;ﬂ ijaéir P, e (4,) = c log Tfrf},aé‘r P, L ( Steinrrg ) e

11



where c is a positive constant. Using the uniformity of (12) over T, we have

i . 1 —2me ,~m(D'+¢)
— log min max Prrgl(qu) > logfrrr'l‘a.écr c¢(1—o(1))e e

® ‘rrgj er m o1
= —(D+6)+ —logec— 2+ ~log(1 - O(1))
- p— m 08 )
Thus we see that lim,_,g+ lim,, 0 % log min,, maXrr» er P"31 (Ay) = —D. Since it is apparent that
J

D is the exponent for the probability of type II error for the test based on AgGtein wal e as € — 0t,
the proposition is established. O

Since Stein’s test is fairly sensitive, we have shown that the hardest independence model to test
against is the product of marginals. Even though the minimax test is not ideal, it has some positive
aspects. The rates of decrease for the probabilities of both type I and type II error are known, and
they tend to zero exponentially. The minimaxity ensures that no test can have uniformly smaller
probabilities of type I and type II error. Since we have used the minimality of D(vg, ||g3,) pointwise
in 6; this test is in accord with the estimation optimality proved in Section 2.1.

Finally, let us return to the methodological question raised in Section 1: Under what circum-
stances can a convenient independence model 77" be substituted for a correct but intractable
dependence model wy™ for the purposes of making inferences about the latent variablé 017 The
test Ho versus H, asks “May we reject the correct model in favor of the convenient one?” (to which
the desired answer is “yes”). In this sense, the test is our way of asking permission from the data
to use the convenient independence model. However, the reverse question might be thought more
appropriate: the test

Hg: rr™ versus Hy: wy™

asks “Must we reject independence in favor of the mixture model?” (to which the desired answer
is “no”). The problem with such an approach is its intractability: efforts to extend the simple
versus simple case to cases in which even one of the hypotheses is composite run into problems

with existence of the information projection, or with the restriction to independence models.
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3 Direct analysis of ¢" under v"

Our results are simplest to present, and most easily interpreted, when consideration of the depen-
dence on 0d is suppressed. In this section, only the dependent measure v™ (- | 6;), its one-dimensional
marginals ¢; (z; | 61), and the product measure ¢* (z" | 61) = [I7; ¢: (z; | 81) are used. The law gov-
erning X" is at all times ™ (z" | 6;); but the likelihood we will analyze is g™ (z™ | 61).

3.1 Consistency of the wrong-model MLE 4, ,

Suppose that an M-estimator 8, (X") is formally constructed as the MLE from ¢" (X" | 6, ). Junker
(1991) considers this estimator for discrete-valued X™ in a setting appropriate to educational mea-
surement, and uses Cramér-style arguments to establish the weak consistency of 9q,1 (X™) under
the law v™, assuming Stout’s (1990) essential independence condition (9). We present a Wald-style
argument showing that consistency of the “wrong-model” 9q,1(l ") is quite widely true, under a
generalization of the EI condition.

We will first develop general consistency conditions for the wrong-model MLE 9,1,1 that will also

be useful in Section 4, and then we will show how the result applies under (9). Define

L(8) =log g™ (X" |6) = Y log ¢i(X;l6). (14)
=1 :
and
_1 qz(X %(Xil61)
Dn(olao) = n[Ln(al) - Ln(o)] = Z:l ,(X |9) (15)
Again abbreviating g3 (-) = ¢" (- | ), we may use (4) to show that, under v™, E[D,(6;,6)|6,] =
ip (qg,‘1 "). L,(8) would be the log-likelihood under independence, but we are not assuming

independence here: i.e., g7(-) may not be the true likelihood function. Finally, for each ¢ € Qo,,
define Bs(t) = {0 € Qo, : |0 — t| < §}. In the present context, Wald’s key assumptions can be
stated as follows.

Assumption C1. For each 0, and t # 6y, there exists ¢(t) > 0, such that

lim P[Dy(61,2) > c(t)|61] = 1.

13



Assumption C2. For all ¢ # 6; and all £ > 0, there exists § > 0 such that
ol] -1

Assumption C3. There exist ca > 0, such that for all § > 0 and A sufficiently large (depending
on §) that

lim P| inf Do(t,0)> -
R0 [oellr?lo(t) (.6)2 ¢

n—00

liminf P| inf D,(6;,0) >
im in [lﬂllI;A (61,60) > ca

91]21_5.

Under these assumptions we obtain the following proposition which gives Wald-style consistency,
in that the usual asymptotic convexity condition holds: L,(6;) dominates L,(8) as n — oo, for all
6 “away from” 6. The domination will be used below to establish asymptotic posterior normality
by Laplace’s method. The proof of Proposition 3.1, which is straightforward, is deferred to the end

of this section.

Proposition 3.1 Under Assumptions C1 through C3, for all € > 0 and all § > 0, there exists v
= ¥(¢,6) > 0 such that

1
. L1 _ S
Iminf P E]191591)71[137»(6’1) Ln(0)] 2 v

ol] >1-6 (16)

7

and hence the formal MLE 8, ,(z") Y 8 as n— oo (where “>7” denotes convergence in v™-

probability).

Assumptions C1-C3 are what is needed to make the proof work. In addition, it is useful
to identify more readily interpretable sufficient conditions for C1 and C2. Ideally we would like
Proposition 3.1 under the following.

Assumption EI. Under v* (- |6,), as n — oo,
. L i
=>_{ai(X:) ~ Elai(X;)| 6]} = 0,
1

for all sequences of uniformly bounded functions {a;(-)}.

14



This is a generalization of Stout’s essential independence condition (9). Like Stout’s original
condition it is a weak law of large numbers for bounded transformations of the random variables
X;: (1 = 1,2,...). However, for Wald-style calculations, we require a LLN that holds for sums of
log-contrast functions D,(61,0) = L% log qq", ‘}‘;ﬁ%‘ , whose summands need not be bounded. We
make such an assumption in Lemma 3.1. Alternatively, one might adapt the Cramér proof given in
Junker (1991) to produce a conclusion like (16). Then the additional LLN for log-contrast functions

would not be needed.

Lemma 3.1 Suppose
(a) For each t # 6, there exists B(t) > 0 such that
lim inf 1D o llat) >
iminf —D (g, || ¢F') > B(2).

(b) Asn — oo,
1 n ny V"
Dn(aht) - ;D (q91 " qt) — 0.

Then Assumption C1 holds.

Remarks. (a) can be seen to be a kind of minimum information or identifiability condition. In
Section 5.1 we will see that for typical binary response data, Assumption EI implies (b).

Proof. By (a), there exists 8 = 5(t) > 0 such that for all large n, 2D (qu‘l qt”) > 3. Therefore,

H s 1 n n 1 n n
Jim P[Dyn(6:,t) > /2| 61] Jim P{Du(61,%) - —D (a, || 4) > B/2 - —D (g5, || ) 161}

. 1

> lim P{Dn(61,t) - —D (q5, || af) > B/2— B =—B/2/6:}
. 1 n|l.n

2 [lim P{|Dn(61,t) - —D (g5 | ¢)| < B/216:1}

= 1,
by (b). Now take ¢(t) = /2 to obtain Assumption C1. O

Lemma 3.2 Suppose that, for all t # 6, there exists §; > 0 such that

15



(¢) V&>036€(0,6), such that

lim inf mf E[Dn(t 0)64] > —¢;

n—o0 geB

(b) VE&>036€(0,6;) such that

lim P[ sup | Da(t, 8) = E[Da(t,0)]01]] < &
n—0 aeBg(t

al] _

Remarks. Under mild continuity and regularity conditions it follows that for all n, and all ¢,
limg_; E[Dn(2,6)|61] = limg_ 1[D (g7,

Then Assumption C2 holds.

q{,‘) -D (qg‘1 " q;‘)] = 0. Hence (a) is a locally uniform
one-sided version of this continuity condition on the map 6 — gz. On the other hand, it follows
from (b) that D,(t,0) — E[D,(t,6)|6:] ¥, 0 pointwise in 6. Hence (b) is a locally uniform version
of this WLLN.

Proof. By (a), we may choose § € (0, 6;), such that infgep,(¢) E [ Dn(t,8)]61] > —£/2 for all large n.
By (b) we may make § > 0 enough smaller that P [supgeBJ(t) | Dn(t,60) — E[Dy(t,6)]61]] < 5/2' 01]

|

> P[o inf E[Dn(t 0)|61] — sup |Dn(t,0) — E[Dy(t,0)|6:]] > —¢

9€By(t)
01]

— 1, and hence

P| inf D,(t,0 -
[061360) ( )> ;

|

> P[ sup [Da(t,0) = E[Da(t,0)]01]] < ~£/2 4 €
6€Bs(t)

— 1.

Thus Assumption C2 holds. O
Proof of Proposition 3.1. Let Qo, = SA U C U B.(6;) where Sao = {8 : 6] > A}, C =
Qo, \ [Sa U Bc(6,)), and € is fixed in (16). Given § > 0 in (16), fix A so large that

lim inf P mf D, (61,0) > ca
A

n—oo

&]21—6 (17)
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for some ca > 0, by Assumption C3. For t # 6y, take () = ¢(t)/2 from Assumption C1 and take
01]

= 1 (18)

€ = v(t)/2. Then for § as in Assumption C2,

lim P| inf D,(6:1,0) > (¢
Jim P| int Do(6:,6) > ()

01] = nli—>ngoP [Dn(eht) + 0€i§f(t) Dn(t’o) > 7(t)
lim PLD(01,1) +(=2)-7(8/2 > 7(0)] 1)
= Jim PIDA(®,1) > 2-7(1) = c0)| 8]

v

For fixed A, C is a compact set and so can be covered by finitely many balls §; = Bs, (t;),
v+ Sm = Bs,,(tn), such that (18) holds for each: lim,_,o P [infgesj D, (61,6) > ‘yjl 01] =1, j=

4

1,...,m. Then, letting ¥ = min{¥y1,...,¥m,ca}, we have

. . P . 0 0 >
lim inf eggl{gl)Dn( 1,0) >

n—oo

ﬂ {01611.51'.]' Dn(olve) > 7}

i=1,....m,A

n—oo

01} > liminf P

2 1_6a

using (17) for Sa and (18) for each S;, j = 1,...,m. This is (16). O

3.2 The asymptotic distribution of 4,,

To make the estimator §,;(z") a useful inferential tool we need to know something about the

c{vlazhl

for some appropriate scale term ,(6;). Pursuing the usual Taylor expansion of the log-likelihood,

asymptotic behavior of the law

we see that as usual

5 VL (61)
V(81— 0,1) = AR (19)

where I, () = %%Ln(ol), and 7J,(6;) = —%%;log q"(z"|6,) for some 6; € {# : |0 — 6] <
Iéq,l ~6,]}. Assumptions such as those in Section 3.3 (see especially Assumption PN1 and Assump-
tion PN3 below) guarantee that J,,(6;) will behave well; so the main burden is the behavior of the

sum

1 0
VR, (6:) = Wza—ollogqi(xdol),
i=1

17



under v". General conditions for asymptotic normality for dependent sums have been established by
Dvoretzky (1972); particular cases that seem useful include mixing CLT’s (Iosifescu and Theodor-
escu, 1969) and methods for associated random variables (Cox and Grimmett, 1984; Newman and
Wright, 1982). Applications of these ideas to item response models are considered by Junker (1988,
1991).

In Section 4 we will consider another approach, in which the asymptotic behavior of 674,1 is first

identified under p™ and then “marginalized” to produce a result under v™.

3.3 Posterior asymptotics

We now turn to the possibility of basing inference for 8; on the formal posterior distribution

q" (z" | 61) w(61)
20 0™ (27 | ) w(8) dO’

-0

wq (61 |2") = (20)

where w(#;) is the prior density on #;. Of course, the true posterior distribution is

v™ (2" | 6;)w(f;)
oo v (2™ |0) w(6) db

wy (01 |2") =

The point once again is to see whether a “wrong model analysis” based on ¢™ can work when »" is
the correct conditional law. ‘

Let us abbreviate 8, = 8, 1(X™) in what follows. The main result, Theorem 3.1, is that wq((61—
0.)/04|z") is asymptotically normal, in the sense of Walker (1969). The principal assumptions used
are Assumption EI, local uniform continuity of %q,- (z: | 61), and the truth of Proposition 3.1.
The standard error is the usual “independence” standard error, o, = {—L”(8,)}~'/2 where L, is
defined as in (14), and there are no restrictions on the rate of convergence of 4, to 6;.

Finally, although it is not emphasized in the remainder of the section, one does not have to use
the right prior when calculating w,. The crucial assumptions are that ¢ be constructed as the
product of marginals of v™, that LLN’s hold for ", and that whatever prior is used in constructing
w, be positive and continuous near the #; that generated the data. More formally, we make the
following regularity assumptions.

Assumption PN1. Let [;(6;) = E [(9log¢:(X;|61)/061)?| 6,] and T,(6) = L 5°7 I;(). We assume
there exist 0 < €5, < My, < oo such that 5, < T,(6;) < My,, for all large n.

18



Assumption PN2. [ %;q,-(wlal)dw = 0;

Remarks. Hence the expected Fisher information can be found in a Taylor expansion for L, (f;)
via I;(6,) = —E [32 log q,-(X,-|01)/8012| 01] , V i. Although it is not needed for the proof, it may be
natural to also assume [ g%l-q,-(:vwl)d:v = 0, so that L (6;) = 0 is an unbiased estimating equation
for 6 (i.e., the expected score function E[LL!(6,)]61] = 0).

5 log gi(z10)
- -;ijlog q,-(a:|01)| is bounded uniformly in z and ¢; and for M,(,0,) = £ 57 M. i(X;,61),

Assumption PN3. There exists € = ¢(f;) > 0, such that M, i(z,8;) = SUPgeB(4;)

li_rplimsupE [ﬁn(e, 01)|01} =0.

0 n—ooo

Assumption PN4. The prior density w(#) is positive and continuous throughout a small neigh-
borhood of 8.
Before proving Theorem 3.1, we require a preliminary proposition which allows us to approxi-

mate T,,(6;) with —LL%(6;) in the usual way.
Proposition 3.2 Suppose éq,l (z™) N 01, Assumptions PN1 through PN38 and Assumption EI hold.

(a) Let 0% = b, + r(0, —0,,), where r € [0,1], and let B.(6,) be as in Assumption PNS. Then for

] =1

all £ > 0 there exists € sufficiently small that

lim P l sup ‘lLZ(0:) + T.(6)
e L {r:65eB(6:1)} I

<¢

(b) In particular, 1L (6,) + T.(61) 20 as n — 0.

Proof. By Assumption PN2, T,(6;) = —1E[L"(8,)|61]; hence it suffices to show each of the
following, for all £ > 0:

Pl aimien - Bl@ ]| <ela] - 1 (21)

P[ sup  LILI(0L) — L0 < €
0%€B(6;) M

01] - 1. (22)
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The limit (21) follows from Assumptions EI and PN3. For (22), let € > 0 be small enough that
Assumption PN3 holds, with F [-M—n(e, 01)| 01] < £/2, for all large n. By assumption, both 4, LN 61

3

1
= Jim P[0 € Bub), LILA0) - L6 <€

n

n
and 6% % 6;; hence

lim P[220 - i@l < €

3

> lim P[Ma(c,61) < |61] (23)
lim P{Mo(c,01) — E [Ma(e,01)|01] < € = E[Ma(c,01)|01] | 6:}
Tim P{[Mo(c,01) — E [Ma(<,01)| 03] | < £/2161)

L

v

by Assumptions EI and PN3. Note that the bound in (23) is uniform on B.(6,), giving the

uniformity in (22). O

Theorem 3.1 Assume the conclusion of Proposition 3.1 and Assumption EI. Under the additional
assumptions PN1 through PN/,
On = {_LZ(én)}_llz 20

(by Proposition 3.2 and Assumption PN1, \/no, ezists and is bounded away from 0 and co with
probability tending to 1 as n — o). Then, for all a < b,

§n+ban un

L o (81X7) 402 8(5) - 8(a) (24
Ontaon

as n — 0o, where ®(.) is the the standard normal c.d.f.

Remarks. The only place that the LLN’s (Assumption EI and (b) of Lemma 3.1) are needed is
in the proofs of Propositions 3.1 and 3.2. Thus we could replace reliance on Assumption EI with
reliance on the conclusion of Proposition 3.2.

Let us break up the integral in (24) as follows:

/é,,+ba,. - [Eaban gn(X™|0)w(6)d8
w =
bntaon T ffooo q"(l"|0)w(0)d0
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[f¥bom g (X7 |6)w(8)d0

[/B60) + JBor)e ] (X7 18)w(6)dE
I3
L+Iy

with € to be determined below. We will examine these three integrals in the order in which they
are numbered. Although the proof is standard, we present the main points in Claims 3.1 through

3.3, to show that the probability structure is really not at issue, once Propositions 3.1 and 3.2 are

established.
Claim 3.1 For all £ > 0, there ezists € small enough that
lim P [|1/{ong"(X"10a)} — (2m)M2%(81)] < €] 6:] = 1.

Proof. Using a two-term Taylor expansion of L,(#) about 6.,

/ LX) gyap
Be(61) q"(Xn|0n)

= (0=0:) g w(0)
- /Bc(gl)exP{_ 202 (Ln(on)ag)}w(al) de,

L/q"(X"16n)

w(61)

where 6 = 6, + (6, — 9n) LN 6, with 8, (by Proposition 3.1). For & and &; to be determined

momentarily, fix € > 0 so small that, by Proposition 3.2,

: Ln(67)
lim P| sup < &|01] =1 (25)
n—oo 0‘635(61) Lll(o )
and by Assumption PN4,
6
1-§ < inf w()< sup L0 <1+&. (26)

0€Be(01) w(61) ~ geB(or) “’(01) B

Equation (26) follows directly from Assumption PN4. To see (25), rewrite

L1%(6%) + Ta(61)) — (Ta(61) + £L(0,))
L12(6,)

L (67)
L(6n)

and apply Proposition 3.2, together with the observation that, by Assumption PN1, |L”(4,)| is

bounded away from 0 with probability tending to 1 as » — .
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Hence, using the fact that P [én, 0 € Be(Ol)l 01] — 1 as n — 00, and recalling the definition of

On, We obtain

P |w(61)(1 - 52)/ exp{ ——5—=5—(1+ &) ¢ df
Be(61) 202 . (27)
neynlg (0 - 0‘"-)
< < Gl ) A ,
< Ii/q"(X"|6x) _w(ol)(1+§2)/Bc(0])eXP{ 502 (1=¢&1)pdoo| =1
The outer expressions in this inequality may be readily identified as
oaw(61)(1 F &2)[27/(1 £ &)]1/2 (28)

x [@{(1 £ &)207 (01 + € — 6]} — @{(1 £ &)V 207 [0 — €~ AN

The factor involving ® tends to 1 in probability, since 6, LN 6, and 0! ¥, . For each fixed £, an

appropriate choice of £ and &; finishes the proof. O
Claim 3.2 For each fized ¢ > 0,
L/{ong™(X"16.)} 5 0.

Proof.

L/ (XM6) = | 4"(X19)
- B(61)° ¢"(X"|6,)

= onexp{Ln(01) — Ln(6)} /B o 7 Ln(0) = La(0)}e(0)d0

w(6)df

< o,-1- . 0,(v/n)0,(exp[—n7])w(8)d8 ,

where the bound 1 follows from the fact that L,(8) < L,(6,), V 8 (by the definition of the
MLE); and the O, bounds, which are uniform in |§ — 6;| > ¢, V ¢, follow from Proposition 3.2,

Assumption PN1, and Proposition 3.1. O
Claim 3.3 For all £ > 0,

Jim P{|Fs/{ong™(X"100)} = (27)"2(@1)[2(8) - B(a)]| < € 6] = 1.
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Proof. Let N,, = (9n+aan, 9n+bcrn), and fix € for £; and {; asin Claim 3.1. Since P[N,, C B.(6;)| 61]
— 1, the argument for I3 proceeds just as for I;, but with N, replacing B.(#;) throughout. In

particular, we again have

Bl = [ LETw0)

(6- An)z " w(0)
/. nexp{—W(—Ln( ) n)}w(el) 5

and N, replaces B(6;) in (25), (26) and (27). We can apply the same continuity arguments as in

Claim 3.1 to discover that I3/q"(X"|0,) is bounded above and below, with probability tending to

1 as » — o0, by integrals of the form

n

~ 0w(8:)(1F &)[2r /(1 £ &)]Y? [@{(1 £ &)/} - 9{(1 % &)"?a}].

/N exp {—'(2'2'%)2(1 + 51)} w(61)(1F &2)do

The proof is now completed as for Claim 3.1. O
Corollary 3.1 In addition to the hypotheses of the Theorem 3.1, suppose
o0
[ e (X7 [yt dt < oo (29)
—00
with v™-probability tending to 1 as n — 0o. Then E,[0| X"] X 6, under v ; in other words,

/ 6w, (0| X™) d0 %5 0. (30)

01] =1,

Proof. The proof proceeds as for Theorem 3.1, except that Claim 3.3 becomes

lim P {11/ {ond (X7100)} — o) (8)] | 19(0) dt +6,(20) - ()] < ¢

where ¢(t) = ®/(t) is the standard normal density and

, én'l'ba'n
- /0 8q™(X™|9)w(6)db.

ntaon

The proof of this assertion proceeds exactly as for Claim 3.3. Now let @, —b — o00. O
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Remarks. The fact that asymptotic normality results should depend little on the true dependence
structure of the data was made clear by Chen (1985). Kass, Tierney and Kadane (1990) have iden-
tified a class of models in which the Chen/Walker-style argument works well, called the “Laplace
regular” models. We note that (i) the continuity and boundedness conditions of Laplace regularity
correspond to our Assumption PN3; (ii) the positivity of the Hessian for Laplace regularity corre-
sponds to our Assumption PN1 and Proposition 3.2, and (iii) their asymptotic convexity condition

is our Proposition 3.1.

4 Analysis of ¢" under v" using the full model p"

In many settings it is natural to assume that there exists a “full model” p™ from which v™ and ¢"
can be derived as in (7) and (8). In this section we show that §,1(z") is consistent and converges
in distribution to a mixture of normals under »", and asymptotic normality of the posterior w,
under »", replacing LLN assumptions on »™ with assumptions on the full model p™ ( | Q‘li).

If we simply apply the results of Section 3 to the full model case, we see that, under finite
moment conditions, the LLN assumptions on »"™ imply that the effect of the nuisance parameters

Qg in the full model p™ ( | Q‘li) disappears asymptotically. Consider Assumption EI in this context,
which asserts that the left side of the identity

01> = Var (E [%zn:a,-(xi) Q‘{] Qi‘)
i=1

tends to zero as n — 0o, for bounded a;(-). Also, the second term on the right will tend to zero by

n

Var ( % Z ai(X;)

=1

01) + F [Va,r (;ll-zn:ai(Xi)

i=1

91] (31)

the weak law of large numbers for p”. Hence the remaining term in (31) tends to zero, from which

we may conclude, for every € > 0,

limP[ <e€

n—o0

%i{E |:(X:)1 €3] - Elai(X)|61]} 01] - 1.

As a result, for w (Qg |01)-a,lmost every Qg, the first moment is asymptotically free of Qg. If the
a;(X;)’s have uniformly bounded (k 4 1)** moments and EI holds then by a uniform integrability

argument higher moments are also asymptotically free of Qg.
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Our goal is to obtain estimators for 6, which do not involve explicitly estimating or accounting
for 2. The representation v™ (z" |61) = [[Iiq i (a:,- | Qi'l) w (Qg |01) dg2 allows us to replace the
LLN assumptions for #® with LLN’s which hold naturally for the independent likelihood p™. For
consistency of 9q,1 it is enough to require that the dependence on Qg is uniformly small on compact
sets of §%; see Example 5.3 for an example of this. The asymptotic normality of the ¢"-based
posterior distribution may be handled in a similar fashion. As for the asymptotic distribution
of éq,l, both first and second moments of a;(X;) must be asymptotically free of Qg to obtain a
conventional asymptotic normality result; otherwise one obtains various mixtures of normals which
are less easy to work with in general.

The asymptotic distribution theory under v™ necessarily involves mixing over Qg and this means
that there is no well-defined Fisher information resulting from p"—unless it too is free of g3.
Consequently, the asymptotic normality of the g"-based posterior requires that the empirical Fisher
information be used for scaling. The result breaks down (c.f. Proposition 4.3 below, as well as the
remarks following Theorem 4.1) if one tries to use the expected Fisher information under ¢",
I.0)=E [—%L;{(Gl)‘ 01]; and, although a result can be obtained if one uses the p™-based form
I.(01;89)=E [—%LZ(01)| _0_‘{] , the result is of little interest since it involves scaling by quantities
functionally dependent on 8%.

Recasting the problem in terms of a larger conditional independence model p" (gn | Q‘f) =
[T, pi (a:,- [ Q‘li) allows us to make two interpretations of the experimenter’s pragmatic approach

to inference using ¢", in terms of the behavior of the “full model” p™:

1. We can regard ¢; (z; |61) as marginals [ p; (:v,- | Q‘f) w(83]6,) 8% of some more complicated
model. In this case the conventional procedure is to use an estimator based on ¢™ and to assess
its performance in q" also. Our results allow its performance to be assessed in the proper
measure »", and show that the MLE based on ¢" is asymptotically sensitive to distortions

due to Q_g, while the ¢™-based posterior is not.

2. Alternatively we can regard a convenient model ¢; (z; |61) = po,i(zi |61) as embedded in a
larger model p; (z,- |Q‘{l) , where fixing Qg at some “null value” produces pg;; see for example

Cox and Wermuth (1990). Now if we allow 8§ to vary, our techniques give estimators—
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the g"-based MLE and posterior—which do not depend functionally on 82, although their
moments typically do. This contrasts with the usual MLE for 6; in p”—the first coordinate
6, of éf—whch typically will depend functionally on 4.

Both interpretations admit the possibility of using larger models that are typically not fully specified
since estimators for the parameters of interest can still be found and their performance assessed
for sensitivity to the nuisance parameters. In the usual case where the distribution of the nuisance
parameters is unknown, it may be sensible to simply choose a convenient prior for them (e.g.,
Berger and Bernardo, 1989). However a fully noninformative prior would typically not be expected

to satisfy our assumptions below.

4.1 Consistency of 4,,

Our first result is an extension of Proposition 3.1 in the context of p®. With the notation exactly
as in Section 3.1 we assume:

Assumption C1'. V t # 6y, 3 ¢(t) = ¢(¢;8%) > 0 such that

lim P|Da(61,2) > e(t)|88] = 1.

Assumption C2'. V¢ #6,,V £ > 0,3 § > 0 such that

lim P| inf D,(t,0)> —
0o [06111315@) (1,6) ¢

Qil] =1.

Assumption C3'. V A large, 3 ca = cA(Qi'l) > 0 such that for all § > 0,

n—oo

liminf P| inf 6,,0 g%l >1—6.
min P[wlIl;ADn( 1,80) > ca _1l 2>

Proposition 4.1 Under Assumption C1' through Assumption C%, for alle > 0 and all § > 0 there
exists ¥ > 0 such that

liminf P| inf D,(6y,0)>
gy [aggi(ol) (01,0) 27

Q‘f] >1-46. (32)
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The proof is identical to that of Proposition 3.1, except that all probabilities and expectations
are conditional on Qf, not #;. Note that laws of large numbers hold under a wide variety of
independence models p”; arguments about the plausibility of Assumption C1’ and C2’ reduce to
verifying the appropriate moment conditions (cf. e.g. Theorem 5.2.3 of Chung, 1974). Note that
the ¢(t) in Assumption C1’ and the ea in Assumption C3' depend on 4. This suggests what kind
of uniformity argument to make, to obtain consistency in »" from consistency in p”. Note that K
appears in the hypotheses but not in the conclusion of Corollary 4.1, and assume that w (Qg |01)

is o-finite. An example illustrating this result is presented in Example 5.3.

Corollary 4.1 Suppose that for any compact set K C supp w(82161),

inf e(t) > 0 33
) > 0 (33)
inf eo > 0. 34
g3ex 4 (3

Then ¥ € and V &, 3 v such that

liminf P| inf D,(6,,0)>
i samts) (61,0) > v

n-—00

01] >1-4.

Proof. Let §' > 0so small, and K so large, that w(K|6;)(1—6") > 1—6. The proof of Proposition 4.1
goes through as before, with ¢(t) and ca set equal to their infima over K, guaranteed positive by

(33) and (34). The v that one obtains for ' and e thereby is now uniform over K. Then by a

o]

Fatou’s Lemma argument,

liminf P| inf D,(61,0) >
Rl P (61,0) 2 7

n-—>oo

6,| = lminfE|P| inf D.(61,8)>
1] lim in [[0¢}31i(01) (61,0) > v

2 E [1{01}x1c1in‘933.3fp[eegifol)D”(ol’o) 21 Qid] 01]
> w(K|8)(1-6")
2 1- 67

which completes the proof. O
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4.2 Asymptotic distribution of 0,,

For the discussion of asymptotic distribution properties of the éq,l (X™), it is convenient to consider
again the Taylor expression (19). For brevity, we denote U = T,(6) below.
Assumption AN1’. Let 7,(8%) = /nE [—Ijl Q_i'l], and assume there exist functions o2(8%) > 0

such that _ ;
e

under p" ( | Qi‘l) .

Assumption AN2’. There exists € = (%) > 0 such that M, ;(z,0;) = SUPgeB.(6;) I% log gi(z;]6)

- %ﬁ-lcg gi(x;]61)| is dominated by some p"-integrable function, uniformly in i, and for M, (e, 61)

=+ Tk Mei(Xi, 61),

limlimsup £ [ﬁn(e, 01)|Qi‘l] = 0.

=0 pnoco

Assumption AN3'. §,,(X") % 6, under v™ (- ]61)-
Remarks. Note that, since p™ is a product measure, Assumption AN1’ is a fairly mild assumption

requiring only, say, the Lindeberg-Feller conditions on the summands of U.

Proposition 4.2 Let z, be the standard normal cutoff, a = ®(24) for Z ~ N(0,1), and assume
Assumption AN through Assumption ANS. Then

1. Forall t,

. . " t.—fn 61) — Tn al’gg
nll.IEoP[ﬁ(gl = 05,1(X™)) < t|01] - B [Q ( (an(el?ﬂ(g) ))’01] =0

2. For all a € (0,1), and any “centering” and “scale” terms b(61) and c(6,),

fim p| Y2 =b(61) <z 01] B lq, (zac(ol) ~ (1n(61,93) — x/ﬁb(91)))|91] _0

n—oo 6(01) a'n(ola_(:).g)

Proof. Recall from (19) that /n (81 — ,,1) = v/nU/J.(61), where §; € By, _5,,(f1). By As-

sumption AN3’, we may assume without loss that for some small 6, Blol_éq'll(al) C Bgs(64), since
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P[va( - ,) < t6,]

this is true with probability approaching 1 as n — co. Now for part 1, we calculate
U
E [ [ AU,

e
Jn(6y)

_ p|p[O-E[U]8]) 3.6~ e
h on(82) s on(02)

4

:

and part 1 follows from the continuity in Assumption AN2'. For part 2,
p[VET=3e) _ |,
c(61)

_ E[ ViU = 7n(8)  zac(6y) = (1n(8) = VEb(8:))
Un(od) B an(ed)

o

Remarks. Part 1 here shows the distortion of the usual confidence intervals based on 6, ;. Part

by Assumption AN3’ and the same Taylor expansion as before. O

2 shows what happens if we try to force centering and scaling terms which depend only on ;. If

we insist on having a “standard” asymptotic normality result, we are faced with investigating the

|

stability and fixed points of integral operators, as n — oo:

lim E [@( n(61) ~ 7n(61, 0 ))

T on(61,03)
a = hmE[ (Zac(ol) (7n(01’0d) \/_b(al))) ]
nee O'n(01, 2)

It is suggestive to consider the easy case in which we may interchange limit and expectation. For
example, in part 2, we would require

= Tim 2000 = (1n(8) = yD(8)

oo On (Qf)

for all z,; clearly this requires c(61)/0n(87) — 1 and /n(E[U|8%] — b(61))/o,(8%) — 0.

4.3 DPosterior asymptotics

Although Proposition 4.2 implies likelihood-based inference is complicated, the situation for poste-

rior inference is more straightforward. As in Section 3.3, the principal ingredients are consistency
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of 6, = éq,l(g") for 8;, and the approximation of the asymptotic information function with an
appropriate “scoring” function.

Assumption PN1’'. For each Q‘f, there exists 0 < € < M < oo such that
€ < lim infT,,(6;;8%) < lim sup T,,(6y;8%) < M,
n—co n—oo

where T,,(61;63) = —E [%LZ(01)|Qi‘]-
Assumption PN2’. The weak law of large numbers holds for p™ ( | Qi‘l) . In particular, we assume
that

L(00) + Ta(6r:89) 7 0.

Remarks. Since p® is a product measure, satisfying Assumption PN2’ really just amounts to
verifying appropriate moment conditions. Also, note that the “information” here is only computed
one way; there is no analogue to Assumption PN2.

Assumption PN3’, There exists ¢ = €(8%) > 0 such that M, ;(z,6;) = SUPgeB,(4;) |-a‘% log ¢;(z;]6)
- %,—log gi(2;]61)| is dominated by some p™-integrable function, uniformly in 4, and for M (e, 6;)
= £ 3y Mei(Xi,61),

n

limlim sup F ['Hn(e, 01)|Q‘1i] = 0.

=0 nooo

Remarks. Note that Assumption PN3’ is the same continuity condition as Assumption AN2'.
Assumption PN4'. The prior density w(8) is positive and continuous throughout a small neigh-

borhood of 6;.

Our approximation result is now
Proposition 4.3 Suppose 6, = 9,;,1 N 6.1, and assumptions PN1 through PN§ hold.
(a) Let 6% =6, + r(61 — 8,), r € [0,1]. Then for all £ > 0, there ezists € > 0 such that

lim P| sup |-71;L::(0:)+Tn(ol;@_§)|<wf]=1;
)

n—oo r:0%EBe(61

(b) In particular, LL"(8,) + I,(61;05) Zo.
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Proof. The proof of part (a) proceeds as for Lemma 3.2, replacing conditioning on 6; with
conditioning on 8¢. Note that part (b) would follow immediately as long as , il 6. But this must
be true, for almost all 83: Suppose on some measurable K C supp w(82|6; ), that |L”(8,)+T,.(81;62)]
> ¢/, Then

E [1cP [IL5(0,) + Tu(01:89)] > €| 65| 61] < P[1L1(80) + Ta(61:89) > €

01] -0
and hence w(Kl|6;) =0. O

Theorem 4.1 Assume the conclusion of Proposition 4.1, and suppose Assumption PN1' through
Assumption PN{' hold. Let
On = {_Lx(én)]’_l/2 20

(by Proposition 4.8 and Assumption PNI', \/no, ezists and is bounded away from 0 and oo with
probability tending to 1 as n — o0). Then, for all a < b,
én+b0'n um
[ oy (01X 2(0) - () (35)
On+taon

under v™ (- | 01), as n — oo.

Remarks. Proposition 4.3 allows us to replace the definition of o, here with o/, = I,,(6;; Qg)_l/ 2
but the result would be of little practical use since the scaling would depend in an unwieldy
fashion upon Q_g. On the other hand, this proof of Proposition 4.3 based only on LLN’s for p"
fails to go through, if we replace T,,(61;8%) with the ¢"-based expected Fisher information T,(6;) =
E[T,(01;0%)]6y], unless T,(6;;03) is asymptotically free of 83. Thus we see that scaling with
on = {—L"(,)}/? is essentially required to obtain a useful result.

Proof. The main idea is to modify the Claims 3.1 through 3.3 to assert convergence under p”,
obtaining

brntboyn n
/(; we (8]X™)d0 % &(5) - B(a) (36)

ntaon

pointwise in 8¢, and then integrate over 83 to obtain (35). We will restate the three claims and

indicate what modifications are necessary in the proofs.
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Claim 4.1 For all £ > 0, there exists € small enough that
Jim P(I5/{ong"(X"162)} - (27)2w(81)] < €] 8] = 1.

The proof of Claim 3.1 can be used without change, except that all probability statements are
with respect to p" ( [ Q‘f) and not v™ (- | 1), and we write
Lu(®) _ _ [RL5(0) + Tn(61; 09)] - [31n(01;©9) + 3 L7(6n)]
Ly(6,) LL1(6n)
Claim 4.2 For each fized € > 0,

I/{onq"(X™8,)} & 0.

The proof is formally identical to that of Claim 3.2, but (32), Proposition 4.3 and Assump-

tion PN1’ are used to justify the steps, and probability is assessed in p™ rather than v™.
Claim 4.3 For all £ > 0,
Bim P [|fs/{ong"(X™10a)} - (27)/%(81)[2(5) — B(a)]] < £] 03] = 1.

The argument proceeds as for Claim 3.3, except that (32) is used to show that P[N,, C B(6:)]8%]
and all probabilities are assessed in p".

This completes the proof of (36); dominated convergence now yields (35). O

5 Examples

5.1 Item response theory; inference under v" alone

Item response theory, IRT, treats models for subjects’ responses to individual items (questions)
on a standardized multiple-choice questionnaire, in terms of unobserved or latent factors. Suppose
each observable variable z; has k; values &, ..., i, (the subject makes one of k; responses for
each item), with k; < ko for some fixed ko < 0o. In practice the model often used to analyze the
data is the product of marginals ¢" (z™ |61) = [’ ¢ (z; | 61), where

ki
g (zi |61) = [] Pii(61)",

i=1
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and Yj; = 1{X.-=5.~J-}-

In many settings, the curves P;;(f;) are considered well-enough estimated that they are taken
to be known, and the practitioner is primarily interested in estimating 6, for each examinee. This
is the case in large-scale educational testing, for example. Wang (1986, 1987) argues that when the
full model p" (g" | Q‘f) is assumed, and d = 2, the popular logistic response curve fitting program
LOGIST produces stable estimates for ¢;(z;|91), where ¥J; is essentially the first component of an
appropriate rotation Q‘ll of Qg, when z™ consists of binary responses. Thus the error made in not
modeling for or estimating 83 is often argued to be negligible.

Stout’s notions of essential independence and essential unidimensionality (Stout, 1987, 1990;
Junker, 1988, 1991) provide conditions under which not modeling for nuisance factors seems rea-
sonable. Traditional analysis of educational tests is based on averages of item response scores

A, = L% A;, where 4; = Zf':l a;;Y;;, subject to the constraints that

(a) IM<oo: —-M<an<ap<...<aj <M, Vi; and

T (37)
(b) h,ﬂg.}f;;a‘ki —a; > 0.

Assumption EI applies directly to such scores, and directly generalizes Stout’s definition of strong
essential independence for binary data (Definition 3.5, Stout, 1990). Note also that, because of the
bounded nature of X;, Assumption EI implies (b) of Lemma 3.1, as long as the P;;(6;) are bounded
away from 0 and 1. Since estimation of #; is the goal, some sort of minimum information—or
discrimination, as it is called in educational testing models—condition is needed. Let A,(6;) =
E [an 01]; a minimum-information criterion that is appealing in the educational testing context is
that, for every set of item scores satisfying (37) and every 6, there is an interval B = Bs(6;) and

an € > 0 such that _ _
lim inf An(t) = An(61)

n—+00 t— 01

>¢ Vi€ B, t# 6. (38)

This generalizes Stout’s “local asymptotic discrimination,” LAD, condition for binary items (Stout,
1990, Definition 3.8). Under mild smoothness assumptions, the conditions and results of Section 3—
in which only ¢™ and v™ play a role—hold under EI and LAD. Example 5.2 below provides a concrete

example.
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Proposition 5.1 Suppose that EI and LAD hold, and that the response curves P;; satisfy

For each t, 0 < inf P;;(t) < sup P;;(t) < 1; (39)
tJ $,J

P;;(t) is continuous at each ¢, uniformly in ¢ and j (40)

and suppose Assumption C3 holds. Then the “wrong model MLE” § 9,1(2") is v™-consistent for 0y,

asn — oo,

Proof. We will verify the conditions of Lemma 3.1 and Lemma 3.2. It follows from an inequality

of Csiszar (1975), D (fllg) > ;[f |£(£) — ¢()| dt], that

_ZD(%G&”%G)

t—].

> oo [Da,(ol)— u(o)ll (a1)
1_1

1
-D (g5l 8)

which is bounded away from zero under (38) (consider {a;;} for which a;; = 1, and a;; = 0 for all
J < k;). This is (a) of Lemma 3.1. As noted above, (b) of Lemma 3.1 follows from Assumption EI
and (39).

The continuity condition (a) of Lemma 3.2 follows from (40). (b) of Lemma 3.2 requires that

01] -1

for every € and appropriate §. The expression in absolute values may be written as

lim P| sup |Dy(t,0)— E[D.(t,0)|01]| < ¢
oo | 8eBs(t)

S5 — Py (6y)] o 25
_EZ[ ij i ( I]OgP (0)

=1 j=1

which will tend to zero uniformly in 6 € Bs(t) by Assumption EI, (39) and (40). O

Example 5.1 Assumption C3 may often be verified directly. Consider the case of binary response

data, in which k; = 2, §; = 0 and &2 = 1. A commonly used model for the response curves is

1
1+ exp{—a;(6; — b))}’

Pa(b1) =ci+(1-c)
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and R1(01) =1- P,2(01) Then Dn(01,0) = %{Z? t,-(01) - t,-(0), where

. ai(0—b;) . ai(60-b;)
£:(6) = X; log c—+1°;— —log [1 + He—] .

i l1-g¢;
Hence
. 0,if X; =1,
lim ~t;(0) =
§—o00 o0, if X; = 0y
lim —t;(0) = —logeXi(l—e) ™%,

8——o00

and we see that Assumption C3 holds as long as P[X; = 1V:|6;] = P[X; = 0Vi|6,] = 0; this in
turn follows from Assumption EI and (39), which has a natural interpretation in terms of the a;’s

b;’s and ¢;’s. O

Proposition 5.2 Suppose, in addition to the assumptions of Proposition 5.1, that
2

38_92'.1°g P;;(0) is bounded pointwise in 6, uniformly in ¢ and j. (42)

Then, in the sense of (24),

gq{\/ﬁ@_l‘_:;w z"

n

} ¥ N(0,1).

Proof. It is enough to show that Assumptions PN1 through PN4 are satisfied; only Assump-
tion PN1 and Assumption PN3 are problematic. Proposition 4.1 of Junker (1991) shows that
Assumption PN1 holds under (38) and differentiability conditions (the argument is similar to the
one bounding (41) away from zero). The uniform continuity condition of Assumption PN3 focuses

on a locally uniform bound for

k¢
PIRE [:;2 log F;;(0) ~ a long((h)] (43)

j=1

which follows from (42), due to the boundedness of the Y;;’s. O
In the following example the asymptotic MLE and posterior distributions are different; this is
an explicit case in which interval estimates for #; based on the g"-likelihood are wider than intervals

based on the ¢™-posterior.
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Example 5.2 Consider binary responses X3, X3, X3, ..., having the same response curve P;y(6) =
0 (so the latent scale is the interval (0,1) and P[X; = 1|6] = ). Suppose that the items are
arranged in successive groups of g, items as X1, Xs,..., Xg,; Xg 41, Xgo+2,- -+, X2g,; €tc., such
that different groups of g, items are independent of one another, given 6, and items within a single

group are positively correlated, given 8, and with

Corr (X;, X,10) = c if X; and X; are in the same group,
0 if not,

for some fixed ¢ € (0,1]. This »™ is a naive model for a paragraph comprehension test in which
several paragraphs are presented and g, questions are asked for each paragraph. Here, § represents
a trait common to all the items, which we might wish to think of as reading comprehension; and
the nonzero correlations are induced by nuisance traits, for example, specific knowledge about
the subject matter of the paragraph at hand. This example is also considered by Stout (1990) and
Junker (1991). Current interest in (more realistic) block-dependent structures like this is evidenced,
for example, by Wainer, Lewis, Kaplan and Braswell (1990).

One may easily verify Assumption EI, (38), and the subsidiary continuity conditions used
above to verify Lemmas 3.1 and 3.2. Assumption C3 is not an issue, since the parameter space

(0,1) has compact closure. Also, because of the block-dependent structure, it is trivial to obtain

an asymptotic normality result for 0.%1 (X™) = X,; we see that
Vi (8,1(X™) - 61) ~ AN(0,07)

where 02 = 61(1 — 61)[1 + ¢(go — 1)] is somewhat inflated over the anticipated asymptotic variance
61(1 — 01) under ¢". Thus the ¢"-based MLE is consistent and asymptotically normal, but has a
somewhat larger asymptotic variance than would normally be expected.

Turning to the posterior distribution of #;, the continuity condition (43) is easily verified, for

6, € (0,1). Hence, in the sense of (24),

L, {«ﬁ & —dyala')
Voar (@)L - by1(z™))

g"} ¥ N(0,1),
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where the standard error \/ 8,1(z")(1 - 6,1(2z™)) is calculated directly from (=L"(6,1(z™)))" /2 in

the statement of Theorem 3.1, using 9q,1(g") =T, O

5.2 Inference when p" is also present

In this section we illustrate the results of Section 4. As will be seen, explicit calculation of integrals
over §2, and other needed quantities, becomes complicated fairly quickly. Example 5.3 treats a
multivariate normal p™ in which the location is a nuisance parameter, and Example 5.4 treats a
multivariate normal p® in which the scale is a nuisance parameter. In Example 5.3 we identify a
rate at which the nuisance parameter must attenuate if asymptotic normality is to hold for 9q,1. In
Example 5.4, p™ continues to be highly dependent on 6, as n — oo; this shows that the requirement
that dependence on _0_% attenuate as » — oo is not necessary when embedding in a full conditional

independence model p”.

Example 5.3 Suppose L£(X;|6,,02) = N(%,Gl), independent of one another, and £(02]6;) =
N(0,6,). It is easy to verify that £(X;]6,) = N(0, 33—(—#), that

1 nyomles 1 1 1 & a?+1 1 & a? 2
nlogq (z"[t) = 2log27r 210g01—2n,-=2110g 27 2n01§1+a§X"’

a~ 2 2 -_—
and that consequently 6,:(z") = 137 ﬁ‘;';Xf Let @, = 1 3°7 ﬁ;? and §, = 1 — @,; then
E [5q,1(1”)| 01,02] = @,0, + 5,022, a convex combination of the parameter of interest and the
nuisance parameter. If we assume

lim |o;] = 00 (44)

n—00
then, since @, = 1 — B, — 1, it is easy to verify that 0Aq,1 N 0, and hence éq,I v 0. It is also easy

to verify that

t 1 t

"6y 1, 0t 11 1., 1, t 16
5108 g +3(7 — g Ve~ glog g+ 5(5 —1)

(z]t)

as m — oo. Analysis of the function f(u) = logu+ (L 1) shows that the assumptions C1’, C2', C3'

Da(61,) = — log

and the uniformity assumptions (33) and (34) are satisfied, assuming (44). Hence the somewhat

stronger consistency results Proposition 4.1 and Corollary 4.1 hold also.
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Turning to the asymptotic distribution of éq,l, we may calculate in Assumption AN1’ that

- 13 o 1 46,0,2\]"?
an(ol, 02) = [Va’r(Ulol702)]1/2 = [;Z (1 + a?) (2012 + 40114;2):' ?

=1

which tends to ¢(6;) = 1/(v/26;) as n — oo, under (44). To obtain a recognizable asymptotic
normality result for §,1, we also need to identify a function b(6;) such that VA(E[U|61,65] -
b(61))/0n(01,02) — O (see remarks following the proof of Proposition 4.2). We calculate v,(6;, ;)
= +/RE[U|6y,0;] = %01@(1 - %;1 E‘bfz—z); such a function b(6,) can be identified in this case only
by supplementing (44) with the stronger rate condition that v/ 8, — 0.

Finally we may turn to the posterior normality results of Section 4. Note that

7(0.+ 0. — 1.n S S WY
I(01,02)—E[—nLn(91) 01,02] = 2012—013E[0q,1|01,92]
1, 1. B,68.°
= )T
L 1
20,2’

as n — 00, and
1 - 1. .
;L;;(ol) + 15(61562) = '01_3[0q,1 — (@b + B,6:2)] 5 0,
as n — 0o. From these it is easy to verify Assumptions PN1’ and PN2'. For Assumption PN3/, we

note that
t—2

23

t—2

0,1(X™) gyt

E [M‘n(a,ol)lol,oz] =E[ sup

61, 02] = (@nby + B,02%) sup
t€B;(61)

t€Bs(61)

from which Assumption PN3’ follows. In this case the scale of the asymptotic posterior distribution

is the same as for the asymptotic distribution of 4, ;(X™). O

Example 5.4 Let £(X;|0y,0;) bei.i.d. N(6;,65?), so that the common marginal density under p®
is
026-—03 (z—61 )2/2

p(m|91,02) = \/2—”

for 6; € R, 6, € R*. Assume that the prior density for (61, 0:) factors, and that the marginal
for 0 is w(8;) = (2/v2r)exp{—03/2}, for 6; > 0. Then g(z|6;) = 1/7[1 + (z — 61)?], a location

Cauchy; so that éq,l = arg min, L "%, log1 + (z; — t)?, uniquely.
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Instead of verifying Assumption C1’ through Assumption C3’ we will establish the conclusion
of Proposition 4.1 directly, for fixed (6;,62). First we show that there is a positive constant A
so large that we may ignore parafneter values outside of [-2A, 2A], in the sense that it is very
unlikely that |4, 1| exceeds 2A. We also show that L,(8;) dominates L,(t) for |t| > 2A. This will
allow us to restrict attention to the compact set [-2A, 2A], which will be handled afterwards.
Let v > 0 and consider the event

— 2 —1)2> 2
Enn(A) = {tE[ min e Zlog1+(X 2>y+= glog1+X}

We show that for A large enough

Note that for ¥ > 0 (45) is analogous to Assumption C3’: the density outside [—2A, 2A] is beaten
by the density for £ = 0, by a factor of e™™7.

Consider the random set of indices Z = {3 : F&}oz (0.02) < X; < Fa'lylez(O.QS)}, where Fp, 9,(z) =
JZ., p(t]61,02)dt, and the event B = {1 card (Z) > 0.95}. Then

2> 2
Ey(A) D {te[ r2nAln2A]anIOg1+(X D >y+ = glogl—l—X}

—t):> 1 ?
{te[ mi 2A]anlog1+(X )2 >v4 = zZ;og1+X}nB (46)

For A > max{|F; % (0.02)],|F; % (0.98)|} we have, on the last event, log 1+(X;—)? > log 1+ A2 >
2log A. Now, because of the intersection and restriction we have that for |t| > 2A, %Zief logl +
(X; —1)? > nﬁﬁ)r"n—loSA > log A. Hence

Eny(A) D {logA > v+ = Zlog1+X2}ﬂB (47)
=1

For given v > 0 we can choose A so large that logA > v + § + Eflog1 + X?2|6;,86,] for some
§ > 0. Now P[£,,(A)|01,602] > P(Event on right in (47)|61,02) — 1 so (45) is proved since both
conditions on the right in (47) are met with probability 1 as » — co (by the LLN and definition of

percentiles.)

39



Next we obtain an asymptotic convexity condition analogous to Proposition 4.1, using the

restriction to [-2A,2A]. An easy calculus argument shows that
Eflogl + (X — 61)%]64,60;) < trgin Ellogl + (X —t)%]64,6;] (48)

where A, is the union [-2A,6; — €] U [0 + €,2A] (take first and second derivatives with respect to
6; in the argument of the expectation on the left). Then there exists v > 0 such that

n—oo

1 & 1¢
lim P{trgiAn " d " logl+ (X;i—t)* > (1+ 7);; > logl+ (X;—61)%61,6,} =1.  (49)
€=l

i=1

Indeed,

P(event in (49)]61,02)

1 n
> P{min[E(log1+ (X —1)’|61,02) > (1 + €)- 3 logl+ (Xi - 61)?
€ =1
1 n
=|=2_ log1+ (Xi - )" — E(log1 + (X — 2)*|61,65)|]

=1

> (1+ 9% log1+(X; - 8y (50)

i=1

1 n
and sup |-7; log1+ (X; —t)2 — E(log1 + (X —1)%|6y,0,)| < €[6y,62)}
t€A. =1

1 n
> P{(—€¢+ E[logl + (X — tmin)|61,62]))/1+7 > - Z log1+ (X; ~6;)°
=1
and ULLN’s|0y, 62} (51)
where “ULLN’s” (uniform LLN) refers to the second event in (50) and t;, is the element of A,
which achieves the minimum on the right in (48). By the strictness of the inequality in (48) we see
that for given ¢ there are positive numbers 7 and 7 so that

-0+ Eflogl + (X — min)2[01,02]
14+

> E[lOg]. + (X - 01)2|01,02]

Now both events in (51) have probability tending to 1 so (49) is proved. Explicitly using a uniform
LLN seems a more expedient application of the intuition behind Wald’s proof in examples of wrong
model analysis; the same technique works for the double exponential for instance and in both

cases is easier than establishing Assumptions C1’ and C2' (which we believe are in fact true). The
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conditions for asymptotic mixture normality of 9q,1(g") and asymptotic normality of wy(6,]z")
given in Section 4 are now easy to check, since X; is i.i.d. under v". However, the quantities are
difficult to work with analytically so we have been unable to verify conclusively, as in Example 5.2,

that the asymptotic distributions are different. O

6 Discussion

When assumptions cannot safely be made about the dependence structure of a model a natural
approach is to regard the data as coming from a distribution ™ (g" |6;) conditioned only on
the parameter of interest, but otherwise unspecified. Because ™ may be difficult to work with,
practitioners are sometimes lead to the product of marginals ¢" (2" |61) = [T ¢ (z: | 61), where
g; (z; | 61) is the marginal for X; from v™. Although this natural choice is also optimal in the
senses indicated in Section 2, it is not clear that inference based on the product of marginals can
be relied upon. This methodological concern has been raised explicitly in applied psychological
measurement in particular; and in fact has implications in much of applied statistical practice,
where the assumption of conditional independence is often an incompletely-justified convenience.
What is the asymptotic behavior of ¢"-based estimators under the correct law v™?

We have identified two broad categories of problems in which asymptotic inference based on
the product of marginals can, at least in part, proceed: Section 3 treats the case in which laws
of large numbers (LLN’s) are imposed upon v™; these LLN’s, which generalize conditions used in
item response theory, arise as a way to stabilize the asymptotic behavior of familiar sums derived
from the log-likelihood L, () = -71; % 1logg; (z; |61). Section 4 treats the case in which v™ can
be embedded, as a mixture over nuisance parameters Qg, in a larger conditional independence
model p” (g" | Q_‘f) = [Tiey pi (:vi |Qi‘). In this case, LLN’s need not be imposed upon v", since
the LLN’s which hold naturally under p" are enough. In both categories of problems we have
obtained consistency of the ¢"-based MLE éq,l and consistency of the ¢®-based posterior distribution
wq(61]2™) under v™ (z® |6;), in the sense that 6, % 6; and wq(61]2™) concentrates at §,; with
v"-probability tending to one as n — oo.

The asymptotic distribution of the ¢"-based MLE cannot be determined without further as-

41



sumptions on v™ or, if it is assumed to exist, p". In addition to indicating a few situations in which
a conventional asymptotic normality result is possible, we have considered in some detail the situ-
ation in which »™ is obtained by mixing nuisance parameters Qg out of the full model p" (g” [Qid).
In this second category of problems, we have identiﬁ_ed the asymptotic distribution of éq,l as a
mixture of normals, which is determined by the way in which p™ depends upon Qg.

In contrast, the ¢g"-based posterior w, is asymptotically normal in both categories of problems,
centered at éq,l and scaled by o, where o2 is the the ¢"-based empirical Fisher information (other
possible scaling terms do not lead to so simple a result for ¢*); thus the asymptotic normality of
wq has little to do with the true dependence structure of the data. This is consonant with recent
interpretations of Laplace’s method (especially Chen, 1985; and Kass, Tierney and Kadane, 1990),
which show that asymptotic posterior normality is really an analytic property of the model (right
or wrong) along a particular data sequence. The stochastic behavior of the data only enters into
the asymptotic distribution of the centered and scaled w,-measure of an interval [a,b] € Qg,,
viewed as a functional of the stochastic process (X1, X2,...) which “estimates” the corresponding
N(0,1)-measure of the same interval [a, b].

This disparity between MLE-based and posterior-based asymptotic inference can be illustrated
in a practical setting. With no structure on v™ except for the LLN, Example 5.2 gives a situation
in educational testing for which asymptotic §, ;-based confidence intervals can be calculated and
they are significantly wider than the highest posterior density (HPD) intervals based on asymptotic
normality of wy. In this case there is one model in which both likelihood and Bayes analysis can
be conducted in full detail; and the analyses clearly give different answers, even asymptotically.

When v is represented as the mixture over nuisance parameters of p”, imposing an LLN on v*
has the effect of forcing the dependence of p" ( |Q‘f) on the nuisance parameters 02 to attenuate as
n — 0o. However this attenuation seems to be neither necessary nor sufficient for useful asymptotic
results. In Example 5.3 a sufficiently rapid rate of attenuation is required for asymptotic normality
of éq,l, and in Example 5.4 consistency and asymptotic normality obtain, in both the Bayes and
likelihood senses, even though there is no attenuation of dependence on the nuisance parameter.

It is widely believed that the two paradigms, likelihood-based inference and posterior-based
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inference, are philosophically different but “asymptotically the same”, except in bizarre situations.
The setting of this paper, in which the analyst replaces the correct dependent likelihood with a
convenient independent likelihood, is one in which the asymptotics come out differently for “typical”
cases. How can we make sense of this?

On the one hand, our ¢"-based MLE is really an M-estimator with a particular choice of
objective function, namely the product of the one-dimensional data marginals of v™, which we have
denoted ¢". We have given consistency and asymptotic distribution results for this M-estimator
under suitable assumptions on v™ or, if it is assumed to exist, p”. We may interpret the asymptotic
distribution of the M-estimator as a measure of estimation error under v* without difficulty; in
particular we need not assume that the data actually came from ¢" to arrive at this interpretation.

On the other hand, our approximation to the ¢™-based posterior shows that it concentrates at
the g"-based M-estimator—cf. equations (24) or (35)—but its “asymptotic rate of concentration”
is harder to interpret: ¢™-based asymptotic posterior standard errors say how much the ¢"-based
posterior is concentrated around the M-estimator, but not how much the g"-based posterior is
concentrated around the #; which “generated” z™. If the data actually came from ¢™ then Bayes’
rule would allow one to interpret the ¢™-based posterior, and hence its asymptotically normal
approximation, in the usual sense of updating belief about where §; was after looking at the data.
If the data didn’t come from ¢", then one cannot appeal to Bayes’ rule for this interpretation,
and the ¢™-based posterior is interesting only because it corresponds to what is done in practice.
Perhaps the only justifiable interpretation of w; is a counterfactual: “If the data had come from ¢"
this is where one would think 8; was.”

Finally, the greater sensitivity of éq,l (z"™) to dependence in the data suggests that the standard
error of éq,l (z*) may be a good starting place for diagnostic checks of conditional independence:
for example, inflated standard errors would indicate positive dependence in »™ that might make
it worthwhile to model v® directly; see Junker (1991) in this regard. Although both MLE and
Bayes paradigms lead to consistent estimators when the product of marginals ¢™ is substituted for
the correct likelihood v™, correct calculation and interpretation of the variability of the estimators

depends on a more careful analysis of the stochastic behavior of the data-generating mechanism.
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