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ABSTRACT

This paper proposes a generic algorithm to generate a posterior Monte Carlo sample,
based on the Metropolis algorithm. The algorithm does not depend upon any approx-
imation or envelope function for the posterior density and is therefore ideal as general
purpose “black box” algorithm. In particular, the algorithm is robust with respect to it’s
initialization. However, available information about the posterior can be used to shortcut
convergence. Convergence in total variation and an ergodic theorem are shown.

Applying the proposed scheme to generate from the conditional distributions required
for the Gibbs sampler extends the applicability of the Gibbs sampling scheme to problems
without conjugate structure and makes orthogonalization possible. Orthogonalization im-
proves the convergence of the Gibbs sampler by reducing serial correlation.
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1 Introduction

Despite the conceptual appeal of Bayesian analysis, the implementation of
Bayesian methods faces a major obstacle in the requirement to evaluate pos-
terior integrals which are often analytically intractable and even difficult to
solve numerically. Suppose X having density p(z|8) is observed, with 8 being
an unknown element of the parameter space © C ®P. Bayes’ theorem relates
the prior density m(8) to the posterior density by p(6|z) x = (8)p(=|6). Most
Bayesian inference can then be done in terms of integrals of some function

f(6) with respect to the posterior density p(6]«):
B,f(6) = [ 1(0)p(6la)ds, @

where the specification f(8) = 6; leads to point estimates, f(6) = p(=0|6)
to the predictive density at = = o etc. Clearly these posterior integrals are
analytically solvable only in special cases. Extending the notion of conjugacy
in a pragmatic way we will refer to such situations as ”conjugate” models.
Numerical integration algorithms, suggested specifically for posterior inte-
gration, include Monte Carlo integration with importance sampling (Geweke
1989), Laplace’s method (Tierney and Kadane 1986), Gaussian quadrature
(Naylor and Smith 1982), Tanner and Wong’s data augmentation algorithm
(Tanner and Wong 1987) and the Gibbs sampler (Gelfand and Smith 1990).
Importance sampling, Laplace’s method and Gaussian quadrature are essen-
tially based upon availability of an appropriate approximation respectively
envelope function for the true posterior. The Gibbs sampler and the similar
data augmentation scheme of Tanner and Wong require that conditional ver-

sions of the full joint posterior be available, meaning that random samples can
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be drawn efficiently from these conditional distributions. Carlin and Gelfand
(1990) suggested a procedure combining these two general strategies by using
an approximation of the joint posterior as envelope function for accept/reject
schemes to generate from the conditional distributions.

In this paper an alternative way of implementing Bayesian methods is
suggested. A posterior Monte Carlo sample is generated by an implementation
of the Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller and
Teller 1953 and Hastings 1970). A once generated posterior sample can then be
used for virtually any posterior inference. In Section 2 the algorithm is stated.
Implementation details and convergence results are discussed in Sections 2.2
and 2.3.

The algorithm is ideally suited to generate from the complete conditional
posterior distributions required in the Gibbs sampler. Using the Metropolis
scheme in the Gibbs sampler achieves three major goals. In it’s basic formula-
tion the Gibbs sampler is restricted to problems where the complete conditional
parts of the posterior distribution are ”available”, meaning that efficient ran-
dom variate generation is possible from the conditionals. The generality of the
Metropolis algorithm removes this restriction. Secondly, using the Metropolis
scheme to generate form the conditionals, the Gibbs sampler is not restricted
any more to the original parametrization and orthogonalization becomes pos-
sible. Orthogonalization reduces serial correlation of subsequent states in the
Gibbs sampler and thereby improves convergence. Third, convergence of the
Gibbs sampler can be improved by generating from higher dimensional condi-
tional versions of the posterior rather than iterating over only one dimensional

complete conditionals, i.e. generating several parameters at a time, rather



than only one at each step. These ideas are discussed in Section 3.
Section 4 contains some application examples. A comparison of the com-
putational effort involved in using the proposed algorithm versus using impor-

tance sampling is given in Section 5.

2 The Algorithm

2.1 Statement of the algorithm

A Monte Carlo sample from the posterior p(6) = p(6|z) is generated by simu-
lating a Markov chain which has p(6) as it’s limiting distribution. The Monte
Carlo sample can then be used for posterior inference. The algorithm is an
implementation of the Metropolis algorithm (Metropolis et. al 1953). Im-
plementation details, including the choice of 8, ¥, the candidate generating
density g(y|6) and specific estimators, are given in Section 2.2.

ALGORITHM 1: METROPOLIS ALGORITHM.

Start with 600 ~ N (8, £).
* Generate a candidate point y from the conditional density g(y|8().

o With probability a(6®,y) = min(1, p(y)/p(6?)), move to v,

i.e. 8 := gy, otherwise 8 := g(0),

Repeat the last two steps to generate 62, ... g(Mo) M) g(02)

Running this scheme with a sample of n initial points {9§°), ...60} in parallel
generates after sufficiently many iterations an approximate posterior sample.

The jumping probabilities a(8,y) only determine the transition probabil-



ities in the Markov chain, and should not be mistaken for some kind of ac-
cept/reject weights.

The same Markov chain is used in simulated annealing algorithms to gen-
erate from p(8) o exp(—C(8)/T), where C(8) is a function which is to be
minimized and T is a parameter which is slowly reduced until, for T' close to
zero, the p.d.f. p(6) is tightly concentrated around the global minimum of
C(6). See, e.g., van Laarhoven and Aarts (1987) for a discussion of simulating
annealing algorithms.

The motivation for using the Metropolis algorithm to generate a Monte
Carlo posterior sample is it’s generality. The scheme does not require any
assumptions on the posterior density, such as normality, unimodality etc. (see

also Section 2.2.1).

2.2 Implementation

In the following description of implementation details the constants n,d, Mo,
a and n, are free control parameters. In the examples reported in Section 4
they are chosen as n = 10, d = 10, My = 200, a = 2 and n, = 100.

Let 8™ denote the sample average over all n parallel chains at iteration
m, and let 8™ denote the sample average over all n parallel chains and all

iterations up to iteration m, excluding M, initial iterations:

8 = 36 /n, (2)

=1
k

am = > gMotid) (3)
=1

where m = My + k - d. To reduce serial correlation only every d—th iteration

is used in the sample average over all iterations.
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2.2.1 Initialization. The initial sample is taken from a normal approxi-
mation of the posterior: 9,(0) ~ N(%,%),i=1,...n, where § and ¥ are, e.g.,
posterior mode and negative inverse Hessian evaluated at 8. Good estimates
8 and ¥ improve convergence of the algorithm. But the scheme can be used
even if the posterior mode is not available or — practically more important —
if £ is only a poor estimate of the posterior covariance matrix or asymptotic
posterior normality does not apply. The first few iterations of Algorithm 1 can
work as a stochastic optimization scheme to move the sample points towards
the mass of the posterior p(8). This is illustrated in Example 1 in Section 4.

2.2.2 Candidate generating p.d.f. ¢(y|6). The candidate generating condi-
tional p.d.f. g(y|6) has to be symmetric in its arguments, i.e. g(y|z) = g(=z|y)
and will therefore from now on be simply denoted as g(z,y). Theoretically
any conditional density g which satisfies the condition of Theorem 1 (Section
2.3) could be chosen. In the examples reported in this paper we chose g(8,y)
= g(8 —y) as multivariate normal N(0, R), with the covariance matrix R equal
to a scalar multiple of a current estimate 3 of the posterior covariance matrix,
ie. R=cL.

The scalar c is initially (and after each reestimation of %) set to ¢ := 1.
Whenever the average over the 10 most recently observed acceptance proba-
bilities is greater than 0.8 then c is increased by a factor 1.2. If the average is
less than 0.2 then c is decreased by a factor 0.7.

2.2.8 Updating 5. Over the first M, iterations ¥ is updated a times, for

J =1,...a, according to:
2 3 -1— Jk n (1) )
-k S e ey,
I=(j—-1)k+1 i=1



where 8; = XiF . _,\,.,, 8/ /k and My = akd.

2.2.4 Assessing convergence. Available convergence results (Section 2.3) do
not offer any help in developing a suitable method of assessing convergence.
Therefore in the applications in Section 4 we followed a naive approach. We
plotted the trajectories of 8™ and 8 and considered the chains as satis-
factory converged if these paths oscillated without any obvious trend within
reasonable bounds around the estimated posterior mean (”reasonable” for the
number of averaged terms). Clearly a more rigid and automated method
would be desirable, but when combined with conservative judgement this sim-
pleminded approach seems to work satisfactory in the examples we worked
with.

The same problem, i.e. the lack of a formal, automated method to decide
termination of the iteration process, occurs with the implementation of the
Gibbs sampling scheme (see Section 3.1). Gelfand, Hills, Racine-Poon and
Smith (1990) comment on this and suggest a heuristic approach similar to the
one outlined above.

2.2.5 Posterior Inference. Assume the chains are considered to have sat-
isfactory converged after M, iterations. Let J = [ f(68)dp(6|z) be one of the

requested posterior integrals. Then J is estimated by
k
F0)0) = 3~ F(a) o+, @
J=1

where f(6)™ =" f (e,f’”)) /n is the sample average at iteration m over all n
parallel chains and k is the number of d-batches after the initial M, iterations,
ie. My = Mo+ kd.

After M; iterations, increase the number of parallel chains to n, and go



through an additional My — M iterations to accumulate an approximate pos-

terior sample:
X = {6 i=1,.. nyj=1,... k}, (5)

where k; is the number of additional d-batches, i.e. My — M; = kod. The
(approximate) posterior sample X is used to estimate densities and quantiles
of marginal posterior densities.

2.2.6 Software. The applications reported in Sections 4 were estimated with
an implementation of the algorithms as functions in new S (Becker, Chambers
and Wilks 1988). We used XLISP-STAT (Tierney 1990) to find the posterior
mode 8 and a numerical estimate of the Hessian, evaluated at 8. The negative

inverse of the estimated Hessian was used as initial 3.

2.3 Convergence

Let p{™ denote the probability density function of the sample after m iter-
ations of Algorithm 1 and let p(8) = p(6|z) be the true posterior. To show
convergence of Algorithm 1 we use a proof paralleling the argument which
Diebolt and Robert (1990, Appendix A) use to show convergence of the Gibbs

sampler. Let © = support(p) be the parameter space.

Theorem 1 If the candidate generating function g is such that 9(8,y) > 0 for

all 8,y € O, then ||p™ — p|| — 0, where || - || denotes L norm.

PROOF. see Appendix.

The following ergodic theorem can be shown:



Corollary 2 If f is integrable with respect to p, i.e. [|f(8)|dp(8) < oo, then

1 M
3 2 F67) 5 By(f), - 0

PROOF. see Appendix.

3 Application to the Gibbs Sampler

In the following let p(8}z) and p(z|8) denote the posterior p.d.f. and the likeli-
hood function. Alsofor @ = (64,...6;) € R, let p(6;]04,...,0i-1,0i41,...,0s,2)
and p(6;|z) denote the conditional respectively marginal posterior p.d.f. for
0;. Assume all involved densities exist with respect to Lebesgue or counting

measure.

3.1 The Gibbs Sampling Scheme

The Gibbs sampling scheme is useful for problems where the conditional dis-
tributions p(8:]0y,...,0;_1, 0i41,...,0s,%), ¢ = 1,...n, are ”available” for
sampling, meaning that efficient random variate generation from these dis-
tributions is possible. A sample from the multivariate posterior p(6|z) is
generated by iterative sampling from the univariate conditional distributions
p(0:il01,...,0i1, 0i44,...,0,,2), i = 1,...n. Starting with an arbitrary initial
sample 6(0) = (9&0) y. .. 0, the m-th iteration step of the Gibbs sampler can
be written as follows:

ALGORITHM 2: GIBBS SAMPLER.

Assume 6(™1) is given. Generate 6(™) = (0{’”), ... by subsequently, for



¢t =1,...s, generating from the one-dimensional conditionals:
az(m) ~ p(ailegm)a s az(Tl)a 01(-7:1_1)7 R agm—l)a :12)

Geman and Geman (1984) originally introduced the Gibbs sampling scheme
in the context of image reconstruction. See, e.g., Tanner and Wong (1987) and
Gelfand and Smith (1990) for further discussion of the Gibbs sampler. Diebold
and Robert (1990, appendix A) give convergence results for the Gibbs sampler.

3.2 An Accelerated Gibbs Sampler

The applicability of the Gibbs sampler is restricted by the need to sample
from the conditional distributions. Removing this restrictions would achieve
two goals: First, it would make the Gibbs sampler available also for problems
without this conjugate structure. And secondly, it would allow to orthogo-
nalize the parametrization. The motivation for the orthogonalization is that
in the ideal case of independence the Gibbs sampler would produce a true
posterior sample after only one additional iteration.

This generalization of the Gibbs sampler becomes possible when using Al-
gorithm 1 to generate from the one dimensional conditionals required in the
Gibbs sampling scheme. Together with asymptotic normality of posterior dis-
tributions this motivates the following algorithm, which reparametrizes using a
current estimate of the posterior covariance matrix. Algorithm 3 describes the
generic step of the modified algorithm. In the description of the algorithm, let
Pn(n) = p(Kn) - | K| denote the posterior p.d.f. in terms of the reparametriza-
tion n = K~'9. The updating of 3, the choice of g; and other implementation

details are discussed in Section 3.3.
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ALGORITHM 3: ACCELERATED GIBBS SAMPLER.
Let £ = KK’ be a current estimate of the posterior covariance matrix. Let
n(™ = K-16(™  Generate n(m+1) = (n£m+1), ...n{m+)Y by subsequently, for

t=1,...s, generating form the one-dimensional conditionals:

o™~ (™, T 0, ™, ).
Generate n,(m'H) by running Algorithm 1 over T iterations, using zq := n,(m) as
starting point and setting p(-) = p,,(n,-|17{m+1), TI¢(T1+1)J7§T1), c.n{™, z):

e Generate y ~ g,-(yl:v(o)).

o With probability a(z®,y) = min(1,p(y)/p(z®)), accept y as the new

state, i.e. z(1) := y, otherwise z() := z(©),

Repeat the last two steps T times to generate z(?),...2() and take ngm“) =

2™ as approximate generation from p(.).

Running Algorithm 3 with an initial sample {650), ...60} in parallel generates
after sufficiently many iterations an approximate posterior sample. See Section
3.3 for implementation details.

Example 2 in Section 4 illustrates how the orthogonalization improves con-
vergence in the Gibbs sampling scheme, by comparing sample mean trajecto-
ries with and without orthogonalization. Since the Gibbs sampler needs only
one random variable from each of the distinct conditional distributions, the
orthogonalization is only possible when using some generic scheme without
setup time to generate from the one dimensional conditionals. The use of con-
ventional schemes, such as ratio of uniforms or accept/reject, is impractical

because of the required time to build envelope functions etc. The application
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of Algorithm 1 in the above algorithm requires zero setup time. When gener-

ating n,f’”“) ~ p,,(n,-[n{mﬂ), e ,nngﬂ), ng_nl), ... n{™ ) the initial point (%
is taken to be the — already available — previous sample point nz(m). Because
of the orthogonalization the density pn(ni]ngmﬂ), ceey mginlﬂ), 77i(r1)7 oo™ )
is similar to p,,(mlnfm),...,nﬂ), n}fl_l), oo ™1 2), making 7™ a good

starting point.

Algorithm 3 can be seen as just introducing a slightly different candidate
generating density in the basic Algorithm 1. Instead of generating at each
step from the same multivariate conditional distribution g(y|6(™), Algorithm
3 changes only one co-ordinate at each step, using g;(y|6(™)), iterating over
all coordinates in subsequent steps. The convergence results from Section 2.3
therefore apply with only minor modifications also for Algorithm 3.

In many cases the joint posterior can be adequately approximated by a
multivariate envelope density such as a multivariate split Student t density
(see Geweke 1989). For such problems an alternative implementation of a
generalized Gibbs sampler, which does not require a conjugate structure, was
given by Carlin and Gelfand (1990). They suggested the use of a multidi-
mensional envelope density to derive good envelope densities for the complete

conditional densities.

3.3 Implementation

For Example 2 we implemented Algorithm 3 with initialization, updating of
5, convergence assessment and posterior inference as specified in Section 2.2.
In particular, the remarks on the lack of a rigid automated method for the

assessment of convergence apply equally for the Gibbs sampling scheme. The
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control parameters n,d, Mg, a,ny and T were chosen as n =10, d =1, My =
40, a = 2, ny = 100 and 7" = 10. Notice that compared with Algorithm 1
the Gibbs sampling scheme includes an additional level of iterations over all
coordinates. Therefore the parameters d and M, are chosen smaller than in
Section 2.2.

Choice of the candidate generating distributions. As candidate generating
densities g;(y|z) we chose g;(y|z) = ¢i(y — ) ~ N(0,¢;). Initially (and after
each update of 2) all ¢; are set to ¢; = 1. Whenever the average over the
10 most recently observed acceptance probabilities for parameter 7; is greater
than 0.8 then ¢; is increased by a factor 1.2. If the average is less than 0.2

then ¢; is decreased by a factor 0.7.

4 Examples

Example 1: Hierarchical Event Rate Model.

Carlin and Gelfand (1990) considered a hierarchical event rate model with a
Poisson likelihood Y; ~ Poisson(\;t;), where Y; is the number of occurrences
over an exposure time of length ¢;,2 = 1,...n. A conjugate prior choice would
be to assume \; ~ Gamma(a, 8), with 8 ~ Inverse Gamma(c, d) and known
a. As alternative to this prior Carlin and Gelfand considered a logstudent-t
prior. Let ¢; := log();) and assume ¢; ~ t,(n, o), with second stage prior  ~
N(p,7%) and o* ~ Inverse Gamma(a, b), where the hyperparameters u, 7% a
and b and the degrees of freedom of the student-t distribution w are assumed
known. The fatter tails of the logstudent-t prior make the model more robust

than the exponential tails of a gamma distribution.
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Table 1: Pump Failures data set.

Y ) 1 5 14 )
t; 94.320 15.72 62.880 125.760 5.240

Y, 19 1 1 4 22
- t; 31440 1.048 1.048 2.096 10.480

Source: Gaver and O’Muircheartaigh (1987).

The data set in Table 1 concerns the number Y; of pump failures over given
exposure times ¢;. Carlin and Gelfand (1990) analyzed this data set using the
hyperparameters 4 = —1, 72 = 1 for the prior on 7 and a = 2.01 and b = .99
for o2, corresponding to a prior mean of 1 and variance of 100 on o2. They
use three different specifications for the d.f. w. We will use here only w = 5.

We estimated the model using Algorithm 1. Figure 1 shows the trajectories
of the sample means 8™ and 8(™) where 6 is the parameter vector 8 =
(€1,...€10,7,0)". The averages are defined as in (2) and (3) of Section 2.2. As
discussed in Section 2.2 no formal method is available to assess convergence.
We decided to stop after M; = 2000 iterations, since the trajectories of §(™)
are leveling off after around 1500 iterations and the paths of 8™ oscillate
within reasonable bounds of the estimated posterior mean ("reasonable” for
a sample mean of n = 10 chains). Over an additional M, = 30 iterations
an approximate posterior sample X = {¢; = (€16, .- €104, Ms,03) s =1,. .. N}
was accumulated to estimate the marginal posteriors p(e|data), p(es|data)
and p(eio|data). Rather than using {e1,4 = 1,... N} directly we made use of

the available structural information and estimated p(e1]|data) by the following
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Figure 1: Trajectory of the sample means. Only €3, €5 and €30 are plotted. The

vertical scale is in posterior deviations from the posterior mean.
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Figure 2: Trajectory of 8™, started at the prior mean §*. The vertical scale is
in posterior deviations from the posterior mean. The first 100 iterations move

the Monte Carlo sample towards the mass of the posterior.
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Figure 3: Marginal posterior densities p(e;|z), p(es|z) and p(eso|z). The dotted

lines plot for reference the density estimate given in Carlin and Gelfand ( 1990).
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Monte Carlo estimate:

1 N
#e1]data) = N >~ pledleas, - - - €104, M, 0, data). (6)
t=1

The conditional distributions p(ej|es, .. .04, data) can easily be evaluated,
since — up to an integration constant — they are the joint posterior as a function
of p when the other parameters are held fixed at €;, ...0;. Computing the in-
tegration constants involves NV one dimensional integrations, which, however,
do not require any additional computational effort, since the conditional dis-
tributions have to anyway be evaluated at the grid points for the density plot.
Figure 3 shows the estimated marginal posteriors together with the density
estimates given in Carlin and Gelfand (1990). The sample size N used for
the density estimation was determined by the pragmatic aim of producing a
?smooth” density plot. In this application N = 300 was used.

To explore the robustness of Algorithm 1 with respect to the initial sample
we repeated the analysis pretending that the posterior mode and covariance
matrix were unknown. We initialized the algorithm with a normal sample
around the prior expectation fi = —1, 62 = 1 and & = —1. In the absence
of any better guess we used the identity matrix as covariance matrix 3 for
the initial sample. The first few iterations of Algorithm 1 worked as stochas-
tic optimization scheme and shifted the sample points towards the mass of
the posterior distribution. This is shown in Figure 2, which plots 8(™ for
m = 1,...1000, where 8(™) = o Ggm)/n is the sample average over all n
parallel chains at iteration m. The vertical scale is in posterior standard devi-
ations from the posterior mean. After around only 100 iterations the sample

averages 8™ have moved towards the posterior mean. a
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Example 2: A Yield-Density Model.

Define X to be the number of plants per unit area and Y to be the yield per
plant. To model the relationship between yield and planting density Holliday
(1960) proposed the model ¥; = (a + X + vX?)™! + ¢;, where ¢; ~ N(0,0?).
A noninformative prior 7(e, 3,7,0) x 1/o completes the model. If v = 0,
then a = limx_,0Y has a biological interpretation as ”genetic potential” and
1/8 = limx_.. XY can be considered a measure of ”environmental poten-
tial”. As an illustration of Algorithm 3 we analyzed this model with a data
set taken from Ratkowsky (1983, p. 58, MG data set). The data set con-
sists of 42 observations on yield and planting density from an onion spacing
trial in southern Australia. Posterior mode & and negative inverse Hessian £,
evaluated at 8, provide a reasonable initialization for Algorithm 3. Figure 4a
shows the trajectory of (™ = Y7, p,(m) /n, i.e. the sample means over the
n parallel chains at iteration m. The vertical scale is in terms of posterior
standard deviations from the posterior mean. The solid line shows the tra-
jectory using reparametrization (after the first 20 and 40 iterations, using the
estimates updated as described in Section 4.3.2). The dotted line shows the
trajectory when running the Gibbs sampler without reparametrization (with
common random numbers). It can be clearly seen how the reparametriza-
tion reduced serial correlation. The effect is seen even stronger in Figure 4b
which plots the same trajectories with the chains started with a sample around
6* = (0.01,0,0,0.12)', where &* = 0.01 and &* = 0.12 are sample mean and
sample variance of the %,—’s. The process 5™ from the reparametrized Gibbs
sampler is practically converged after only around 25 iterations, whereas for

the simple Gibbs sampler they are still drifting even after 100 iterations.
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Figure 4: Trajectory for (™), (A3) — with reparametrization, (A2) — without

reparametrization. Vertical scale is in posterior S.D. from the posterior mean.
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Figure 5: Marginal posteriors p(8(10%)|z) and p(v(10%)|z).

As remarked in Section 3.3 no formal method of judging satisfactory conver-
gence is available. Following the informal procedure outlined in Section 2.2 we
stopped iteration after M; = 100 iterations. A sample X = {6;,i = 1,...N}
of size N = 3000 was accumulated to be used for density estimation. The
procedure outlined in Example 1 (6) is impractical here since the conditional
distributions are very sharp due to high correlations between the parameters.
The density estimates shown in Figure 5 are obtained by conventional kernel
density estimates from the posterior sample X (B and v are rescaled by 103
and 10° respectively).

The estimated posterior means E(alz) = .0045, E(8|z) = .08 - 10-3,
E(y|z) = .20-107° and E(0?|z) = .012 confirm the LS estimates reported by
Ratkowsky: & =.004524, 8 = .08113 - 1073, 4 = .1976 - 10~® and &2 = .01231.
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5 Comparison with importance sampling

As an indication of how the method compares with conventional schemes we
estimated the examples from Section 4 and three more examples which we
worked with also by Monte Carlo integration with importance sampling. See
Geweke (1989) for a complete discussion of importance sampling. Following a
suggestion of Geweke (1989) we chose as importance sampling densities mul-
tivariate split Student densities t*(8, %, q,, ), where 8 is the posterior mode
and ¥ is the negative inverse Hessian evaluated at 8. The split scaling param-
eters » and g were derived by the algorithm given in Geweke (1989). The d.f.
v are problem specific.

Let p(8) denote the posterior density p(8|z). Assume 8 is an s-dimensional
parameter vector 8 = (04,...60,) with posterior expectations E,0;. Let 55\;?]
denote the estimator for E,6; derived by Algorithm 1 and let HA%)J be the
importance sampling estimator for E,0;, where the superscript n refers to the
number of posterior evaluations. Denote the variances of these two estimators
by: T?é")J = var(é%),j) = E(OA%)J — E,0;)? and Ti}"i = var(é}(,}?j) R~ E(OAJ((,})] -
E,0;)? (For sufficiently large n, when the chain is "practically” converged,
EHAEC})J ~ E,0;). The variances Tf,f(n)J and Tfé")J are expectations with respect to
the random variables generated in the estimation schemes and will be referred
to as numerical variances to distinguish them from the posterior variances.

It is relatively easy to estimate the numerical variances leén)J by statistics
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%fé")J, given in Geweke (1989), which can be computed while running the

importance sampling algorithm. Estimation of the T;,I(n)J is unfortunately not
as straightforward. We estimated them by five independent repetitions of
Algorithm 1 for each example.

Since in both algorithms, Algorithm 1 as well as importance sampling,
most computer time is spent on evaluating the posterior density at the sam-
pled points, the number of posterior evaluations is useful to compare the algo-
rithms. Table 2 lists for each example Njs and Nyg, where Nys is the number of
posterior evaluations required for Algorithm 1, and Nyg is the minimum num-
ber n of posterior evaluations required to obtain 7"1(2-) ; < 7"19” "J‘-), fory=1,...s.
The hierarchical event rate model and the yield-density model were analyzed
in Examples 1 and 2 in Section 4. The exponential regression model was
found in Berger and Ye (1991). The ARCH linear model example is discussed
in Geweke (1989). The multiplicative row and column (RC) effects model
was taken from Agresti and Chuang (1986). The last three models are only
used here to give some indication of the computational effort involved in using
Algorithm 1 respectively Algorithm 3. See the cited references for detailed
descriptions of the models. The yield-density model and the row and column
effects model were estimated using the Metropolis algorithm embedded in the
Gibbs sampling scheme (Algorithm 3).

In the exponential regression model the standard importance sampling al-
gorithm as outlined above failed to provide reasonable estimates within the
first 30,000 drawings from the importance sampling density. The estimated

posterior standard deviations after 30,000 drawings were still too small by a

factor five (by comparison with an "exact” solution by conventional numerical
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Table 2: Number of posterior evaluations for Algorithm 1 (Nas) and impor-

tance sampling (Nys).

Ny Nis

Algorithm 1
Hierachical Event Rate Model 20,000 > 20,000

Exponential Regression 30,000 NA

ARCH Linear Model 10,000 3,000
Algorithm 3

Yield-Density Model 40,000 3,000

Multiplicative RC Model 75,000 71,000

integration). The main reason probably was that the negative inverse Hes-
sian, which was used as scale matrix ¥ for the importance sampling density,
underestimates the posterior standard deviations by up to a factor five. (Fur-
ther sampling from the importance sampling density should eventually hit at
sample points with extreme importance sampling weights, which should then

cause the algorithm to revise the estimates).

Appendix: Proof of Theorem 1

The argument parallels the proof which Diebold and Robert (1990) give for the
convergence of the Gibbs sampling scheme. Only the transition probabilities
here are determined by Algorithm 1, rather than the Gibbs sampler.

Notice that {6(™),m > 1} is a Markov chain on (®, B), where B are the
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Borel sets in ©, with transition probabilities given by the kernel T'(9, A) :=
a(6)14(6) + f, a(6,4)9(6,4)dy, where ¢(6) = (1 — [ a(0, v)(6,y)dy).

Define an m-step transition probability by T™(e, A) = [T'(¢', A)T™ (e, dd').
Given a o-finite measure v, a kernel T'(6, A) is called v-irreducible if, for all
A € B such that v(A) > 0 and all € O, there exists an integer m such that
T™(8,A) > 0.

Lemma 3 Let p be defined by p(A) = [, p(6)d6. The kernel T'(8,A) is u-

srreducible.

Proor. T(8,A)> [,a(8,y)g9(6,y)dy > 0. 0
Associated with a transition probability T'(6, A) is a potential kernel G(9, A),
defined as G(6, A) = 3222, T™(8, A). The kernel is said to be proper if © can
be written as the union of an increasing sequence of @, sets in B such that
the functions G(., ©,) are uniformly bounded for each n.

A Markov chain is said to be recurrent in the sense of Harris if there exists

a positive, o-finite measure A, such that A is invariant with respect to T, i.e.

JT(6,A)\(d8) = A(A), and such that A\(C) > 0 implies
Py [6™ visits C i.0.] = 1.

Lemma 4 The Markov chain defined by the transition probabilities T(A,9) is

Harris recurrent with the posterior measure i as invariant measure.

PROOF. The invariance of the posterior measure y, defined by p(A) =
Jap(£)d(£), is easily shown by substituting into the definition of T(8,A). By
Theorems 2.3. and 2.5. from Revuz (1984), chapter 3, we have then only

left to show that G(8, A) is not proper. Assume O, is increasing to ©. Since
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©(©) = 1, there exists some integer N, such that x(0,) > 0 for all n > N and
hence [ G(6,0,)u(d8) = [YXr_, T™(0,0,)u(de) = Tr°_, u(©r) = oo, which
implies that G(.,0,) cannot be bounded, i.e. the potential kernel G(8, A) is
not proper. O
Theorem 1 becomes now a corollary of Proposition 2.5. in Revuz (1984),
chapter 6.

Having shown in the previous proof that {6(™,m > 1} is a Harris chain,
Corollary 2 becomes a consequence of an ergodic theorem for Harris chains:

Theorem 4.3., Revuz (1984), chapter 4.
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