A CIRCULAR BLOCK-RESAMPLING PROCEDURE

FOR STATIONARY DATA
by
Dimitris N. Politis and Joseph P. Romano
Department of Statistics Department of Statistics
Purdue University Stanford University
West Lafayette, IN 47907-1399 Stanford, CA 94305

Technical Re;;ort # 91-07

Department of Statistics
Purdue University

February, 1991



A CIRCULAR BLOCK-RESAMPLING PROCEDURE

FOR STATIONARY DATA
by
Dimitris N. Politis and Joseph P. Romano
Department of Statistics Department of Statistics
Purdue University Stanford University
West Lafayette, IN 47907-1399 Stanford, CA 94305
ABSTRACT

A block-resampling bootstrap for the sample mean of weakly dependent stationary
observations has been recently introduced by Kiinsch (1989) and independently by Liu and
Singh (1988). In Lahiri (1990) it was shown that the bootstrap estimate of sampling dis-
tribution is more accurate than the normal approximation, provided it is centered around
the bootstrap mean, and not around the sample mean as customary. In this report, we
introduce a variant of this block-resampling bootstrap that amounts to ‘wrapping’ the data
around in a circle before blocking them. This ‘circular’ block-resampling bootstrap, has
the additional advantage to be automatically centered around the sample mean. The con-
sistency and asymptotic accuracy of the proposed method are demonstrated in comparison
with the corresponding results for the block-resampling bootstrap.
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1. Introduction

Suppose X1,..., XN are observations from the (strictly) stationary multivariate sequence
{X,,n € Z}, and the statistic of interest is the sample mean Xy = N~1 X, X;. The sequence
{X,,n € Z} is assumed to have a weak dependence structure. Specifically, the a-mixing (also
called strong mixing) condition will be assumed, i.e. that ax(k) — 0, as k¥ — oo, where
ax(k) =supy g |P(AN B)— P(A)P(B)|, and A € F2,, B € F° are events in the o-algebras
generated by {X,,n < 0} and {X,,n > k} respectively.

The objective is to set confidence intervals for p = E X, for which an approximation to
the sampling distribution of Xy is required. For this reason, a block-resampling bootstrap
procedure has been introduced by Kiinsch (1989) and independently by Liu and Singh (1988).

This method can be described as follows:

e Define B; to be the block of b consecutive observations starting from X;, that is B; =
(Xiy.-.y Xiyp—1), wherei=1,...,gand ¢ = N — b+ 1. Sampling with replacement from
the set {Bi,...,B,}, defines a (conditional on the original data) probability measure
P*. If k is an integer such that kb ~ N, then letting &,...,& be drawn i.i.d. from
P*, it is seen that each &; is a block of b observations (& 1,...,&p). If all [ = kb of
the & ;’s are concatenated in one long vector denoted by Yi,...,Y;, then the block-
resampling bootstrap estimate of the variance of /N Xy is the variance of v/I¥; under
P*, and the bootstrap estimate of P{v/N(Xy — p) < z} is P*{VI(¥; — Xn) < z}, where
Y = %25‘=1 Y.

It is obvious that taking b = 1 makes the block-resampling bootstrap coincide with the
classical (i.i.d.) bootstrap of Efron(1979) which has well-known optimality properties (cf.
Singh(1981)). It can be shown (cf. Lahiri(1990)) that a slightly modified bootstrap estimate
of sampling distribution turns out to be more accurate than the normal approximation, under
some regularity conditions, resulting to more accurate confidence intervals for 4. The modifi-
cation amounts to approximating the quantiles of P{v/N(Xy — u) < z} by the corresponding
quantiles of P*{I(Y; — E*¥}) < z}, where E*Y; denotes the expected value of ¥; under the
P* probability (conditional on the original data). The need for re-centering the bootstrap dis-



tribution so as to have mean zero can also be traced back to Kiinsch’s (1989) short calculation
of the skewness of his block-resampling bootstrap.

The reason that the re-centered bootstrap provides a more accurate approximation is that
EY =q¢1%0 b1 Z;‘Lﬁ-_l X; = Xn + On(b/N), where, for consistency of the bootstrap in
the dependent data setting, b — oo as N — oo. In other words, the distribution of ¥} gnder P*
possesses a random bias of significant order. This bias is associated with the block-resampling
bootstrap that assigns reduced weight to X;’s with ¢ < bor ¢ > N —b+ 1. In other words, if we
let P be the limit (almost sure in P*) of the proportion /= (number of the Y;’s that equal X;)
as [ — oo, (and assuming no ties among the X;’s), although P} = b/R, with R = b(N — b+ 1),
for any 4 such that b < ¢ < N — b+ 1, this proportion drops to P* = i/R, for any ¢ < b, and
P*=(N-i+1)/R,forany ¢ > N —b+1.



2. A circular block-resampling bootstrap

A simple and ‘automatic’ way to have an unbiased bootstrap distribution is to ‘wrap’ the
X;’s around in a ‘circle’, that is, to define (for i > N) X; = X;,, where iy = i(modN), and
Xo = Xn. This idea is closely associated with the definition of the circular autocovariance se-
quence of time series models. The ‘circular’ block-resampling bootstrap amounts to resampling

whole ‘arcs’ of the circularly defined observations, and goes as follows.

e Define the blocks B; as previously, that is, B; = (X, ..., Xisp-1), but note that now for
any integer b, there are N such B;, j = 1,..., N. Sampling with replacement from the set
{Bi,...,Bn}, defines a (conditional on the original data) probability measure P*. If k is
an integer such that kb ~ N, then letting &1, ..., &, be drawn i.i.d. from P*, it is seen that
each ¢; is a block of b observations (i 1,...,& ). If all I = kb of the ; ;’s are concatenated
in one long vector denoted by Yi,...,Y], then the ‘circular’ block-resampling bootstrap
estimate of the variance of VN X ~ is the variance of \/Z}_’z under P*, and the ‘circular’
block-resampling bootstrap estimate of P{v/N(Xn — p) < z} is P*{V/I(¥V; - Xn) < 2},
where ¥ = } Y, Y.

The ‘circular’ construction is an integral part of a related resampling method in which blocks
of random size are resampled (cf. Politis and Romano (1991)). It can also be immediately
applied to bootstrapping general linear and nonlinear statistics, as in Kiinsch (1989), Liu and
Singh (1988), and Politis and Romano (1989). Kiinsch’s proposal of ‘tapering’ the observations
in the B; blocks can also be incorporated in the ‘circular’ construction without changing the
first-order asymptotic results.

The following two theorems concern the consistency and asymptotic accuracy of the ‘circu-
lar’ block-resampling bootstrap. The theorems are stated for univariate sequences {X,,n € Z},

although their extension to multivariate settings is straightforward.

Theorem 1 Assume that E|X;|%+° < oo, for some § > 0, and 332, kz(ax(k))a‘% < 0. As
N — oo, let I/N — 1, and let b — oo, but with bN~! — 0. Then 0% = Var(VNXy) has a
finite limit 02, and Var*(v/1¥}) =il o2, where Var*(/IY}) is the variance of \/I¥; under P*



conditional probability, as well as
sup |[P*{(VI(Yi — Xn) < o} — P{VN (X — ) S 3} = 0 (1)
T
for almost all sample sequences Xy,...,XN.

Proof. The proof of Theorem 1 is immediate in view of the proof of the consistency
of the block-resampling bootstrap of Kiinsch(1989). If we let E*, E*,Var*,Var*, represent
expectation and variance under the P* and P* probabilities, then it is easily calculated that

E*Y; = Xu, and that

i4-b—1
Var* (V1Y) = Z(b— E X;— Xn)?
N—b+1 i+b—1 i+b—1
{Z 67t 3 Xi- Xn)? 4+ Z 6! Y Xi— Xn)?} = Var*(VIX) + 0,(b/N)
i=1 j=t i=N-b+2 j=t

where it was used that E*Y; = Xy + Op(b/N), and

_ b N-b+1 i+b-1 _
Var(Vi¥) = g7 2 07 X Xi-E%)’
=1 j=t
b N-b+1 i+b—1 _
i=1 j=t

Since Var*(v1¥;) = 02, it is seen that the first two moments of v/1¥; under the P* probability
are asymptotically correct.

Finally, the moment and mixing conditions assumed are sufficient (cf. Hall and Heyde(1980))
to imply that v N(Xy — p) is asymptotically normal N(0,02%). Noting that vI(¥; — Xn) is
also asymptotically normal (conditionally on the data Xj,...,Xn), the proof is concluded. O

It is noteworthy that to make the bias of the block-resampling bootstrap distribution to be
of smaller order than its standard deviation, Kiinsch (1989) imposed the additional condition

bN~1/2 - 0 which is unnecessarily strong in our setting.

Theorem 2 Assuming that the sequence {X,,n € Z} is defined on the probability space
(Q, A, P), denote Dy,n € Z, a sequence of sub o-fields of A, and Dy the o-field generated

by Dryy--.sDny. Also assume that E|X 8% < oo, for some 6§ > 0, and, as N — oo, let



I[/N — 1, and b — oo, but with bN -1/3 0. Under the following regularity conditions:

(ao) ax(k) decreases geometrically fast;

(a1) 3d > 0 such that for all k,n € N, with n > 1/d, there ezists a DE™ measurable random
variable Zy,y,, for which E| Xy — Zkn| < dle~%, and E|Zkn, |"2I(| Zim, | < k1/4) < d~1, where
ni is a sequence of real numbers satisfying logk = o(ny) and ng = O(log k)l"'d—l, as k — oo;

(ag) 3d > 0 such that for all k,n € N, with k >n >1/d, and all t > d,
ElE(ejt(Xk—n+Xk—n+1+---+Xk+n)I’l)i,Z' # k)| < e—?

where j is used to denote the imaginary unit v/—1;
(a3) 3d > 0 such that for all k,n1,n2 € N, and A € Dtz

E|P(A|Dsyi # n1) — P(A|D;,0 < |ny —i| < k+ng)| < d™te™;
the following is true (provided of course that o2, > 0),

<z}- P{\/_XN E <2} = 0,(N71/2) (2)

su |P*{\/-—-————
P \/Var*(x/-Yz Too

Proof. As the proof of Theorem 1 relied on comparing the first two moments of Vi Yi-Xn)
under P* with the corresponding ones under P*, the proof of Theorem 2 follows by looking at
the third order moment. Specifically, under the regularity conditions we have assumed, first

< _AL.E
\/V_-r*(71—7— z} and for P{\/_ < z} are valid (cf.

Lahiri(1990) where an extensive discussion relative to these regularity conditions can be found).

order Edgeworth expansions for P*{\/-

Furthermore, equation (2) would be true, provided b? E*(Uy — Xn)® — N2E(Xn — p)® = 0p(1),
where UF = b1 ZIJ’-___l £1,5, and the &1,...,& 4 are the elements of the first block-resample
drawn from P*.

However, in Lahiri(1990) it was shown that 2E*(Uy — E*U{)® — N2E(Xn — p)® = 0p(1),
where Uy = b1 2;’-=1 &, and the &,1,...,&1 are the elements of the first block-resample

drawn from P*. Finally, it is easily seen that

i+b—1

EXUFf-X )3——2(1;— Z X; - Xn)®

N b1 i+b—1 i+b—1

Z (b1 ZX XN)3+ Z (b1 ZX —XN)%} = EXNU; - E*UT)+0,(b/N)

=N-b42



where it was used that E*U; = Xy + O,(b/N), and

1 N—-b+1 i+b—1 B
EX(Ur - E*U)® = Yoo Yo 0t > Xi- E'T)°
i=1 Jj=t

1 Nib:+l ; i-}i—l .
= (6™ Xi— XN)° + Op(b/N)
N-b +1 =1

j=i

Hence, EX(U} — Xn)2 — E*(Uy — E*Uy)? = O,(b/N) = 0,(b~2), and the proof is concluded.O
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