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Foreword

I precisely remember the day when, almost six years ago, I attended my first seminar
in the United States. It was a seminar on the Likelihood Principle taught by Morris
DeGroot out of Berger and Wolpert’s monograph (Berger and Wolpert 1984; 2nd edition
in 1988). This was the starting point of many lengthy and stimulating discussions on the
subject. One recurring theme of these discussions was the rather amazing fact that, in
spite of its widespread use in statistics, no general rigorous definition of the likelihood
function seemed to ever have been given. We eventually concluded that such a definition
could not be given, and that for any attempt to do so, examples could be found where the
definition would work poorly or produce contradictions. These ideas were summarized in
the paper Bayarri, DeGroot and Kadane (1988). Along the way, our work was enriched
with fruitful and interesting conversations with James Berger and Robert Wolpert and we
were invited to contribute to the discussion of the second edition of their monograph on
the Likelihood Principle (Bayarri and DeGroot, 1988). Some few months later, Morris
DeGroot was diagnosed with lung cancer and we sadly lost him on November 1989. This

paper is intended as a unified review of our joint work on the subject.

1. Introduction

As with many other important statistical concepts, that of the likelihood function
was introduced by Fisher (1921) and it was to play a decisive role in many approaches to
Statistics, particularly the so-called “Likelihood Approach”. This approach attempts to
base inferences solely on an objective likelihood function and has given rise to a wide variety
of so-called likelihood functions, developed to hopefully cope with an equally large variety

of inferential aims. To mention just a few, and letting LF' stand for likelihood function,
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some of the different LF’s that can be found in the statistical literature are: relative
LF, marginal LF, conditional LF', partial LF', integrated LF, profile or concentrated LF,
section LF, canonical LF, second order LF', several definitions of a predictive LF', several
definitions also of a pseudo LF' and, of course, various combinations of the above concepts.

(See Bayarri, DeGroot and Kadane, 1988; and Berger and Wolpert, 1988, for references.)

At this point it should be clarified that we will not try to develop a brand new definition
of a likelihood function to be added to this long list. As a matter of fact, we argue that
there is not such a thing as “a” likelihood function that can be unambiguously defined in
all statistical problems. Thus we will try to point out deficiencies of a “pure” likelihood
approach to inference by pointing out some of the difficulties and ambiguities encountered
when trying to define what a LF' is. We will see that considerable subjectivity must be

used in order to choose and efliciently use an “objective” LF.

In the next section we present some natural ways to define a LF and show, in a
series of examples, that they can be badly inadequate. Pushing the situation to the limit
leads to the conclusion that the only possible definition of a general LF would make it
completely subjective: this is, of course, the Bayesian point of view. Does this render
the Likelihood Principle inapplicable? In a sense, the answer to this question is “no”
but only as long as we recognize that “same evidence in the data” does not mean “same
inferences or decisions”, so that we explicitly recognize that in many statistical problems,
more complicated functions involving other factors apart from the LF may be needed in
order to make inferences about quantities of interest. In this setting, a simple LF can, if
it is desired, be defined so as to convey all the information in the data. We present such

a LF in the final section of the paper.

2. Observables, Unobservables and Likelihoods

By now the reader may be wondering what is wrong with the usual and familiar
definition of a likelihood function as being proportional to f(xz|@), considered as a function
of 0 for a given . We shall argue that there is not a unique way of deciding what should be
regarded as z and what should be regarded as 8. Different elections will result in different
LF’s and presumably in different inferences (unless a Bayesian analysis is carried out)

and no election works well in every problem. The most popular choices seem to be the
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following;:

¢

i) To take z to contain all the “random variables” in the experiment and to take 8 to

contain all the “fixed” parameters. This LF' will be denoted by LF,, so that

LF,, x f(random variables|parameters). (2.1)

ii) To take = to contain all the observed quantities in the given experiment and to take

# to contain unobserved quantities. We shall use the notation LF;,; to denote this
definition of a LF'. Thus

LF,ps x f(observed|unobserved). (2.2)

Through a series of examples we shall show that none of these definitions is suitable as
a general definition for a LF since both of them can result in inadequacies when dealing
with particular problems. Other “natural” ways of defining a LF' in particular examples
will also be explored. They will be seen to also be inappropriate in some problems, while
in other problems they seem to provide a very sensible LF that nevertheless cannot be
accommodated in any general definition of a LF. The main difficulties arise, of course,
in statistical problems in which additional variables are (or can be) incorporated into the
basic analysis (as is the case in prediction problems), as well as in statistical problems in
which additional parameters are (or can be) present in the specification of the statistical
model (as is the case with nuisance parameters). But difficulties can also be present due
to the impossibility of distinguishing between “variables” and “parameters” and to the
impossibility of separating the “model” from the “prior”. The argument can be forced to
conclude that the only general definition of a LF' is a useless one that makes the prior

distribution the only carrier of all the information available (see Bayarri, DeGroot and
Kadane, 1988, section 7).

The difficulties in defining a LF in the presence of nuisance parameters have been con-
sidered in the statistical literature in a number of papers and several methods have been
proposed to deal with them, resulting in different likelihoods such as the marginal and con-

ditional likelihoods of Kalbfleisch and Sprott (1970, 1973) or the canonical likelihoods of
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Hinde and Aitkin (1987). To eliminate nuisance parameters, traditional approaches trans-
form the problem in terms of appropriate statistics in a way that the nuisance parameters
are no longer present in the new formulation; more direct approaches, based on the origi-
nal model either maximize over the nuisance parameter or integrate it out (if the nuisance
parameter happens to have a “distribution” as in random effects models, or if appropriate
“weight” functions can be produced). Although difficulties and ambiguities are obviously
present in this problem, in all of the approaches (except in the ones that integrate out
the nuisance parameter) the nature of the nuisance parameter is clearly stated as a fixed
(and therefore “given”) although unknown value. The ambiguities that we wish to put
forward are of a more subtle nature and we shall not discuss these problems any longer

in this section. For lengthy discussions and references see Berger and Wolpert (1988) and

Piccinato (1987).

For simplicity, we shall assume that all distributions that appear have density with
respect to some fixed o-finite measure and we shall use the symbol f to denote an arbi-
trary density without any attempt to distinguish among different densities by the use of
subscripts or different symbols. The nature of the difficulties we shall be dealing with are

clearly shown in the following statistical situation.

2.1 Observations Subject to Error

Consider a problem in which, for each value of some parameter 6, a random variable
Y has density f(y]f). Assume also that Y cannot itself be observed, but rather what we
get to observe is a random perturbation X of Y. That is, we assume that our observation

is a realization of the random variable X with conditional density f(z|y,8) = f(z|y).

What is the likelihood function in this problem? Several possibilities exist. First,
we must decide whether the unknown value y of Y should be included in the likelihood
function. We could argue that, since y cannot and will never be observed, it is more

appropriate not to include it in the definition of a LF' and thus define:
LFy x f(z|9). (2.3)
On the other hand, since the basic formulation of the problem is in terms of y, we
may think that it should enter the LF. (This would obviously be the case if we were
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interested also in y.) In this case, when deriving a LF', we must decide whether y should
be considered as a realization of a random variable and taken to be a component of the

vector in front of the vertical bar, resulting in a LF of the form:
LF,, x f(z,y|9), (2.4)

or alternatively, y may be considered as an unobserved, unknown quantity and thus taken

to be a component of the vector behind the vertical bar, resulting in a LF of the form:
LFobs 158 f(mly, 0) = f(zly) (25)

What LF should be used is not, in principle, clear, and a subjective judgement has
to be made to decide which one to use in a given problem. Since these likelihoods are
usually quite different, inferences based on them will differ. For simplicity, we will stress
these differences by comparing the different MLE’s obtained from the various LF’s under
consideration (this should not be taken as a defense of the MLE as an inferential procedure

on our part).

Suppose, for example, that the distribution of Y given 6 is exponential and that the

distribution of X given y is also exponential, that is:

f(y|6) = 6= for y >0, 6 >0, (2.6)
and

flzly) =ye ¥ for z > 0, y > 0. (2.7)

Then, the different likelihoods proposed above would be

LR x [ flela) {0y = sy

LF,, oy e ¥(6+2)

LF,p, xx ye™ Y7, (2.8)

In this example, LF, provides the MLE § = z, which can be a sensible estimator
for 6, but it is totally uninformative about the unknown value y of Y. LF,;s gives the

estimator § = 1/z, which might be regarded as a sensible estimator for y, but it is totally
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uninformative about § and completely loses the relationship between y and 6 reflected in
f(y|6). Finally, LF,, does contain in its formulation both y and 6, but yields the useless
MLE’s § = 0o and § = 0.

The Bayesian approach is based on the specification of the joint density f(z,y,6).
From there, all that has to be done is to condition on the observed value z and to integrate
out 8 or y or none if we are interested in making inferences about y or 8 or both, respectively.
It is thus completely irrelevant which of the possible factors that may be considered to form
the joint f(z,y,0) are taken to form a LF, and inferences will, in any case, be identical
(the rest of the factors will then, of course, be called “prior”). Thus, if we factor f(z,y,8)

as follows:
f(z,y,0) = f(zly) f(yl6) f(6), (2.9)
then LF,;, would be formed by taking just the first factor in the right hand side of (2.9),

while LF,, would also include the second factor. LF} is nothing but a further elaboration

of LF,, in which y gets integrated out.

In other words, the basic input for a Bayesian analysis of this problem is the joint
f(z,y,0), while the one for a likelihood-based analysis would be either f(z|y,8) (as in
LF,5) or f(z,y|6) (as in LF,, or LFy). Therefore, the election of a LF' can be reduced
to the election of where to put the vertical bar in the joint density. We will continuously
turn back to this point, which will be explicitly taken in the final section. If we were to
provide an entertaining title to this paper, it could have been called: “Where is the bar?”;
Bayesians would have been then considered the healthiest ones, since for them the bar is

lacking!

2.2 Prediction Problems

Prediction problems have always been especially difficult to handle from a likelihood
point of view. Sophisticated methods, some of which cannot be implemented in all predic-
tion problems, have been developed to deal with them. The interested reader is referred to
the (different) likelihood methods of Lauritzen (1974), Hinkley (1976) and Butler (1986),
as well as the discussions and references in Berger and Wolpert (1988). Butler (1988) gave
what seems to be the most general definition of a LF, and this is the one proposed by

Berger and Wolpert (1988, sec. 3.5.3) as the “practical” definition of likelihood in predic-
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tion problems. It is indeed no wonder that it does generally yield sensible LF’s since, in
fact, it is the definition closest to the full joint density on which a Bayesian analysis would
be based. Loosely speaking, what Butler (1988) proposes is to move as many quantities
as possible in front of the vertical bar; quantities that are not of interest get integrated
out. In so doing, some “parameters” are in some problems also put in front of the vertical
bar, namely all parameters whose distributions are “known”. According to Butler’s defi-
nition, the likelihood function may well change as the inferential aim changes, which can
complicate the analysis. Also, proper utilization of this LF is difficult since, depending on
which distributions are given, it can vary from being a fully “traditional” type of LF to
an integrated LF or even to a full posterior distribution. Finally, it leaves unanswered the

problem of handling nuisance parameters whose distributions are not known.

We will not pursue these approaches further. Instead we will continue to point out the
difficulties that also arise in prediction problems when we try to give a general definition
of LF. Consider thus, a problem in which we observe a random variable X with density
f(z]6) and we are interested in predicting the value of some random variable Y with density
f(y|9), as well as in estimating 6. Here again we can consider three possible LF’s. We
could simply use LFy «x f(z|f) to produce an estimate 6 of 9 and then predict Y from
the “likelihood function” f(y|). This procedure is unsatisfactory because it does not take
into account the uncertainty about 8 in the prediction of Y. Alternatively, we could jointly

estimate 6 and predict Y from either
LFyy o f(z,y]0), (2.10)

or

LFyus x f(z|y,0). ' (2.11)

Each of the likelihoods in (2.10) and (2.11) has shortcomings. Thus if, as is most
commonly the case, X and Y are conditionally independent given 8, then LF,;, reduces
to LFp « f(z|6) and Y disappears entirely. On the other hand, if we use LF},, then the
MLE of 6 can depend on which random variables we want to predict, as in the following

example.

Suppose that X = (X3,...,Xn) and ¥ = (Y31,...,Y,), where X and Y are condi-

tionally independent random samples from an exponential distribution with parameter 6,
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as given in (2.6). If we let

m n
s = Z z;, and t= Z Vi, (2.12)
i=1 7j=1
then
LF,, o« g™t =00+t (2.13)

It is easily found that the MLE’s of ¢ and 8 are

m4+n
.

t=0, 6= (2.14)

The estimators in (2.14) are most unsuitable: the value § depends on the dimension n of
the vector Y that we want to predict even though the prediction £ itself does not at all
depend on the data.

A Bayesian analysis of the problem would, as always proceed from the joint density

f(=,y,0) = f(=|0) f(yl6) £(6), (2.15)

by completing whatever factors are not included in the specific LF' that is chosen, so
that choice becomes irrelevant. Butler (1988) suggests using the first factor in the right
hand side of (2.15) for estimating € and the two first factors for predicting Y (what to do
then with 6 is not very clear). The first approach that we mentioned used the first factor
to produce an estimate @ of § which was then substituted for  in the second factor thus
producing a prediction of Y; (interestingly enough, this procedure will result in a prediction
of Y which is identical to the one obtained with Hinkley’s predictive LF'.) LFg, is formed
by taking the first factor in (2.15), and LF}, the first two factors in (2.15).

2.3 Separating the Model from the Prior

In the previous examples we have seen that, when expressing the joint density as “the
likelihood times the prior”, different factors can be taken to form different “likelihoods”
and the rest of them would then form what could be called different “priors”. In this
section we will stress the fact that the distinction between model and prior is not at all

clear and therefore it is not clear which factors should be incorporated to form the LF.
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Consider a discrete-time Markov Process X, X3, ..., X, with joint conditional density
f(zn|Tn=1,0)--- f(z2]|z1,0) given X; = z; and some parameter §. Here X; is taken to be

” state of

the earliest state in which we are interested (it does not have to be the “initia
the process). Suppose that we observe the state X,, = z, and are interested in estimating

é = (X1,...,Xn-1). We can again consider three different LF"’s. First consider

LFpy o f(zn,9]0) < f(znlEn-1,0)- f(z2|21,0) f(z1]6). (2.16)

It should be noted that this LF includes the factor f(z;|0) which is traditionally considered

as part of the prior distribution for the unknown value of the state X; and the parameter 6.
LFss  f(znl|9,0). (2.17)

This LF reduces to f(zn|tn-1,6) and, therefore, the rest of the factors that appear in
(2.16), most of which are traditionally taken to be part of the “model”, should be here

considered as part of the prior.

Finally, consider
LFy x f(zn,...,z2|21,6). (2.18)

This LF seems to be the one that is most commonly regarded as the appropriate LF
for this problem. It should be noted, however, that it does not conform to any general
definition of a LF since it contains “random variables” as well as unobservable on both

sides of the vertical bar.

Similar problems arise when hierarchical models or different reparametrizations are
considered (Bayarri, DeGroot and Kadane, 1988). As a final comment, consider all the
statistical problems in which the sample size n is not fixed in advance and does carry
information about 8. In these problems, a factor of the form f(n|8) is usually incorporated
into the LF. Whereas in some problems there would be certain agreement on the form
of f(n|6) there are a wide variety of problems in which f(n|6) would be considered to be
highly subjective and thus part of the prior distribution. Notice, nevertheless, that it looks

like an ordinary “model” since n gets observed.



2.4 Unobserved Variables

The ambiguity in the definition of the LF that we have been discussing becomes
especially noticeable when we consider unobserved variables that may be present in any
given problem. One example was given in subsection 2.2, where the MLE of the param-
eter 6 (derived from LF,,) in an exponential distribution depended on how many future
observations we wanted to predict. The situation can be even worse when we introduce
unobserved variables in which we are not primarily interested (“nuisance” variables) and
very wild examples can be built in which both LF,;, and LF,, work very poorly in the
sense that the inferences may change dramatically by not observing random variables that
we can obviously consider in any problem (see Bayarri, DeGroot and Kadane, 1988, sec. 5).
Besides, it is important to realize that these difficulties cannot be removed since there are
always a wide variety of unobserved variables that can be introduced. In fact, it is obvi-
ous that in any given problem there are many more unobserved variables than observed

variables.

3. The Evidence Provided by the Data

The difficulties and ambiguities discussed above derive mainly from the (hopeless?)
attempt of basing a statistical analysis solely on an “objectively” defined LF with no
formal explicit role for subjectivity in the problem. We have tried to argue that no such
definition is possible. On the other hand, and taking as the basic line of reasoning the
Bayesian argument, if one is prepared to recognize that other factors might have to be
added to the LF in order to form a more complicated function in which inferences will be
based, then a very simple LF can be argued to convey all the information contained in

the data.

In complete generality, we can consider in a statistical problem the observation x, and
a pair of random variables (or random vectors) Y, Z that are not observed in the given
experiment where Y is of interest and Z nuisance. Similarly, we can consider the vector
parameter as formed by components § and w, where 6 is of interest and w is nuisance.
The basic purpose of a LF' is to serve as a function that relates observed and unobserved
quantities, and conveys all the relevant information provided by the observed data about

the unobserved quantities. In trying to derive a simple and meaningful LF to serve this
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basic purpose, it is enlightening to consider the Bayesian approach to the learning process,

which we shall openly adopt in the rest of the paper.

From a Bayesian point of view, all the relevant information about the quantities of
interest is contained in f(y,8|z). The way in which f(y,0|z) is derived and whether or
not Bayes theorem is at all used is irrelevant. As a matter of fact, if the design of the
experiment is not under consideration and if we were perfectly trained and coherent in
our learning process we could simply wait until = is observed and then assess the density
f(y,0|z) directly. However, to guide our thinking and to help make our conclusions more
convincing to others, we would typically introduce some structure into our learning process

by writing f(y,0|z) in the form:

f(y,6lz) o< f(ylz, 0) f(z|0) f(6). (3.1)

In some problems, there could be general agreement about the form of both f(z|¢) and
f(ylz,6). This general agreement can then be taken to mean that the form of these two
densities is “given” or “known” so that it would make sense to define a LF as being

proportional to their product, that is:
LF = LFy,  f(z|0) f(ylz,0) = f(z,y0). (3.2)

This is just one of the general definitions of a LF attempted in the last section, namely the

one in (2.1) derived from the conditional density of the “variables” given the “parameters”.

As we have argued in the preceding sections, we do not believe there is a clear-cut
distinction between unobserved variables and parameters. Hence, we regard the LF in
(3.2) as unsuitable as a general definition. Besides, the form of (3.2) relies on the density

f(z,y|@) being given or agreed upon. If we rewrite it as

f(xayW) = f(ml:%e) f(y|9)a (33)

this agreement implies that there must be agreement about both factors on the right-hand
side of (3.3), or, otherwise stated, that both factors could be considered as “given”. It
nevertheless often occurs that there is general agreement about the form of f(z|y, 8), while
the form of f(y|0) is considered as highly subjective. Would this be the case, a LF for y
and @ would simply be given by

LF x f(zly,9). (3.4)
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Notice that both (3.3) and (3.4) are functions of z, y and 8 and that there is no way to
tell from the function alone whether the factor f(y|@) has or has not been included in the
LF. Hence, in order to be able to use the LF' to make inferences (or calculate posterior
distributions) we must know not only the function itself but also which factors have been
used to derive it, in clear contradiction with the basic role of a LF as expressed at the

beginning of the section.

Let’s pursue further the basic steps in the statistical reasoning behind the parametric
model building approach. So far, all we have included in our formulation are the observa-
tion z and the quantities of interest ¥ and 6. In many problems, however, the densities
f(z]|6) and f(y|z,0) can still be difficult to specify or can still be judged to be highly
subjective by others. These difficulties are usually reduced by introducing further struc-
ture into the learning process by means of a more detailed specification of the “parameter
space” of 6 and the “sample space” of y. Thus, a “nuisance parameter” w is introduced
so that f(z|0,w) is easier to assess and/or interpret, or reaches a wider agreement among
others than f(z|f) does, or both. In a similar fashion and with similar goals, a “nuisance”
variable Z may be conveniently introduced so that the assessment of f(y|z,6) is derived

from the assessment of f(y, z|z,0,w). As a result, (3.1) now becomes
fbl) o [ [ 502100 F(ol6,0) F(6,0)d0 d. (35)

This formulation emphasizes the fact that the “nuisances” z and w are not to be
considered as quantities that are regretfully present in our models, which we have to
somehow get rid of. On the contrary, they are very convenient quantities that we have
carefully selected so as to help us to build models and to achieve agreement about those
models. The traditional term “nuisance” for w is most unfortunate and does clearly not
convey this idea; a more appropriate name might be auxiliary parameter (and auxiliary

variable for Z, if such a distinction is at all wished).

If we have been successful in our selection of the auxiliary w and z, then there will
be a general agreement among others on the form of f(z|0,w) and f(y, z|z,0,w). Asit is
customary in statistics, when agreement is reached, the densities are regarded as given, so

that it makes sense to consider (as in Berger and Wolpert, 1988) a LF in these problems
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to be their product, that is:

LF o (3, 2|, 6,) f(zl6,)
= f(may7z|07w)' (36)

When z is a vector of observations, a typical way in which a convenient choice of the
auxiliary parameter w can simplify the density f(z]6,w) is making the components of z
conditionally independent (usually, i.i.d.). More importantly, a convenient choice of w may
make y and z conditionally independent of = given € and w. In this case, f(y, z|z,0,w)

reduces to f(y, z|0,w), and the LF in (3.6) adopts the familiar form given by
LF o f(o16,0) f(3,216,) (3.7

Notice that, regardless of whether the density f(y,z|6,w) is “given” or “subjective” it
does not at all involve the data z, and thus all the evidence in z about the unknowns is
contained in the first factor f(z|f,w) in the right-hand side of (3.7). Thus, we believe that
it should be the only factor to be included in the LF. The inclusion of other functions of
the unknowns, such as f(y, z|0,w) or the prior f(6,w) seems artificial. Therefore, in this

situation, we recommend the use of the simplest LF', namely
LF x f(z|0,w), (3.8)
which, because of conditional independence, can be also expressed as:
LF « f(zl|y,z,0,w). (3.8)

(3.8) can be recognized as the LF introduced in (2.2) and denoted by LFy, because it is
derived from the conditional density of the observations given the unobserved quantities
(notice that, unlike variables and parameters, observed and unobserved can always be
distinguished from each other). This likelihood function is in basic agreement with the
familiar “f(z|@)” when 8 is taken to consist “of all unknown variables and parameters that

are relevant to the statistical problem” (Berger and Wolpert, 1988, sec. 3.1).

More generally, every Bayesian analysis proceeds from a specification of the joint

density f(z,y,z,6,w). From this, all a Bayesian has to do is to condition on whatever
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is observed and to integrate out whatever is not of interest. If we let s denote the set
{z,y,2,0,w} of all the components of all the quantities considered in the problem and let
s1 and sz denote non-empty subsets of s such that s; Ns; = & and sy U sy = s, then
f(s) = f(s1]|s2)f(s2), the various likelihood functions discussed are of the form f(s1]s2)
for some particular choice of s1, or are derived from f(s;|s2) by integrating out quantities
that are not of interest. Still other likelihood functions can also be shown to correspond to
a f(s1]s2) but eliminating the quantities that are not of interest by maximizing over them
(instead of integrating). Thus, the choice of a LF corresponds basically to the choice of s;
(together with the decision of whether to integrate out or maximize over the nuisances), or,
in more colloquial terms, where to put the vertical bar in the joint density f(z,y, z,0,w):
in LF,, it is put between z and 8, whereas in LF,;, it is put between z and y. The
subset s; is always taken to contain z and usually, as in LF,,, to contain other “variables”
with given distributions, but it is not infrequent for “parameters” to also appear in front
of the bar (see Butler, 1988). We claim that, in order to convey the evidence about the
unknowns provided by the data, it is unnecessary to even include quantities other than
z in s1. Indeed, the possible inclusion of other quantities can only lead to confusion for
the users of these likelihood functions. Thus, we conclude that the evidence in the data is

conveyed most efficiently and most clearly by LF,;, as given by (3.8).

Some readers may be wondering whether we are now ignoring all the difficulties we
just put forward in the previous sections when we discarded LFy, as a suitable general
definition of a LF'. The answer is, of course, no. In Section 2, we tried to show that no
general definition of a LF' function can be given if by LF is to be understood the only
function that it is needed to make inferences about 6 and y. In this section we claim that
LF,;, is the only carrier of all the evidence provided by = about 8 and y. Other factors
may have to be incorporated to LF,;, in order to effectively make inferences about 6 and
y. This distinction between information provided by the data and information needed to
make inferences is always clear in the Bayesian approach, but less clear in the likelihood-
based frequentist approach. However, even in that approach the distinction becomes clear
if LF,3, is always used but inferences incorporate other factors such as f(y|d) in (3.3). In
this way, a large variety of inferential aims can be accomplished with just LFyp, rather

than an equally large variety of likelihood functions.
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Of course, we are aware that we have not removed all ambiguities since, unless a
Bayesian analysis is carried out, it is still to be decided which factors should be added to
LF,ps in order to obtain a suitable function on which to base inferences. Nevertheless,
the formulation we are defending has the advantage, as it is often the case with Bayesian
reasoning, of clearly and openly stating all the inputs of the problem. Thus, different
readers facing maybe the prediction of different variables (or other inferential aims) or
maybe agreeing with some of the factors involved but disagreeing about other factors, can
judge (and use) which inputs do apply to their problems and which ones do not apply.
Other, maybe more sophisticated, formulations not only suffer from more ambiguities and
difficulties than our simple one but also, and more importantly, they can surreptitiously
introduce information and inputs that not all readers would be willing to accept if explicitly

revealed.
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