ON GENERAL EQUATIONS FOR ORTHOGONAL POLYNOMIALS
by
Holger Dette
Purdue University

and
University of Gottingen

Technical Report #91-05C

Department of Statistics
Purdue University

February 1991



On General Equations for Orthogonal Polynomials
by
Holger Dette

Abstract

We derive equations for orthonormal polynomials with respect to an arbitrary (prob-
ability) measure on the interval [—1, 1], which generalize the equation (1 — z?)U2_,(z) +
T2(z) = 1 for the Chebyshev polynomials of the first (T},) and second kind (U,). The
results are established using general equivalence theorems of optimal design theory for
weighted polynomial regression. As special cases new equations are derived for the

Legendre-, Chebyshev-, Ultraspherical and Jacobi polynomials.

1. Introduction

Consider the orthogonal polynomials

Tn(z) = cos (n arc cos x)

(1.1)

sin ((n + 1) arc cosz)

Un(z) =

sin (arc cos z)

where z € [—1,1] and n € Ng. T,(z) and U,(z) are known as Chebyshev polynomials of
the first and second kind respectively (see for example Szegd (1959)) and are orthogonal
with respect to the measures (1 — z2)~/2dz and (1 — 2?)!/2dz. From the trigonometric

representation (1.1) and the identity cos?@+ sin?@ = 1 we can readily derive the equation
(1.2) (1—-2YU2_(z) + T2(z) =1 for all z € R

In this paper we will give similar results for orthogonal polynomials with respect to an
arbitrary (probability) measure on the interval [—1,1]. To this end we will use the theory
of optimal design for polynomial regression. In this theory the Chebyshev polynomials
Un(z) and T,(z) play a particular role, because its zeros give the support of the optimal
design with respect to many optimality criteria (see for example Kiefer (1959), Hoel (1965)
and Studden (1968)). The theory of optimal design is briefly described in section 2. In
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section 3 we consider the case of polynomial regression and show that every probability
measure on [—1,1] with finite support can be characterized as an optimal design with
respect to a special optimality criterion. To this end we will use the theory of canonical
moment which was introduced in the context of optimal design theory by Studden (1980,
1982a, 1982b). The results of section 2 and 3 are used in section 4 to derive equations
of the type (1.2) for polynomials orthonormal with respect to an arbitrary (probability)
measure on [—1,1]. Section 5 deals with the Jacobi polynomials orthogonal with respect
to the measure (1 — 2)%(1 + z)?dz (a > —1,8 > —1), and we obtain some identities for
these polynomials which generalize (1.2). Finally in section 6 equations are derived for the

Legendre- and Chebyshev polynomials.

2. Theory of Optimal Design

In this section we will give some basic results of optimal design theory. For shortness
we will not give any statistical interpretation or application of the derived results. The
interested reader is referred to the books of Fedorov (1972), Silvey (1980) or Pazman
(1985). Let m € N, fe(2) = (feo(2), ..., fee(z))T denote a vector of e + 1 real valued
functions on [-1,1] (e = 0,...,m). A design £ is a probability measure on [~1,1] and the

matrix

(2.1) 10 = [ 1@ @EE)  e=0,...,m

is called the information matrix of the design €. General optimal design theory deals with
the maximization or minimization of functionals of the information matrix M,(¢). In this

paper we are interested in the functional

(2.2) 8(6) = Y ae log(cT M (€)ce)

e=0
where the c. € R**! are given real valued vectors and the a. are given real numbers such
that there exists a design (probability measure) {4 on [—1,1] which minimizes ®(£). Con-
ditions on the a, which imply the existence of such a design £, are considered in section 3.
The following theorem gives an equivalent condition for the minimization problem of (2.2).
The proof can be performed by standard arguments of optimal design theory (see Silvey
(1980)).



Theorem 2.1 A design £, on [~1,1] minimizes (2.2) if and only if

o~ $ 0 DINGIEN 1 ansepan

e=0

In (2.3) we have equality if and only if z is a support point of &,.

In what follows let y. = (cT M (€a)ce)™Y/2, de = ve M (€)ce and c. = (0,...,0,1)T

then we have the following corollary for “nested” models f(z).

Corollary 2.2. If fei(z) = f(z) (: =0,...,e) foralle = 0,...,m, ¢, = (0,...,0,1)7,
then the “polynomials” {dT fe(2)}e=o,...,m form an orthonormal system with respect to the

measure dq(z).

Proof: By the definition of M,(£) we have fore =0,...,m

| 1@ @ae) =& [ fu)f @dala)
= dzMgl(ga)de = 7603 = (0, .0, 7e)

and

1
[ e da0) = AT () = 26 M G = 1.

Note that for the vectors ¢I = (0,...,0,1) the optimality criterion (2.2) reduces
(provided foi(z) = f@(z)) to

(2.4) 2(6) =) aclog ——dztet]\izzg )

e=0

and the equivalent condition in Theorem 2.1 is given by
(2.5) Y ae(dlfo(z))? <1 forallz€[-1,1]
' e=0

where de = 7e M (€a)ce (e =0,...,m).



3. Polynomial Regression and the Theory of Canonical Moments

In this section we will consider the special functions
(3.1) fei(il?) = illi(l — :I})a(]. + $)b = gei(l') . (1 — .’17)0' (1 + :l:)b

where a,b € {0,1}, gei(z) =2' and i =0,...,e, e =0,...,n. These functions correspond
to some optimal design problems for weighted polynomial regression (see Studden 1982b).
A very useful tool for the determination of designs minimizing or maximizing functionals
depending on the determinants of the information matrices is the theory of canonical
moments. We will give a brief introduction and state some of the main results which are
needed later. The interested reader is referred to the work of Skibinsky (1967, 1968, 1969,
1986), Studden (1980, 1982a, 1982b, 1989), Lau and Studden (1985, 1988), Lau (1983,
1988) and Dette (1990, 1991).

Let ¢ denote a probability measure on [—1,1] with moments ¢; = fil z'dé(z). The

canonical moments are defined as follows. For a given set of moments ¢, ¢y, ..., ci—1 let c;-*'

1

denote the maximum of the i-th moment [ z'du(z) over the set of all probability measures
~1

p having the given moments co,cy,...,¢i—1. Similarly let ¢; denote the corresponding

minimum. The canonical moments are defined by

ci—c¢;

pi = 1=1,2,...

+ —
c; —c;

Note that 0 < p; < 1 and that the canonical moments are left undefined whenever c;l" =c;.
If ¢ is the first index for which this equality holds, then 0 < px <1,k =1,...,7 — 2 and
pi—1 must have the value 0 or 1 (see Skibinsky (1986), section 1). As an example consider
the Jacobi measure with density (1 — z)*(1 + z)# (@ > —1,8 > —1). For this measure we

have (see Skibinsky (1969))

k
= >
P2k oa+pB+2k+1 k21
(3.2)
B+k
= — >
Pzk—1 a+ B+ 2k k21

The uniform measure (& = § = 0) has pyr—y = % (k > 1) and pox = k/(2k +1). The

arc-sin distribution has px = 1 for all k (e = 8 = -4
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In what follows we will denote the information matrices corresponding to the models

given in (3.1) by (ge(z) = (1,7,...,2%)T)

1

M:(6) = [ 0.@)oF @)dk(a)

Co 151 te Ce

_ 6:1 6:2 Ce;|-1 (a=b=0)
Ce Ce:|-1 crr C2e

1

Ms12(©) = [ 0l (@)1 +2)dk(a)
co+a c+c2 Ce + Cet1

| a + ¢ c2+c3 Cet1 Tt Cet2

Ce +'Ce+1 Cet1 + Cet2 Cze +.C2e+1

1 ge-1(z)g_1 (2)(1 — 2*)dé(z)

Cp — C2 €1 —¢C3
Cl —C3 Cy — C4

Mze(E) =/

Ce—1 — Ce+1 Ce — Ce+2

1

1 ge(z)g2 (2)(1 — z)dé(2)

Co—C1 €1 —C2
Cc1 —C2 C2 —C3

Maet1(€) = /

Ce — Ce4+1 Ced1 — Ce42

Ce—1 — Cet1
Ce — Ce42

C2e—~2 — C2¢

Ce — Ce+1
Ce41 — Ce+42

C2¢ — C2e+1

1
(a=0,b='2')
1
(a=b=3)
(a=2’b:0)

The corresponding determinants are denoted by Dy.(£), Dyeyq(€), D2e(€) and Daet1(€)

and can be easily expressed in terms of canonical moments (see Skibinsky (1968), Studden

(1982b)).

Theorem 3.1. Let ¢ denote a probability measure with canonical moments py, ps, ...,

G =1-p; ((21),¢0=1L7%=1(=p,n =q,{j=qg-1pj, 7 = pj-1¢; ( > 2),
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then we have

Dy (§) = 2V H(Cﬁ—lﬁi)eﬂ—i’ Doey1(§) = et H(Cz:‘(2i+1)e+l_i
=1 i=1

Die(£) = 2¢(«+ H(72i—172i)e+1 i’ Dyet1(€) = 20¥V H(72i72i+1) ik

In what follows we are interested in the minimization of functionals of a similar form

given in (2.4). To be precise, let m = 2n, ag =0, aj = B (j = 1,...,n), Qny14j = 7;
(j=0,....,n—1), c. =(0,...,0,1)T € Re"'l (e =1,...,n) and cpt14e = (0,...,0,1) €
Ret! (e = ,n—1) where Z B; + E v; = 1. The functions f; in (2.2) are defined by
=
fei(z) = 2 t=0,...,e , e=1,...,n

fn+1+e,,~(:v)=\/1—:z:xi 1=0,...,e e=0,...,n—1

and the functional @ in (2.2) reduces in this case to (D_;1(§) = Dy(€) = 1)

_2e—-2(€) 2e 1(6)
2,.(6) = Zﬂel €7 D,.(6) * Z% D2e+1(£)

which is a sum of two functionals of a similar form given in (2.4). In the same way we will

define the following functionals

Don11(6) = Zﬂe log _23‘2(6) Z —2e—1(§)

24P 8 D) " Daen®)
Bonta(€) = Zﬂe log 5 (2) +Z o8 DZZQES
— —2e 2 E 2e—1 6
P2n41(8) = ;ﬂe log D, (é)) Z D2e+1E£;

By an application of Theorem 3.1 we can determine the designs minimizing ®,,,, ®3n42,
@5,41 and 52n+1 in terms of canonical moments. The calculations are straightforward

and therefore omitted.



Theorem 3.2. Let o; = ) B and 7; = Y, v, (for the functional ®,, define v, = 0),

then we have the following.em -

a) fo;+ 7 >0,0i+71i-1 >0,¢=1,...,n, the probability measure which minimizes

&, is unique and has canonical moments

= Ti F Ti i=1,....n—1 =1
p2z_0’i+T,‘+0'i+l+Ti - 7°°* ? p2'n—
o + 7% .
p2i-1 = t=1,...,n

o; +7i +0i + Ti-1

b) fo; + 7 >0, 0i+7i—1 > 0: =1,...,n, the probability measure which minimizes

®,,41 is unique and has canonical moments.

oi +T; .
P2 = 1=1,...,n
Oi+TitOip1 + 7
o; +Tia .
DP2i-1 = t=1,...,n p2'n+1=1

Oi + Ti—1+Ti + 0

¢c) Ifoi1 +7ic1 > 0,051 +7 > 04 =1,...,n+ 1, the probability measure which

minimizes ®3,42 is unique and has canonical moments

o o; +Ti - . o
P i Fritoitn ooy Pantz =
p2i-1 = o T i=1,...,n+1

Oi—1+Ti+0i—1+ Ti—1

d) foi+7>0,0i41+7 >02=1,...,n, the probability measure which minimizes

®5,+1 1s unique and has canonical moments

gi +T; .
P2 = 1=1,...n
Oi+Ti+0oit1+ 7
g; + T .
b2i-1 = 1=1,...n, P2n+1 =0

i +Ti-1+0it+ T

The probability measure corresponding to the sequence in a) is supported by n — 1
points in the interior of [—1,1] and by the boundary points —1 and 1. Measures corre-

sponding to the sequences in b) or d) are supported at n interior point of [—1,1] and the
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boundary point 1 or —1 respectively, while the measure with canonical moments given in
c) has n 4+ 1 support points in the interior of [—1,1] (see Skibinsky (1986)). The interior
support points of the measures in a), b), d) and ¢) are the zeros of the orthogonal polyno-
mials with respect to the measures (1—z?)d¢, (1—=z)dé(z), (1+z)dé(z) and dé(z) where &
is the measure which minimizes ®,,, @511, @2n+1 and P2,42 respectively (see Skibinsky
(1986) or Karlin and Studden (1966)). Theorem 3.2 defines four maps f, , fontr Fansa
and f,,., from the (convex) sets of “weights”

Won={(B1,---sBn,Y0,---y¥n-1) | O1+70 = 1,05+7: >0, 0;+7—1 >0, 1 =1,...,n}
Woni1={B1,--+,Bn;Y0,---, ) | o1+70=1,00+7 > 0, 0y+7i-1 >0, 2=1,...,n}
Want2={(Bos---sBns70s---,n) | O1+70 = 1,0047 > 0, o5+7141 >0, =0,...,n}
Want1={(B1,-++sBrsY0s+++»7n) | o1 470 = 1,047 >0, o301+ >0, i =1,...,n}

on the four corresponding sets

Eon = {¢ | £ € E,# supp (§) =n+1, supp (§) N[-1,1] = {-1,1}},

Ent1 ={¢ | £ €E,# supp (§) =n+1, supp () N[-1,1] = {1}},

Eant2 = {€ | £ €E,# supp (6) =n+1, supp (§) C (-1,1)},

Eans1 ={€ | £ €E,# supp (¢§) =n+1, supp (§) N[-1,1] = {-1}},
where Z denotes the set of all probability measures on [—1,1]. The image of a weight vector
(B1,---sBns75---,7n) under the maps izn’ i2n+1, 72n+2, 72n+1 is defined as the proba-
bility measure which minimizes the functionals @,,,, ®,,.1, @242 and $2,; respectively
(the canonical moments of the corresponding measure are given in Theorem 3.2). If ¢ is
a probability measure on [—1,1] with canonical moments p;, ps, ps,..., then we have the

following Lemma (see Skibinsky (1986)).

Lemma 3.3. Let £ denote a probability measure on [—1,1] with canonical moments

P1,P2,. .., then
€y, & pi€e(0,1) i=1,...,2n~1, ppp =1
£€Em41 = pi€(0,1) i=1,...,2n, pgay1 =1
£ €Tt = pi€(0,1) i=1,...,2n 41, prniz =0

£€Bomy1 < pi€(0,1) i=1,...,2n, pons1 =0.
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Note that by the conditions on 7; and o; of Theorem 3.2 the design which minimizes
D2 Pongas @242, Pang is in fact an element of the set Zons Sont1s Hont2, Sont1
respectively. The following Theorem shows that the maps f o i% 40 Fon +2 and Fon 11

are one to one and gives an explicit representation of the inverse maps.

Theorem 3.4. The maps f, :W,, — 5, f_2n+1:ﬂ2n+1 — Eant1s fonta: Wantz —
§2n+2, and ?2,, +1:W2n+1 — §2n+1, defined by Theorem 3.2 are one to one. Moreover, if
P1,P2, ... denote the sequence of canonical moments of a probability measure £ on [—1, 1]

we have the following representations of the inverse maps.

a) If £ € E,,, then f_;:(f) = (B15---»Brs71;s--+5Yn-1) Where (note that gzpn = Dop(£) =

8, = Pre—1 T P2j-1925 1 _ 2ey _ Dyer(§) [526_2(6) — 52e(§)] e=1,...,n

Q2e-1 ;o7 92j-1P2j P2e’  Dae—1(€) [ Daea(€)  Dye(€)

= e P2j—192j -1 _ P2et1y _ D, (£) [gZe—l(é.) _ g2e+1('£):| ~0 o1
Ye ]:l_Il 925-1P2; q2e+1 Dy (€) | D2e—1(€) Daey1(é) e yeues

b) If £ € Eypqq, then i2_73+1(£) = (B1y--+»Pr>s71,---,7n) where (note that gopq1 =
D2nt1(€) = 0if € € Egpyy)

8, = G2e—1 T ©j-192j 1 _ G2y _ Dje-1(8) [ﬁze—z(f) _ _D_2e(€):| e=1.. .n
© Pre-1 j=1 P2i—1P2j P2e Dye1(8) [Doe—2(8)  D3.(8) Y

yo =[] 22821 g _ sy Daell) [EH(&) _Daena(6)
) j=1 P2j—1P2j D2e+1 Dye(€) | Dge—1(é)  Daet1(é)

e=1,...,n

c) f € € Eynye , then ?2;12(5) = (Boy.--»Prny70y---,7n) Where (note that pspio =
Q2n+2(€) =0 iff € §2n+2)

_ P2e+1 f[ p2j—1p2j(1 _ DP2e+2 — g2e+1(§) [g2e(€) _ g2e+2(£) e=0.....n
° @en o1 92-192 @2e+2”  Daet1(§) [ D2e(§)  Daes2(§) Y
Yo = f[ P2j—-1P2; (1 _ P2et1 — g2e(£) [g2e—-1(£) _ g—2e+1(£) =0,...,n
i1 9251925 Q2e+1”  D2e(€) [D2e-1(§)  D2e41(€)
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d) If ¢ € Egpy1, then 72;_1,,1 (&) = (B1y---BnyV0y---57vn) Where (note that papi1 =
Dypt1(§) =0if € € §2n+1)

Pze 1 HPz; —192; 1 P2ey _ Q2e—1(€) [5%—2(6) D2e(§)] =1 n
e q2e— 1. 921 1P2] q2e ﬁze—l(ﬁ) Q2e—2(£) D2e(§) Y

D2;—-192; D2e+1 _ 52«3(6) [Q2e—1(€) —Q2e+1(§)] .
b H% 2 @) Dao® [Daa(®)  Daera(®)] T 0"

Proof: We will only consider the case a) all other cases are treated similarly. Let £ € Z,,,,
£ is uniquely determined by its canonical moments which are given in Lemma 3.3 by
P1,P2,-->P2n~1,1 (pi € (0,1) i < 2n—1). Because f, maps the set W, in E,,,, we have
to determine a unique vector (B1,-.-.,0n,7%0,---,7Yn—1) for which ¢ minimizes ®,,. The
canonical moments of a probability measure ¢ minimizing &, , are given by Theorem 3.2
a) and we obtain the equations (op41 = 0).

oi + T

i +Ti+ 0ip1+ T
oi +Ti

o +Ti+0i+ Tiy

:.1)2z i=1,...,n"—1

= P2i-1 i=1,...,n
which yield
a,-+1+7',-=&(a,-+7',~) 1=1,...,n—-1
D2i

D2i-1
g2i—1

o;+1 = (0','+7'i_1) t=1,...,n

Observing o1 + 79 = E Be + E ve = 1 we obtain

=1 e=0
! i . .
0'1'+1+T,'= M 1,—1, .,n—l
j=1 12-1P2j
(3.3) <
oi + 7 __( P2j-1Q2j P2i-1 =1,....n
L 1 925-1P25 q2i-1

From the definition of ¢, and 7. we have

{ e—
2 2
,Be=0' '“O'e+1 DP2e-1 p2] 1925 1— qe) =1,...,n
g2e—1 =1 q2;-1P2j D2e
(3.4) 4
Ye = Te — Tet1 = HP2] 1Q2_7(1 p28+1) e=0,...,n—-1
1 925-1P2j g2e+1

\
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which shows that the given probability measure ¢ minimizes ®,,, only for the weights in
(3.4) (note that o;+7; > 0 and o; +7i—1 > 0 by (3.3) and Lemma 3.2 (£ € Z,,,)). Therefore
the inverse map of f, exists and is defined by (3.4). The assertion of the theorem now

follows observing (D_;(§) = D—1(£) = Dy(¢) = Do(€) = 1)

_ _D(D.—5(9) _ D.s(®De®)
D, (&Der(6)’ *° Do q(O)Dea(8)’ T

Pe

(see for example Lau (1983)), which proves the representation of the weights 8. and 7, in
terms of the determinants D.(¢) and D, (£).

4. Equations for General Orthogonal Polynomials

In this section we will use the results of section 2 and 3 to derive equations for the

polynomials
1 c1 - cCpo1 1
1 Ci C9 AR Cn T
Pp(z) = :
\/Q2n(€)Q2n—2(£)
Ca Cpi1 °°* C2n—i1 z™
14+ c1+c2 cvr Cp—1ten 1
1 c1+cz c2 +c3 ces CptcCpta
R,(z) = .
\/—1—)-211+1(€)—D—2n—1(£) . .
CatCnt1 Cpt1tCny2 -+ Cop—1t+C2n T
1—-c €1 —c3 v+ Cp—1—Cpy1 1
1 Ci1 —C3 Cy —C4 Cpn — Cn42 T
Qn(x) = — — :
\/ Dont2(6)Dan(€) :
Cn — Cnt2 Cptl —Cnt3 “*° C2n—1—Contl T"
1—61 C1 —C2 Cpn—1 — Cp 1
1 C1 —C2 Cy —C3 Cn — Cp+1 T
Sa(z) = —= — " ,
V D2nt1(§D2n 1 (6) n
Cn —Cn+1 Cn4l1 —Cp42 **° C2p—-1—C2p &
1 .
where ¢; = [ z'df(z) and £ is an arbitrary probability measure on [—1,1]. It is well

~1
known (see Karlin and Shapley (1953), Szegd (1959) or Karlin and Studden (1966)) that

the polynomials {Pn(z)}n>0, {Rn(z)}n>0, {@n(z)}n>0 and {Sn(z)}n>0 are orthonormal
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with respect to the measures d¢(z), (1+z)dé(z), (1—2)dé(z) and (1—z)d€(x), respectively.
Whenever we will consider these polynomials, we assume that they are well defined by the
measure ¢. This means, that all determinants D, (£), D1(€), Dy(€), D2(€),. .., Dy, y2(8),
Dyn12(€) are positive, which is equivalent to the fact that the point (co,cy, ..., c2nt2)? is
an interior point of the corresponding moment space (see Karlin and Shapley (1953), p. 57).
It can be shown (see Karlin and Shapley (1953) p. 59) that the “maxi- and minimizing”

moments ¢! and ¢ are given by

_ D9
D, (&)

In what follows we will need analogues of the determinants D,(¢) and D.(£), where the

(4.1) . =Ce

moment of highest order is replaced by ¢} or ¢,. To this end define

Co
5]

¢
e
D3.(¢) =

Cn
Cn+41

Cn—1
Cn

1 + C1
€1+ 2
_D-;-n+1(§) = :
Cn—-1+Cp
cn+ Cn+1

1- C1
C1 —C2
D2n+1(§) =
Cn—1 — Cn
Cn — Cn+1

1-— Co

1 —C3

52;(5) =

Cn—2 — Cn

Cn—1 — Cn+1

Cn—-1 Cn
Cn Cn+1
b
Coan—-2 C2p-—-1
+
Con—-1 Con
¢ +c2 Cn—1+cCn
¢+ c3 Cn + Cpt1
Cp + Cnt1 Con—-2 + C2n—1
Cn+1 + Cnt2 Can—-1+ C2n
1 —C2 Cn—1—Cn
C2 —C3 Cn — Cp+1
Cn — Cn+1 Can—2 — C2pn—-1

Cn+1 — Cn+2

C1 —C3
C2 —C4

Cn—1 — Cn+41
Cn — Cn+42

C2n—-1 — C2n

Cpn—2 —Cp
Cn—1 — Cn+1

Coapn—4 — C2n—3
Con—-3 —C2n—2

We are now able to state the main theorem of this paper.

12

Cn + Cn+1
Cn+1 Tt Cnt2

Con—1 1 Con
+
Con + c2n+1
Cn — Cn+1

Cn+1 — Cn42

Con—1 — C2n

C2n — Capt1

Cn — Cn41
Cn — Cpn42

Con—-3 — C2n-—1
Con—-2 — Cy,y




Theorem 4.1. Let £ denote a probability measure on [—1, 1], the orthonormal polynomials
Qn(z), Ra(z), Pr(z) and Sy(z) with respect to the measures (1 — 22)dé(z), (1 + z)dé(z),
dé(z) and (1 — z)dé(z) satisfy the following equations

= Dye—1(8) [Dae—2(€) Dael€
& Y528 oes - o) P
Dy 1(€)D2n—2(§)D2n(€) P2(z)
Dan- 1(€)D2n—2(£)2-2|-n(£)

—z D2€(£) D2e—1(§) Qze+1(§)
+ );Qze(ﬁ) [Dze 1) Daze1(6)

D,,_ 1(£)D2n(f)
Y505 <)

+ =

| s2@)

=1+( 2 _

n -52e—1(£) ﬁ2e—2(£) _ 528(6) 5 N
b) “ D, _1(6) [D2e_2(§) D2e(£)] P (z)

Do 1(§)D2n(§)Q2n+1(§) R(z)
D2n I(E)D2n(€)2-;-n+1(£) "

D2e(€) D3e—1(€) Diet1(8)]
+ (1 + z) ez_; QZe(E) [D2e—1(6) B Q2e+1(€):l RC("B)
D2n(§)D2n+1(€) 2 z
Don(©DEr(© ")

+(1+=z)

=1+(z—-1)

. _ )8 Reess(©) [Doo(O) _ Doesal®)
) (1 ); 52e-}-1(£) I:D—Ze(é-) E2e+2(§)
2 QZn(ﬁ)D2n+1(§)D2n+2(£) 2 z
ta- )Dzn(ﬁ)D2n+1(€)D2n+z(§)Q ")
— D2e(£) D2e—1(£) _ Q2e+1(£) 2 z
); D2.(6) [Dze ) Ee+1(s)] 5e(@)
D2n+1(£)-‘D—2n+2(£) 2

T Don1(@Dia©) P e)

] Q(x)

d) - Qze—1(€) -52e—2(§) _E2e(f)
= Diye—1(€) [ D3e—2(§)  Dac(§)

. Dge(ﬁ) Dy 1(§)  D2et1(€)] o2
+a )g_ze(s) Emans ok

P(z)

13



D20 (€)Dy,,— 1(§)D2n+1(§) $2(z)

D3, (€)D2n—1(6)D2ppa(£)
2n(£)D2n+1(£) 2( )

—2n(£)D2n+1(€)

+(1—z)

=1-(1+z)

Proof: We will only give a proof of the equation a) all other cases are treated in the
same way. Let pi,p2,... denote the sequence of the canonical moments of the given
probability measure £. In order to guarantee a correct definition of the polynomials we
have to assume D, > 0, D, > 0 (e = 1,...,2n) which is equivalent to the condition
p; € (0,1) (i = 1,...,2n) by Theorem 3.1. In what follows let £ denote a probability
measure with the same canonical moments as £ up to the order 2n — 1 and ps, =1 (i.e. £
has the canonical moments p1,pz,...,p2n—1,1 where p; € (0,1) (i =1,...,2n—1)) and let
{Po(2)}2_y, {Se(2)}"=3 denote the orthonormal polynomials with respect to the measures
dé(z) and (1 — z)d€(z) respectively. By Theorem 3.4 a) £ minimizes the functional &, (¢)

for the given vector of weights

g, - g2e—1(é:) [Eze—z(f:) _ 7526(5:)- e=1,...,n
(4.2) D2e-1(8) [ Daea(t) Qze(ﬁ): o
5y = Da(f) |:—2e _1(8) D2e+l(é:) e=0,...,n—1
* T D2u(® | D2es®  Daeri(®) o

From the equivalence Theorem 2.1, (2.4) and (2.5) we obtain an equivalent condition for ¢

(4.3) Zﬂe(dTge (z))? + Z%(J’-”h (£))? <1 forall ze[-1,1]
e=0
where g.(z) = (1,z,...,2°)T, he(z) = V1 =2z(1,2,...,2°)T, d, = (2) M é)ee,

d. = D—“"ﬂ(%Mze.H(f)ce and ¢, = (0,...,0,1)T € Ret!. By Corollary 2.2 the “polyno-

mials” (dXg(z)) and (dT he(x)) are orthonormal with respect to the measure dé(z) and
thus (4.3) reduces to

n—1

(4.4) Z BPX )+ H(1-2)8%(z) <1 forallz € [-1,1]

e=0

14



An application of Theorem 2.1 shows that we have equality in (4.4) only for the support
points of the minimizing measure . A consideration of the Stieltjes transform of & (see
Wall (1948) or Studden (1980, 1982b)) yields that the support of £ is given by the zeros of
the polynomial (1 — 22)Q,—1(z) where Q,-1(z) is the (n — 1)-th orthogonal polynomial

with respect to the measure (1 — z2)dé(z), i.e.

1—0cy Cn—2 — Cn 1
o €1 —C3 o Cn—1 — Cp+1 z
Qn-1(z) =
n—1
Cp—1 —Cp41 **+ C2p—3 —C2pn—1 T

Note that this property results from the fact that € has the terminating sequence py, po, .. .,
Pan—1,1 and that there exists a recursive relationship for the polynomials Q.(x)/D,,_,(¢)
in terms of the canonical moments of the probability measure ¢ (see Studden (1982b)).

Because the polynomials E B. P? (z) +(1 —z) Z 7.8%(z) — 1 and (1 —22)Q2_,(z) are
e=0

less or equal than 0 in [— 1 1] and exactly equal 0 at n — 1 points in the interior of [—1, 1]

(the roots of @n—1(z)) and at —1 and 1, they can only differ by a factor. Comparing the

leading coefficients of P2(z) and —z2Q2%_,(z) we obtain from (4.4) the equation

D2n l(é)
Don—1(£)Dan—2(€)Dyn(€)

(45) 3 BB (@) +(1-2) Y 782(a) = 1 - (1 - 22)(2 ()=

The moments and canonical moments of £ up to the order 2n — 1 coincide with the

corresponding quantities of £&. Thus we have

—1-)-2e—1(g) = 226—1(6) €= 13 ey
(46) QZe(E) = QZe(ﬁ) €= 1, ey — ]-a Q2n(g) =0
B-2e(€):52e(€) e=0,...,n—1

and for the polynomials Pe(z), S¢(z) orthonormal with respect to the measures d¢(z),
(1 - z)dé(z)

2:1? _”2$ e = n— 2$ —2n(£) 23}
(4.7) Pe()_Pe() 1,'--a 1’ P() 2n(€)P()

5%(z) = §%(z) e=0,...,n—1.



Finally we have from the definition of Qn,—;(z) and Qn—_1(z)

(4.8) J2_1(2) = D2n(€) - D2n—2(£)Q%_4(2).

Observing the equation (4.5), the definition of the weights (4.2) (note that Dy,(£) = 0),
(4.6), (4.7) and (4.8) it follows that

= Does(§) [Dze=2(§) _ Dael®)] oy, 2,
IOF 1 o o ) RO RS v i

—z = 52e(£) Q2e—1(£) _ Q2e+1(£) 2 T
+(1 )nga(é-) D—2e—1(€) 52e+1(£) Se( )
-D-2n—1(£)ﬁ2n(§) 2
Din-1(6)D3u(8) "

and the assertion a) of Theorem 4.1 now follows from the fact D,,(£) = D} (£) which can

Q2n—1(£)1_j2n—2(§)g2n(€)

e=0

=14(z*-1) (=)

be shown by Theorem 3.1, the definition of the canonical moments and the representation

of ¢t and ¢, given in (4.1).

If the probability measure ¢ is symmetric on [—1,1], all canonical moments of odd
order are 3 (see Studden (1982b) or Lau (1983)). In this case we have by Theorem 3.1
Dy = Dy._1foralle > 1, and the weights v, in Theorem 4.2 vanish. We have proved the
following Corollary which gives equations of a simpler form for orthonormal polynomials

with respect to a symmetric measure on the interval [-1,1].

Corollary 4.2. Let ¢ denote a symmetric probability measure are [—1, 1], the orthonormal

polynomials {Qn(z)}n>0 {Sa(2)}n>0, {Rn(z)}n>0 and {Pn(z)}a>0 satisfy the following

equations

Dan—2(£)Dy, ()
D,,_»(6)DF,.(6)

a) PX(z)+ P%(z)

Dje—5(§)  Da(§)

D3n(€) A2
D3, (&) "

= 52e—2 52e
};1[ (€) _ D2(§)

=14 (2?-1)

1(2)

n 52«3—2(6) _ B2(2(6) 2 7) = —.D—gn(f) 14z 9 . 1 —z \ i
Dt Fowcibon ) Ko R R+ 1525k
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c QZe(é.) D2e+2(€) 2 T QZn(§)52n+2(£) 2 T
) {Z[Mo Beera©) O DD ae) ’}

D2n+2(€)
D2n+2(£)

=1- +1(3’)

5. Equations for the Jacobi Polynomials

In this section we will derive some equations for the Jacobi polynomials P,(,a’ﬂ )(:v)
which are defined as the orthogonal polynomials on [—1,1] with respect to the measure
(1 —2)*(1 + z)Pdz (a > —1,8 > —1) with leading coefficient

M +a+pB) 1 TCn+a+B+1) 1
(5.1) kn == _—= —
n 2r T'(n+a+pB+1)I(n+1)27

where I'(z) denotes the Gamma function (see Szego p. 58-98). In what follows let f(z,y) =

%%l denote the Beta-function we have the following theorem.

Theorem 5.1. The Jacobi polynomials piP )(:1:) satisfy the following equations (a >
-1,>-1)

-z a+B+2e+2 (@t+le+l) o(a+1,8) i
) (@) E%(a+ﬂ+n2[ma+ﬂ+1e+np @ﬂ

n B(a+1,n) (a g
+[a+ﬂ+lﬂa+ﬂ+1 n) " ﬂ(ﬂ

3 ta+B+2e+1 Bla+1,e) ("’f’)zr
E: a+pB+1 [ma+ﬂ+1) (=)

_ g2 -1 IB(a + lan) (a41,8+41)
T [Ma+ﬂ+sz”1 @ﬂ

1+:c la+B+2+2[ B(B+1,e+1) (a,ﬂ+1)}
b) Z (a+pB+1)?2 |[Bla+B+1,e +1)P ®)

1+ :3(,6 + 1 n) P(a ﬂ+1)($)]

T BatBr2n) "

l—z [ BB+Ln) _iat1,p) ]
T3 [Ma+ﬂ+2mp (=)

~atB42+1[ BB+1LE) iap ]2
=2 atf+1 [(a+ﬂ+1@P (=)

e=0
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n—1
c) (a+8+1) ! _4"”2 > (a+B+2e+3) [ﬂ(a +1l,e+ 1)P6(°’+1’ﬂ+1)(:v)] ’

e=0

2
[(a +B8+n+2)8(a+1,n+ 1)P,S"+1’f’+”(w)]

1—2z2

4
+4a—ml%3§3a+ﬂ+%+2ﬂma+Le+nﬂw%m@ﬂ2

e=0

+

=1 [(n+ DBla+ 1,0+ DPEGD ()]

l-z%a+B+2+2[ Bla+le+1) (at1,8) 51|
d) (a = B)— ;(a+ﬂ+1)2 Ma+ﬂ+Le+Dh—H @ﬂ

1—z [ Bla+1,n) 1 ]2
7 |Baspizms @

1+$ ,B(a-i-l,n) (a,8+1) ]2
2 [Ma+ﬁ+zmﬂ’ ®)

n

_ a+B+2e+1 Bla+1,¢) (a,ﬂ)m]z
=2 at+p+1 [Ma+ﬂ+L@h (=)

_|_

e=0

Proof: We will only give a proof of equation a) all other cases are treated similarly. For
the application of Theorem 4.1 we have to calculate the determinants D,,_;(£), D2c—1(£),
D, (¢), D2c(€), D7 (€), where ¢ is the probability measure with density proportional to
(1 — 2)*(1 + z)?dz. The canonical moments of ¢ are given by (3.2) and by an application
of Theorem 3.1 be obtain for the factors of the polynomials P?(z) in Theorem 4.1.

5 _ Daea(€) [Dae2(6) _ Dae(€)

ﬂe - D2e—1(€) 2—28—2(6) Qge(f)
DB +et+l(a+ll(a+f+e+1) L
T Ta+e+ DB+ 1)I(e+1)(a+B+1) =1...

E _ QZn—l(&)-l_j2"“2(£).Q.2n(£)

" _52n—1(§)22n—2(€)-12_2+-n(£)
_IB+n+ I (a+ 1) (a+B+n+1) n
T Ta+n+)TB+ TR a+B+2)a+B+2n+1
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and for the factors of the polynomials S?(z)

= — 52(2(6) g2e—1(€) _ g2e+1(£)
®  Daeey L D2e-1(8) Dzetr(€)
I'B+e+1)I(a+1)(a+B+e+2)

" T(ate+ 2B+ )I(a+pB+2)T(e+1)

(a—p8)

D,._»(%) Dye-1(8)
0.0 4 50
we obtain by Theorem 3.1 that the leading coefficients of the polynomials 3,P2(z)(e =

1,...,n—1), B,P2(z) and 7,5%(z) (e =0,...,n — 1) are given by

Because the leading coefficients of P2(z) and S?(z) are given by

T(a+1 ’
1 (a+DIa+B+2e+1) ] atf+2e+1 (e=1,...,n—1),

" 22 [T(e+ Dl(a+e+1)(a+4+1) at+p+1
1 [ I'(a+1)(a+B+2n+1)
22» [ T(n)Ma+n+ 1) (a+ B +2)
1 o+ Do+ B+ 2e+42)
22e+1 [I‘(e + 1N a+e+2)(a+8+2)

2
] and

] (a+ B+ 2e+2)(a—p).

By Theorem 4.1 the polynomials {P.(z)}e>0, {Se(2)}e>0 are orthonormal with respect to
the measures df(z) = k- (1 — z)*(1 + z)Pdz and (1 — z)dé(z) = k' (1 —2)°1(1 + z)Pdé(2)
and a comparison of the leading coefficients of (P{**)(z))? and B,P2(z) and 7,52(z) with
the leading coeflicients of (Pe(aﬂ’ﬂ )(z))2 given in (5.1) yields

(52) B.Pi(z)=

=1,...,n—1

_a+fB+42+1 Blat+le) _ap) ]2
a+pB+1 [ﬂ(a+ﬂ+1,e)Pe (=) ¢

5 prgy— ™ Bla+1,n) (a,ﬂ)zr

(5.4)
7.5@) = 5(a~ )

a+,3+2e+2[ Bla+le+1) P<a+1,m($)r e=0,...,n—1

(a+B+17 [Bla+B+1Le+1) ¢
_D_.zn_1(6)—D_2n(£)

- . . - . . 2
By a similar reasoning we obtain for the leading coefficient of Dot ODF (6 Yn-1 (z)

nooorl 17T 4 Na4B+m+1)Tat1) 12
H 92i—1 H P2 =
=1 =1

Dyn1(§)D2n—2(§) _ 1
22 (I T(n)T(a+ B+ 2)(a+n+1)

Dan-1(6)DF, (&) 2%

1=
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which yields (note that the polynomials Q.(z) are orthonormal with respect to the measure

(1 —22)dé(z) = k(1 — z)*t(1 + 2)P+1de)
Djn—1(§)D2n-2(¢) 2 (p) = 1 Platln) patiery, )]
Dons(ODE©) " T4 [Blatpram
By an application of Theorem 4.1, (5.2), (5.3) and (5.4) we now obtain

n Ba+1,n) Pleh) (g )] E:Ia+,3+2e+1[ Bla+1,¢) (“ﬂ)(w)r
a+B+1B(a+pB+1,n) a+8+1 Bla+ B+ 1,e)

ex=1

N T R e+ B +2+2 Bla+1,e+1) (a+1,ﬁ)}
* L G hrip (Fathinernye @
_ 22-1[ Bla+1, n) plotio+y) ]

which completes the proof of the theorem (in the case a)).

In the following we will apply this theorem to derive equations for measures with
canonical moments of odd (or even) order equal 1/2. It is well known that the measure
€ is symmetric if and only if py;_1 = % ¢ =1,2,... (see Studden (1982b)). In the case of
Jacobi polynomials this condition yields @ = 8 and the equations of Theorem 5.1 reduce
to equations for the ultraspherical polynomials (see Szegd (1959) p. 81-86) which are given
by (a > —1)

(5.5) C("‘)(w) T(a + 3)I(n + 2a) Pla=1/2,0- 1/2)(:5)
F2a)I(n+a+3) "

By an application of this formula we obtain the following Corollary.

Corollary 5.2. For the ultraspherical polynomials defined in (5.5) we have the following

equations

a) [0 —Z e e@)] = [ @) (@2 - 1)

b) 1—|2-:c ﬂﬁ((zaa +;1’7;))P(a 1/2, a+1/2)( )] [ﬂﬂ((;a-:.21,7;)) plati/2,a— 1/2)( )]2
S o]
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) 4a(1 — z?) ni:(e +a+1)[Ba+ e+ e (z)| :

e=0

+(1-2%) [@a+n+1)8(2a +1,n + 1)CE ()] 2

+ [(n +1)B(n+1, 2a)C’,(:|_)1(x)] ’ =1

If all canonical moments of odd order are equal % we have o = —1 — § (where

B € (—1,0)) and obtain the following equations for the Jacobi polynomials p{Pp )(:1:)

Corollary 5.3. The Jacobi polynomials p{Pp )(:c) satisfy the equations (8 € (—1,0))

2 z2-1
T4

a) [nB(=8,m) P10 (a)| [rB(=8,m) P

=140+ D52 T e 4 ) [+ P

e=0

11—z

2

14z
2

b) [#B(8 + 1,m)PLE134 ()] 4 222 (8 +1,m) PP (z)]

n—1
=1- B+ DIEE Y (2 +1) [B(B + L e + DPA1A4(r)]
e=0

c) 1 —4x2 [(n +1)B8(-B,n + 1)P1(;_ﬂ’ﬂ+1)(x)] 2 N [(n FD)B(—fint 1)P,(,;f_1’ﬂ)(az)] 2

= 1+Ep )5S > e+ 1) (=B, + VRO (z)]|

e=0

1—2z

2

142
2

) [rB(=8,mPL =180 4 222 [B(—8,mPS PO (z)]

= 14+@8+ D)5 Y e+ 1) [B(-p e+ DPO)]

e=0
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6. Equations for Legendre and Chebyshev Polynomials

Let P,(z) denote the n-th Legendre polynomial which is orthogonal with respect to
the lebesgue measure and satisfies P,(1) = 1 (see Szegd (1959)). It is well known, that

Pu(z) = CP(2),  Pl(z)=CZ\(a)

(see Szegd (1959) p. 84). From Corollary 5.2 we obtain the following identities for the
polynomials P,(z).

Proposition 6.1. The Legendre polynomials satisfy the following equations

n—1

a) [nPa(2)]* — ) (2e + 1)PZ(2) = [Ph(2)]*(a* — 1)

e=0

1—

== Fol(n+ DI = Y (20 + VP2 (2)

2

b) [(n+ )P () +

c) (1—x2){1§(2e+3) [@—%]Z [%(-i?—)r}-i-Pz_,_l(x):l

e=0

For the Chebyshev polynomials of the first and second kind we obtain from the equa-
tions given in Corollary 5.2 (& = 0,a = 1) and Corollary 5.3 the following identities
which are the generalizations of (1.2) given in the introduction (note that C’,(,l)(:c) = U,(z)
clriir%) %C’,(,a)(a:) = C’,(zo)(a:) = 2T,(z) and U’ (z) = 207(,2)(:10) (Abramowitz and Stegun
(1964)).

Proposition 6.2. For the Chebyshev polynomials T, (z) and U,(z) the following identities
hold.

a) Ta(z) = (2 = 1)UZ_y(2) +1

b) [gUn(:v)] g nz_:l(e + 1)Uz) = (z® — 1) [%2@_)] :

e=0
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¢) (1-z?) {i(e +2) [B(3,e+ 1)UL ()] + [(n Z’I}“;E,(fi 2)] } + [UZ:I-(; )] =1
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