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1. Introduction

There has recently been considerable interest in the development of the robust
Bayesian approach to statistics. Berger (1990) presents a reasonably current re-
view. The basic idea is to replace the common single prior distribution in Bayesian
analysis by a wide (often nonparametric) class of priors.

We will be concerned with inference concerning an unknown parameter 8, assumed
to lie in the parameter space ©, with the experimental evidence about 6 being
provided by the observed likelihood function '

£(6) = f(z|0);

here f(z|0) is the density of the observed data z, which will usually be suppressed
in the notation.

For a prior distribution #, the posterior distribution of 8 is then given (under mild
conditions) by

7* (d0) = m(d0)¢(6)/m,

where m = [ £(0)7(df). In most of our examples, © will be Euclidean and 7 will
be assumed to have a density w.r.t. Lebesgue measure. For simplicity in such cases
we will let the prior density be denoted by = (6).

Instead of supposing the specification of a single prior 7o, suppose we know only
that # € T, a class of distributions on ©. This class could arise in at least two
ways:

(i) T could be used to represent uncertainty in the prior elicitation process;
(ii) T could consist of the differing prior distributions of a group of individuals.

In either case, there will be some posterior quantity p(m) of interest (e.g. the
posterior mean, posterior variance, posterior probability of a credible region or
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hypothesis, or posterior expected loss) and we will seek

= inf Pr = .
pp = inf p(7), Pr sup p(7)
The hope, of course, is that the range (BI" Pr) is small enough that the inde-
terminacy in the prior is deemed to be essentially irrelevant, allowing a claim of
robustness with respect to the prior, or alternatively that either pr. O Pp alone
conveys an interesting message.

We will focus on the application of robust Bayesian analysis to hypothesis testing,
with T' chosen to reflect a wide range of differing prior distributions (as in case
(ii) above). The reason is that rather startling conclusions can be obtained, con-
tradicting certain commonly held attitudes towards hypothesis testing. Also, this
approach can be seen to yield a quantified Occam’s razor, i.e., a theorem estab-
lishing that a simpler model is more likely to be true than a complicated model
when both models are reasonably compatible with the data.

Section 2 develops the notation for hypothesis testing and reviews and extends a
key robust Bayesian result. Section 3 considers the application to Occam’s razor,
and Section 4 presents an application to multinomial testing.

2. Hypothesis Testing

2.1 Setup

We will consider testing of a simple hypothesis Hp:0 = 0o versus a composite
hypothesis Hy:0 € ©;. Often, but not always, ©; = {# € ©:0 # 0p}. When
considering “Occam’s razor,” Hy will represent the “simple” model and H; the
“complicated” model.

In this situation, a prior distribution is specified by 7o, the prior probability that
Hy is true, and g(0), the prior density of 8 given that H; is true. The posterior
probability that Hg 1s true given the data ts then

Pr(Holz) = [1 + (1;—0"") : Big] - (2.1)

where the Bayes factor, By is given by

By = (6c)/ | 4(0)a(0)do. (2.2)

In the absence of specific prior probabilities of the hypotheses, it is common to
choose 7g = %, or to simply use the Bayes factor to measure the evidence against



Hjp. Note the simplicity of interpretation: Pr(Hp|z) is easily understandable by
even nontechnical people, and By, which can be thought of as the odds for Hp to
H; in light of the data, is also readily interpretable. Contrast these to P—values,
which are frequently misinterpreted.

The uncertain part of the above program is choice of g. Jeffreys (1961) recommends
a particular, not unreasonable, choice, but the conclusion is often sensitive to this
choice. It is thus of interest to take a robust Bayesian approach to the problem,
which begins by considering a class G of possible choices for g and then determining

B= glgng and Pr(Holz) = glgg Pr(Hp|z). (2.3)

These give lower bounds on the amount of evidence against Ho that is provided by
the data. Upper bounds are also possible — cf., Edwards, Lindman, and Savage
(1963), but we will focus on the lower bounds for reasons that will become clear.

A number of somewhat tangential issues can be raised concerning testing of hy-
potheses such as Hp:8 = fp. One such issue is that it is virtually never the case
that one entertains the possibility that § = 6y exactly; rather, one believes that
0 might be “close” to 8p. Conditions under which a point null can be used to
approximate this more realistic hypothesis are given in Berger and Delampady
(1987). Discussion of other somewhat controversial issues concerning such testing
can be found in Edwards, Lindman, and Savage (1963), Berger and Sellke (1987)
and Berger and Delampady (1987). Related work includes Casella and Berger
(1987), DeGroot (1973), Delampady (1989a, 1989b), Dempster (1973), Dickey
(1977), Good (1983, 1984), Jeffreys (1961), Lindley (1957), Shafer (1982), Smith
and Spiegelhalter (1980), and Zellner (1984).

2.2 The Robust Bayesian Methodology

We will utilize in our applications only one of the simplest of the robust Bayesian
technical results, the proof of which is standard.

Lemma 1. Suppose that the class of conditional priors g is
G={g(9) = / gr(0)dF(r): F is any c.d.f. on [0,00)}. (2.4)
e,

Then

B = inf By = 4(6)

gEG sup fel £(0)g,(0)d8° (2.5)

Example 1. Suppose § € R! and

1 o8V /(207
£(0) = — e(==0)°/(2o7) (2.6)




Consider

G, = {all g(0) that are symmetric about 8; and nonincreasing in |8 — 8;|}.
(2.7)
Then a standard argument yields that Gy, is as in (2.4), with the g, () being the
Uniform (6, — r, 0; + r) densities. Thus (2.5) yields

0,+r
B = £(0c)/sup = /0 £(8)do. (2.8)

1—r

An iterative expression for computing (2.8) is given in Berger and Sellke (1987), but
a quite accurate closed form approximation is available. Indeed, the approximation

B= \/—-72; e~ %/2]t, + \/2log(t: + 1.2))], (2.9)

where to = |z — 0o|/o and t; = |z — 04|/0, turns out to be within o(1) of B as
t; — oo and always accurate within 1% if ¢; > 1.4. This lower bound corresponds
to a maximizing r in (2.8) of approximately

F =t + [2log(t: + /2log(t: + 1.2)) — log(27)]'/2. (2.10)

2.3 Comparison with P—values

The first use of these results, in Berger and Sellke (1987), was in comparing B
with the corresponding P—value in testing Ho:0 = 0 versus H;:0 # 0p. Here is
an interesting example.

Example 1(a). In Jefferys (1990), a large experiment involving psychokinesis was
reanalyzed from the Bayesian perspective. When expressed in the canonical form
of Example 1, the null hypothesis of “no psychokinesis present” is Hp: 8 = 0, while
the alternative hypothesis of “psychokinesis present” is H;:0 # 0. The sample
size was huge (n = 104,490,000) so that normality could be assumed, and the
standardized test statistic was

|z -0

t1 = = 3.614.
(4

The corresponding P-value was about .0003, which was argued in the original
analysis by the experimenters to provide very strong evidence in favor of H;.

Jefferys’s Bayesian analysis indicated that quite the opposite conclusion probably
holds. Indeed, he argued that for reasonable conditional priors, g(#), the Bayes



factor is actually greater than one, indicating the data supports Hy, not H;. Of
interest for this paper is the lower bound, B, on the Bayes factor (obtainable from
(2.8)), since this can be viewed as the maximum possible support for H; that the
data provides. (One can argue that the class G in (2.7) includes all reasonably
“objective” g.)

In this example, (2.9) applies with o = 6, = 0 and ¢, = ¢; = 3.614, yielding
B=1 /159. The interpretation of a Bayes factor of 1/159 is that H; is supported
159 times more than Ho, but recall that this is the lower bound on By. It is
achieved at the Uniform (—.00022,.00022) conditional prior distribution g(4) (the
value .00022 being computed from (2.10)), and most people would view a prior that
was so narrowly constrained about zero to be unreasonable (hence the argument
by Jefferys (1990) that “reasonable” g(@) show that the data actually support Hyp).
In any case, it is of interest that the very small P-value of .0003 “translates” into
at most 1/159 evidence against Hyp.

In Berger and Sellke (1987) it is similarly shown that a P-value of 0.05 translates
into at most 1/2 evidence against Ho, and a P-value of 0.01 into at most 1/8
evidence against Ho.

3. Occam’s Razor

3.1 Background

Occam’s razor, that is, the principle that an explanation of the facts should be
no more complicated than necessary, is an accepted principle in science. Over the
years it has proven to be an effective tool for weeding out unprofitable hypotheses,
and scientists use it every day, even when they do not cite it explicitly.

Occam’s razor is usually thought of as an heuristic, that experience has shown to be
an effective tool. It is less widely known, however, that under some circumstances
it can be regarded as a consequence of deeper principles. This fact is implicit in
Jeffrey’s book on probability (1939), and has more recently been emphasized by
Jaynes (1979), Smith and Spiegelhalter (1980), Gull (1988), and Loredo (1989).

Jeffreys (1939) considered the problem of fitting observed data to an empirical
function. Considering a falling body, he considers the law

1
s=a+ut+ Egtz, (3.1)

where a, u and g are adjustable parameters. So far this is only a standard problem
in estimation theory. However, there are infinitely many possible laws that can
represent the data set. For example, Jeffreys considers alternative laws of the form

1
s=a+ut+Egt2+a3t3+...+ant", (3.2)



where n is greater than the number of observations and all coefficients are ad-
justable. Given such a law, there are infinitely many choices of the parameters
that will exactly fit the data, and the question is, why do we prefer (1) over (2)?
The easy answer, given by Occam’s razor, is that we ought to prefer (1) to (2),
assuming that (1) adequately represents the observed data, on the grounds that
(2) is unnecessarily complicated. On the other hand, (2) can actually represent
the observed data points better than (1), since it can be arranged to pass exactly
through each data point. So there must be something other than the ability to fit
the data that leads us to prefer the simpler law to the more complex.

3.2 Quantification of Occam’s Razor

Consider the situation where we can identify the simpler law with Hop: 0 = 8, (0o
specified) and the more complex law with H;:0 € ©;. The law H; is more com-
plex because it has a “free parameter” 8. Then if data z is collected according to
f(z|0), Bayesian reasoning states that the Bayes factor, By, reflects the compar-
ative support of the data for Hy and H,. If, furthermore, only ¢ € G need to be
considered, then
B = inf By
geG

becomes a lower bound on the comparative evidence for Hy to H;. If this lower
bound happens to be large, we can conclude that the evidence strongly supports
the simpler model Hp.

Example 1(b). If f(z|d) is Normal (8, ¢2), and it is reasonable to consider only
g € Gy, from (2.7) (as is commonly the case when ©; = {0:0 # 0:}), then (2.8)
(or (2.9)) provides the quantification of Occam’s razor.

3.3 An Example: The Motion of Mercury’s Perihelion

Ever since Leverrier’s work in the early 19th century, astronomers were aware of
a serious problem with the theory of Mercury’s motion. Newtonian theory, which
had been extraordinarily successful in accounting for most of the motions in the
solar system, had run up against a small discrepancy in the motion of Mercury
that it could not explain easily. After all of the perturbing effects of the planets
had been taken into account, there remained an unexplained residual motion of
Mercury’s perihelion (the point in its orbit where the planet was closest to the
Sun) in the amount of approximately 43 seconds of arc per century.

Clearly, it seemed as if something had been overlooked. It was known that physical
mechanisms existed that might explain the discrepancy. One that seemed partic-
ularly appealing in the light of recent experience was the possibility that another
planet might exist, closer to the Sun than Mercury. The reason that this idea
was so appealing was that Leverrier himself, along with the English astronomer



Adams, had recently (in 1846) met with brilliant success by predicting that a pre-
viously unknown planet was responsible for the known discrepancies in the motion
of Uranus; not only did Leverrier and Adams hypothesize that such a planet ex-
isted, but they also suggested where it might be found, and indeed, when J.G.
Galle looked for it, the planet Neptune was discovered in the predicted place. It
certainly seemed possible that a similar phenomenon might explain the anomaly
in Mercury’s motion.

Indeed, a number of astronomers duly set out to find the new planet, dubbed
“Vulcan” in anticipation of its discovery, and some sightings were announced.
However, the sightings could not be confirmed, and over time interest in the Vulcan
hypothesis waned.

Other mechanisms that might explain the anomaly were also proposed. It was
suggested that rings of material around the Sun could, if massive enough, produce
the observed effect; or, the Sun itself might be slightly oblate, due to its rotation
on its axis; or, finally, the law of gravity itself might not be exactly right. The
astronomer Simon Newcomb, for example, proposed that the exponent in Newton’s
law of gravity might not be exactly 2, but instead might be 2 + ¢, although other
modifications to the law of gravity were also possible.

All these hypotheses had one characteristic in common: they possessed a parame-
ter that could be adjusted to agree with whatever data on the motion of Mercury
existed. In modern parliance, we would call this a “fudge factor.” For example,
the Vulcan hypothesis had the mass of the putative planet; the ring hypothesis had
the mass of the ring of material; the solar oblateness hypothesis had the unknown
amount of the oblateness; and all the hypotheses that modified Newton’s law of
gravity had an adjustable parameter (like Newcomb’s €) that could be chosen at
will.

Not all the hypotheses were equally probable, however (Roseveare, 1982). As
we stated above, sightings of “Vulcan” were never confirmed, for example. As
time went on, the hypothesis of matter rings of sufficient density became less and
less likely (Jeffreys, 1921) although some still believed in them (Poor, 1921). A
solar oblateness of sufficient size probably would have been detectable with 19th
century techniques. However, the hypothesis that Newton’s law of gravity needed
an arbitrary adjustment to fit the data could not be ruled out.

What happened historically is well known. In 1915, Einstein announced his theory
of general relativity, one of the consequences of which was that there should be
an excess advance in the perihelion motion of the planets that was largest for
Mercury. After some confusion (Roseveare, 1982: pp. 154-159) it soon became
clear that the amount of the advance predicted by general relativity was very close
to the unexplained discrepancy in Mercury’s motion. The amazing thing was that



the predicted value (42.98” /century using modern values, Nobili & Wills, 1986)
was not some kind of fudge factor, but instead was an inevitable consequence of
Einstein’s theory!

As is well known, Einstein’s theory made two other major predictions in addition
to Mercury’s perihelion motion (gravitational bending of light, and the slowing
down of clocks in a gravitational field). There has been a lively debate over the
years as to how important each has been in convincing scientists that general
relativity was the correct theory of gravity (Brush, 1989). In this paper we will
not go into this argument, but will instead try to put ourselves into the mindset
of a Bayesian observer in the early 1920s, who is trying to weigh the evidence of
Mercury’s motion.

An interesting pair of papers was published in 1921 (Poor, 1921; Jeffreys, 1921).
Poor was an astronomer at Columbia University, who had not been convinced
that general relativity was correct and still clung to the matter ring theory. Un-
fortunately, he also made some serious errors in his assessment of the evidence as
regards the other inner planets. Jeffreys, in response, argued persuasively that the
ring theory was not viable because sufficient matter did not exist. This paper was
published before Jeffreys made his major contributions to probability theory, and
he does not, ironically, make the Bayesian argument that we discuss.

Poor gives the data z = 41.6” + 1.4” for the centennial anomalous motion of
Mercury. The uncertainty is undoubtedly a “probable error” (conforming to con-
vention at the time) so the standard deviation would be o = 2.0”. Poor also gives
0o = 42.9” as the amount predicted by Einstein’s theory, which is very close to
the modern value. Thus, in our setup, general relativity would correspond to the
hypothesis Hp: 0 = 42.9”, where 0 refers to the true perihilion advance.

Specifying the alternative hypothesis, H;, is not as difficult as it might at first ap-
pear to be. Adopting the “prior-to—~data” perspective, one can ask — what value
of 8 would one anticipate, conditional on any of the “fudged Newton” hypotheses
being true? Recall that we have scaled so that § = 0 corresponds to Newtonian
theory, so a first effort might be simply to define H;:0 # 0. Also, large devia-
tions from Newtonian theory would likely have seemed less plausible apriori than
small deviations, and most of the alternative theories (with the possible exception
of “Vulcan”) would have equally allowed positive or negative §. Thus the class
of priors, G, specified by (2.7) with §; = 0 would have seemed very reasonable.
(Further restrictions could be imposed upon G by incorporating other prior infor-
mation — for instance, any law resulting in |§| > 100 would have caused anomalies
in the orbits of other planets that would quite likely have been detected — but we
shall see that there is no need to further refine G.)

Applying the quantification of Occam’s razor in (2.9) (implicitly assuming a normal



error for the data), we obtain

41.6 — 42.9 41.6 ~
_ 1416429 _ 65 ana t) = la6-0f _ 20.8,

¢
° 2.0 2.0

and

A

B= \/g e (068)°/2(90.8 + \/210g(20.8 + 1.2)] = 15.04.

Thus the data supports the simpler law (general relativity) over any of the more
complex laws by at least a factor of 15 to 1. The g(6) at which this minimum is
attained is the Uniform (—44.87”, 44.87”) density (determined from (2.10).) This
is not an unreasonable g(#) (in contrast with the minimizing ¢ in Example 1(a))
but it still is the g that is “most favorable” to H;. Hence the 15 to 1 odds in favor
of general relativity should be thought of as probably too low, i.e., the evidence
for the simpler general relativity is actually probably quite a bit stronger.

Note that this happened in spite of the fact that the data is, if anything, more
compatible with H; than Hy (since H; can fit the data exactly). The Occam’s
razor effect is thus dramatic.

3.4 Conclusions

The situation in the example of Mercury’s perihilion is not uncommon, and one
can restate the conclusion as follows:

Occam’s Razor (Quantified): Suppose data conflicts with an “established” theory
by t; standard deviations. Two alternative theories are proposed. Theory 1 has
no additional parameters and conflicts with the data by to standard deviations.
Theory 2 has an additional free parameter and so can exactly accommodate the
data. Then the odds for Theory 1 over Theory 2 are at least B (see 2.9)).

As a final comment, it should be observed that there are other “Occam’s razors.”
One such is that simpler models may well be assigned larger prior probabilities.
(Jeffreys (1939) seems to argue for such.) Note that, by operating only with Bayes
factors, we circumvented the issue of what prior probabilities to assign hypotheses.
The Occam’s razor we developed does not depend on prior probabilities of the
hypotheses.

Another “Occam’s razor” is that simpler models may be more useful for reasons
of parsimony. They may be just as good for actual predictive purposes as a “true”
but more complex model, and their simplicity would then make them attractive
for practical use. The Occam’s razor in this paper bears no obvious relationship
to such a “parsimonious Occam’s razor.”



4. A Multi-dimensional Example: Multinomial Testing

Similar ideas and results apply in higher dimensions. As an illustration, we con-
sider the multinomial testing problem. (See Good, 1967, and Berger and Delam-

pady, 1990) for related results.) Thus, suppose X = (Xi,...,Xp+1) ~ Multino-

. r+1
mial (n,6), where the z; are nonnegative integers, ¥ z; = n, and
1=1

0c0={0,...,0p):0<0;<1fori=1,...,p, and )5 6; < 1}.
1=1

Defining 6,11 = 1— f} 0;, the resulting likelihood for 6 given z is then proportional
=
to ' 1
6(6) = 1 6%, (4.1)
i=1

and the Bayes factor (2.2) for testing
Ho:0=0°=(69,...,65) vs. Hy:0+#6°
is

= £(6°)/ /e £(0)g(6)do. (4.2)

It is not easy to define a sensible G here, for which computation of the Bayes
factor and lower bounds are relatively easy. One possibility is to first transform
to “centered” log odds

(8) =1 i_l 6
§i(0) = log og . (4.3)
Op+1 0p+1

It will frequently be natural to consider coordinatewise symmetry in the &;(6),
leading to natural “base” conditional priors

xm
|

r) 61

where £ = (§1,...,&p) and I(_, (&) stands for the indicator function on (—r,r).
A wide class, G, of “plausible” conditional priors is then given by mixing over r,
as in (2.4).

As in Lemma 1, it then follows that

B=inf By = 1nfB,,
geG



where (transforming variables)

B, = (2r)*/ / (e)de; (4.4)

(—rr)?

here (—r,r)? = (—r,r) x (-r,r) X ...(-r,r), and

n ,
e = [02+1 + él 67 ee"] exp {; 6.-2:;} : (4.5)

A Monte-Carlo approximation to the integral in (4.4) (see the Appendix for dis-
cussion) is, for r > 0,

(2r)Pm (iil 'r,-d,-(r)) -
4600 fia+1696) - &

A

B'-:

— , (4.6)
z
j=1

where, for: =1,...,p,

. ,'00 1/2
Ei = lOg (h-*'-—:)'> ) T = (.675) (‘1‘ + 1 ) ) (4.7)

$p+10, z; Tpi1
e CFE gy &)
c‘(r) (Ti + |r + é;l) ’ t(r) (Ti + |T _ é‘l) C;(r),
() = &+ Wi (1= Wi )78, Wi = cilr) + di(r)Us s (4.8)

here the {U; ;} are i.i.d. 4(0,1) random variables.
As examples, consider the three situations

(i) p= 2,n= 13,2:1 = 7,2:2 =5,$3 — 1,00 — (l 1 l);

373’3
(ii)p=3,n=11,z1=T,22=2,23 =24 = 1,0° = (%’%’%’%);
(lll) p=3,n=14,21 = 9,22 = 3,23 =14 = 1’00 = (i’%’-}i’i‘)

The lower bounds B can be found by minimization of B, in (4.6) over r. (In
carrying out these minimizations, one should fix the random variates used in the
Monte-Carlo computation.) These lower bounds, and the corresponding P—values
for the three cases, turn out to be
(i) B = 0.752, P-value = 0.100;
(ii) B = 0.257, P-value = 0.053;
(ili) B = 0.065, P-value = 0.008.



A rather strong “Occam’s razor” effect is evidenced in all cases. For instance, in
case (i) the data appears to fit the more complex model H; quite a bit better than
the simpler model Hp, but the Bayes factor is not much smaller than 1 for any
prior g € G. In all cases the Bayesian Occam’s razor shifts the weight of evidence
towards the simpler model.

Appendix

That B, in (4.6) is a Monte-Carlo approximation to B, follows directly from the
observation that the E,(J ) (r) in (4.8) are independent random variables with density

g:(¢P(n) = 1/ [ndilr) (1 + 162 () - &il/m)?] s (4.1)

so that the expression in (4.6) is the usual Monte-Carlo approximation with impor-
p
tance function II g;(-) (cf. Berger, 1985, for discussion). The reason for choosing
=1

this importance_function is that it is easily computable, easy to generate random
variables from, has fat tails, and mimics the likelihood function on the domain of
integration.

In elaboration of this last point, note 'thal; the usual “observeq likelihood” approx-
imation to £(£) is proportional to a Ny(§,¥) density, where £ = (£1,...,¢p) with
the &; defined in (4.7), and

L = diag {i, —}—}-i— 1 (1),

’
I Zp Zp+1

with diag { } denoting a diagonal matrix with the given diagonal entries, and

(1) denoting the p X p matrix of all ones. Here § is the m.Le. of £({), and ¥ is
the inverse of the observed information corresponding to £(§) (cf. Berger, 1985).

Because fatter tails than normal are desirable for an importance function, we
consider, for £;, the importance function

1
Con(1+ |6 - &)Y

g; (&) (A.2)

with quartiles chosen to match the normal density (hence the choice of 7; in (4.7)).
For simplicity, we consider the £; to be independent in this new importance func-
tion.

The final alteration needed arises because the domain of integration is & €
(-r,r),s = 1,...,p. One of the pleasant features of g} in (A.2) is that the con-
ditional density obtained by conditioning on &; € (—r,r) becomes the also simple



(A.1). Hence the densities in (A.1) define the actual importance function used.
Note that, if one attempted to incorporate into the importance function the depen-
dence among the original ; (or that in the Np(f, %) approximation), the ability
to transform the importance function to have range precisely equal to the domain
of integration would be lost.
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