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ABSTRACT

In this article, a resampling procedure, called the stationary bootstrap, is introduced
as a means of calculating standard errors of estimators and constructing confidence regions
for parameters based on weakly dependent stationary observations. Previously, a technique
based on resampling blocks of consecutive observations was introduced by Kiinsch (1989)
and independently by Liu and Singh (1988) in order to construct confidence intervals
for a parameter of the m-dimensional joint distribution of m consecutive observations,
where m is fixed. This procedure has been generalized by Politis and Romano (1989,
1990) by constructing a ‘blocks of blocks’ resampling scheme that yields asymptotically
valid procedures even for a multivariate parameter of the whole (infinite-dimensional)
joint distribution of the stationary sequence of observations. These methods share the
construction of resampling blocks of observations to form a pseudo time series, so that the
statistic of interest may be recalculated based on the resampled data set. However, in the
context of applying this method to stationary data, it is natural to require the resampled
pseudo time series to be stationary (conditional on the original data) as well. While the
aforementioned procedures lack this property, the stationary procedure developed here
is indeed stationary and possesses other desirable properties. The stationary procedure
is based on resampling blocks of random length, where the length of each block has a
geometric distribution. In this article, fundamental consistency and weak convergence
properties of the stationary resampling scheme are developed.
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1. Introduction

The bootstrap of Efron (1979) has proven to be a powerful nonparametric tool for
approximating the sampling distribution and variance of complicated statistics based on
1i.d. observations. Recently, Kiinsch (1989) and Liu and Singh (1988) have independently
introduced nonparametric versions of the bootstrap and jackknife that are applicable to
weakly dependent stationary observations. Their resampling technique amounts to resam-
pling or deleting one by one whole blocks of observations, in order to obtain consistent
procedures for a parameter of the the m-dimensional marginal distribution of the station-
ary series. Their resampling procedure has been generalized in Politis and Romano (1989,
1990) and Politis, Romano and Lai (1990) by resampling ‘blocks of blocks’ of observations
to obtain asymptotically valid procedures even for multivariate parameters of the whole

(infinite-dimensional) joint distribution of the stationary time series.

In this article, we introduce a new resampling method, called the stationary bootstrap,
that is also generally applicable for stationary weakly dependent time series. Similar to
the block resampling techniques, the stationary bootstrap involves resampling the original
data to form a pseudo time series from which the statistic or quantity of interest may be
recalculated; this resampling procedure is repeated to build up an approximation to the
sampling distribution of the statistic. However, in contrast to the aforementioned block
resampling methods, the pseudo time series generated by the stationary bootstrap method
is actually a stationary time series. That is, conditional on the original data X, - - - , XN,
a pseudo time series X7, -+, X} is generated by an appropriate resampling scheme which
is actually stationary. Hence, this procedure attempts to mimic the original model by
retaining the stationarity property of the original series in the resampled pseudo time
series. As will be seen, the pseudo time series is generated by resampling blocks of random
size, where the length of each block has a geometric distribution. In contrast, the moving
blocks procedure of Kiinsch and Liu and Singh is based on resampling blocks of fixed
length.

In Section 2, the actual construction of the stationary bootstrap is presented and
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comparisons are made with the block resampling method of Kiinsch and Liu and Singh.
Some theoretical properties of the method are investigated in Section 3 in the case of the
mean. In Section 4, it is shown how the theory may be extended beyond the case of the

mean to construct asymptotically valid confidence regions for general parameters.



2. The Stationary Bootstrap Resampling Scheme

Suppose {Xn,n € Z} is a strictly stationary and weakly dependent time series, where
the X, are, for now, assumed to be real-valued. The degree of dependence will be quantified
by Rosenblatt’s a-mixing coefficient, but is left unspecified for now. Suppose x is a pa-
rameter of the whole (infinite-dimensional) joint distribution of the sequence {X,,n € Z}.
For example, 4 might be the mean of the process or the spectral distribution function.
Given data Xi,--- Xy, the goal is to make inferences about u based on some estimator
Tn = Tn(X1,: -+, Xn). In particular, we are interested in constructing a confidence region
for p or constructing an estimate of the standard error of the estimator T. Typically,
an estimate of the sampling distribution of Ty is required, and the stationary bootstrap
method proposed here is developed for this purpose. In general, we are led to considering
a “root” or an approximate pivot Ry = Rn(X1,---,Xn;u), which is just some functional
depending on the data and possibly on u as well. For example, Ry might be of the form
Ry = Tn — p, or possibly a studentized version. The idea is that is the true sampling
distribution of Ry were known, probability statements about Ry could be inverted to
yield confidence statements about u. The stationary bootstrap is a method that can be
applied to approximate the distribution of Ry .

To describe the algorithm, let
Bip = {Xi, Xiy1, -+, Xigp-1} (1)

be the block consisting of b observations starting from X;. In the case J >N, X;is
defined to be X, where i = j(modN) and X, = Xy. Let p be a fixed number in [0,1].
Independent of X;,---,Xn, let Ly, Ls,--- be a sequence of independent and identically
distributed random variables having the geometric distribution, so that the probability of
the event {L; = m} is (1 — p)™~!p for m = 1,2,---.. Independent of the X; and the L;,
let Iy, I, - - - be a sequence of independent and identically distributed variables which have
the discrete uniform distribution on {1,---,N}. Now, a pseudo time series X$,--, XN
is generated in the following way. Sample a sequence of blocks of random length by

the prescription By, L1»Br,,L,,+ -+ The first L; observations in the pseudo time series
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1 -, XN are determined by the first block By, 1, of observations Xy, ,---, X7, 41,1,
the next L, observations in the pseudo time series are the observations in the second
sampled block By, 1,, namely Xr,,-+,Xr,4+1,-1. Of course, this process is stopped once
N observations in the pseudo time series have been generated (though it is clear that the

resampling method allows for time series of arbitrary length to be generated).

Once X7,---,X} has been genératéd, one can compute the quantity of interest
Tn(XY,---,X¥) or Rn(XY, -+, XN;Tn) for the pseudo time series. The conditional
distribution of Rn(X7Y,---,Xn;Tn) given Xy,---,Xn is the stationary bootstrap ap-
proximation to the true (unconditional) sampling distribution of Ry(Xy,---,X,,x). By
repeatedly resampling and simulating a large number B of pseudo time series in the exact
same manner, the true distribution of Ry(X1,---,XnN; ) can be approximated by the

empirical distribution of the B numbers Ry(X7,- -+, X7;Tn).

An alternative and perhaps simpler description of the resampling algorithm is the
following. Let X7 be picked at random from the original N observations, so that X7 = X7, .
With probability p, let X; be picked at random from the original N observations; with
probability 1 — p, let X3 = X, 41 so that XJ would be the “next” observation in the
original time series following X, . In general, given that X is determined by the Jth
observation X in the original time series, let X}, ; be equal to Xjy; with probability

1 — p and picked at random from the original N observations with probability p.

The following proposition, though obvious, is of fundamental importance.

Proposition 1. Conditional on Xj,---,Xn, the pseudo time series Xy, XJ,--., X} is

stationary.

Of course, much more is actually true. For example, if the original observations
X1, -, XN are all distinct, then the new series X}, X}, is, conditional on X;,---, Xy,
a stationary Markov chain. If, on the other hand, two of the original observations are
identical and the remaining are distinct, then the new series X7,.-., X}, is a stationary

second order Markov chain. An obvious generalization, depending on the number of iden-
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tical subsequences of observations can be made. In fact, if m is the largest b such that,
for some ¢ distinct from j (and both ¢ and j between 1 and N), B;, and B;; are identical
(and m = 0 if all observations are distinct), then the series X{,---, X} is a (m 4 1) order

Markov chain.

The stationary bootstrap resampling scheme proposed here is distinct from that pro-
posed by Kinsch (1989) and Liu a.nd Singh (1988). Their “moving blocks” method is
described as follows. Suppose N = kb. Resample with replacement from the blocks
By, -, BN_p+1,4 to get k resampled blocks, say By,---,B;. The first b observations
in the pseudo time series are the sequence of b values in By, the next b observations in
the pseudo time series are the b values in BJ, etc. In the case, N is not divisible by b,

let & be the smallest integer satisfying bk > N. Resample k blocks as above to generate
X7,y Xpp. Now simply delete the observations X7} for j > N.

Some of the similarities and differences between the stationary bootstrap and the
moving blocks bootstrap algorithms should be apparent. To begin, the pseudo time series
generated by the moving blocks method is not stationary. Both methods involve resampling
blocks of observations. In the moving blocks technique, the number of observations in each
block is a fixed number b. In the stationary bootstrap method, the number of observations
in each block is random and has a geometric distribution. The methods also differ in how
they deal with end effects. For example, since there is no data after Xy, the moving
blocks method does not define a block of length b beginning at Xy (if & > 1). In order
to achieve stationarity for the resampled time series, the stationary bootstrap method
“wraps” the data around in a “circle”, so that X; “follows” X . More specific comparisons

of mathematical properties will be made later.

Variants on the stationary bootstrap based on resampling blocks of random length are
clearly possible. Instead of assuming the L; have a geometric distribution, one can consider
other possible distributions. Moreover, other distributions for the I; can be employed as
well. In this way, the moving blocks may be viewed as a special case. The choice of L;
having a geometric distribution and I; the discrete uniform distribution was made so that

the resampled series is stationary. Of course, there are other possible resampling schemes
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that achieve stationary for the resamples series. For example, one could take the series
I,+++, X} as previously constructed and add an independent series Z},- .-, Z% toit, as
a “smoothing” device. For the sake of concreteness, attention will focus on the particular

scheme initially proposed in this paper.

Another way to think about the difference between the moving blocks method and
the stationary bootstrap is the following. For each fixed block size b, one can compute a
bootstrap distribution or an estimate of standard error of an estimator. The stationary
bootstrap method proposed here is essentially a weighted average of these moving blocks
bootstrap distributions or estimates of standard error, where the weights are determined
by a geometric distribution. It is important to keep in mind that a difficult aspect in
applying these methods is how to choose b in the moving blocks scheme and how to choose

p in the stationary scheme. Indeed, the issue becomes a “smoothing” problem.



3. The Mean

In this section, the special case of the sample mean is considered as a first step in order
to justify the validity of the stationary bootstrap resampling scheme. Let 4 = E(X;) and
set Tny(X1, -, XN)=Xny=N"1 Zfil X;. Note that, under stationarity, if 0%, is defined

to be the variance of N1/2Xy, then

N .
0% = var(X,) + 2 2(1 - -]Z\—r)cov(Xl,Xl.,.,-). (2)

=1

Under the assumption that
oo ,
Z lcov(X1,X ;)| < oo,

=1
which is implied by typical assumptions of weak dependence, it follows that 0%, — 02, as

N — oo, where

0%, = var(X1) +2 Y  cov(X1, X14i)- (3)

i=1
Moreover, we typically have that Ry(X1, -+, Xn; 1) = N/?(Xy —p) tends in distribution
to the normal distribution with mean 0 and variance ¢2_. A primary goal of this section is to

establish the validity of the stationary bootstrap approximation defined by the conditional
distribution of Ry(X{,---,X¥; Xn) given the data.

As a first step toward this end, and of interest in its own right, we first consider the
mean and variance of N1/2 X% (conditional on the data), where X3, = N=1 "X X?. Since
E(X{|X1,--+,XnN) = XN, a trivial consequence of stationarity is E(X}|X1,---,Xn) =
Xn. Since the true distribution of N'/2(Xy — 1) has mean 0, it follows that the bootstrap
approximation to the sampling distribution of N'/2(Xy — p) has the same mean, since

both are identically zero.

Remark 1. For the moving blocks scheme, it is not the case that E(X}|Xi, -+, Xn) =
Xn. To see why, let A;p be the average of the observations in B;; defined in (1). Then,

except in the uninteresting case b= N,
N-b+1 1 N-b+1 b

E(XRII-XI,,XN)Z(N—b-*_l)_l Z Ai’b=m 2 ZXH_J._I
i=1 im1  j=1



_ E:’;]l {(Xi + XNoit1) + sz}/’:—bb+1 X,

(N=b+10% (4)

Thus, if 5/N — 0 as N — oo,

To see why, simply calculate the mean and variance of E(X}|X1,- -+, Xn) — Xn with the
aid of (4) or see the proof of (iii) in Theorém 6 of Liu and Singh (1988). In summary, the
moving blocks bootstrap approximation to the sampling distribution of N1/2(Xx — 1) does
not have mean 0; instead, it has a mean which is Op(b/N'/?) as N — oo and b/N — 0.
As demonstrated in Liu and Singh (1988), in order to achieve consistency of the moving
blocks bootstrap estimate of variance of N1/2 Xy, it is necessary that b — oo as N — oo.
Moreover, Kiinsch (1989) proves that the choice b o« N'/? is optimal in order to mini-
mize the mean squared error of the moving blocks bootstrap estimate of variance. For
such a choice, the moving blocks bootstrap distribution is centered at a location which
is Op(b/N'/?) = Op(N~1/%), which tends to zero quite slowly and may be quite large
in finite samples. This order of bias is too large to expect the bootstrap approximation
to the sampling distribution of N1/ 2(Xn — p) to improve over a normal approximation,
for example. Thus, one cannot expect the moving blocks bootstrap to possess any second
order optimality properties, at least not without correcting for the bias by recentering the
bootstrap distribution. One possibility is to approximate the distribution of N1/2 (Xn—un)
by the (conditional) distribution of N*/2[X} — E(X}|X1,---,Xn)]. Such an approach
may be satisfactory in the case of the mean, but it weakens the claim that the bootstrap is
supposed to be a general purpose “automatic” technique. Moreover, this approach would
not work as well outside the case of the mean. That is, in the general context of estimating
a parameter u by some estimator Ty = Tn(Xy,: -+, Xn), consider the general approxi-
mation to the sampling distribution of N*/2(T — u) by the (conditional) distribution of
N'?[T§ — E(T}|X1,---, Xn)], where T = Tn(X%,---,X}%). In this case, the approxi-
mating bootstrap distribution necessarily has mean 0, and hence does not account for the

bias of Ty as an estimator of u (except in the case where Ty has zero bias).

Remark 2. In fact, if we consider the more general (possibly nonstationary) resampling
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scheme where the L!s are i.i.d. with a common (possibly nongeometric) distribution, but
the I!s are i.i.d. uniform on {1,---,N}, then the conditional mean of X} is Xy. In
particular, a close cousin of the moving blocks bootstrap scheme that yields the correct
(conditional) mean for the corresponding bootstrap distribution is obtained by letting L;

to be the distribution assigning mass one to a fixed b.

Next, we consider the stationary bootstrap estimate of variance of N1/2Xy defined
by
o p = var(NY2X%| Xy, -, Xn).

In Lemma 1 below,, a formula for &%V,P is obtained. Hence, in this case, the stationary
bootstrap estimate of variance, &]2\,,?, may be calculated without actually resampling. In

the Lemma, 6% » is given in terms of the circular autocovariances, defined by
9.

N
On(i) = '.7{7 > (X = Xn)(Xjwi — Xn)),

=1
and the usual covariance estimates
N—i
~ 1 _ _
En(i) = D UXG = XN) (X — X))
=1
Lemma 1. N
-1 .
R ~ 2 i A .
5%, =Cn(0)+2) (1- ~ (1 = p)'Cn(0). (5)
i=1
Alternatively,
N-1
5% = Bn(0) +2 ) bn(i)RN(), (6)
=1
where
b (i) = (1= 2)(1 = p)f + (1 — pyV—i 7
W) = (1= )1~ p) + (1 - p) (")

Proof. For purposes of the proof, it is understood that all expectations and covariances are
conditional on X, .-, X . First, recall L; in the construction of the stationary resampling

scheme. Then,

E(X;X34s) = B(XI X ilLy > ))P(Ly > §) + B(X; Xl Ly < )P(Ly <)
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N
=N X;X;p:(1—p)' + X1 - (1 - p)]
j=1

because X} and X7,; are (conditional on Xj,---,Xy) independent given that L; < i,
but the product X§X7,; is equally likely to be any of the N values X;X;,;,j =1,---N.
Hence,

cov(X7, X14:) = Cn(i)(1 - p)'.
Therefore, by stationarity,

N-1 .
A * 4 *
UIZV,p = 'U(I,T(.Xl ) +2 Z(l - W)CO’U(XI aX1+i)
=1

N-1 .
~ 7 i A .
= Cn(0) +2 ;(1 - 7)1 =p)Cn (),
yielding (5). To get (6), note Rx(0) = Cn(0), and fori =1,---,N — 1,
éN(Z) = RN(Z) + RN(N - Z)
Therefore, by (5),
. N1 ; . N-1 ; .
By = Rn(0) =2 Y0 (1 = 1)1 =V Ru(i) +2 3 (1 = )1 — ) RN — ).
=1 i=1

Letting j = N — ¢ in the last sum yields

N-1 ; - N-1 j .

okp=RN(0)+2> (1- (1 —p)'Bn(i) +2 > (1 —p)V RN (j)

i=1 j=1

and (6) clearly follows.

Evidently, Lemma 1 tells us that the bootstrap estimate of varia,nce&%v’p, given by
(6), is closely related to a lag window spectral density estimate of f(0), where f(.) is the
spectral density of the original process. Note that the spectral density, defined by -

f@):% 3 cos(rw)R(r), (8)

r=—00
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cleariy exists if it is assumed that Y _|R(r)| < co. Then, f(0) is simply o2 /27, where
o2, is given by (3). Hence, it is clear that, accounting for the factor 1/2x, estimating o2,
is equivalent to estimating f(0). Moreover, estimating 0%, defined by (2) is equivalent to
estimating 02, in a first order asymptotic sense. The main point here is the bootstrap
estimate of variance, &%V’p, corresponds to estimating 27 f(0) by 27 f(0), where f(0) is a

general lag window spectral density estimator of the form

N-1

fO)=5= Y An(s)Ru(s) ©)
s=—(N-1)

where An(s) is given by by (s) in (7). Such estimates were initially proposed by Grenander
and Rosenblatt (1953). In much of the spectral density estimation literature, RN(s) is
replaced by RN,O(s), where RN,()(S) = Ef\;}s XiXiys/N is appropriately used when it is
known that E(X;) = 0. However, in our case, only RN(s) is appropriate. Many other
choices for the weight functions An(s) have been proposed; see Chapter 6 of Priestley
(1981). The bootstrap estimate 6% , corresponds to a particular form and depends on a

choice of p. Thus, the parameter p may be regarded as a smoothing parameter.

We now prove a basic consistency property of &?V,p' While many authors have de-
veloped general theorems on the consistency properties of spectral estimates, such as
Priestley (1981), Zurbenko (1986), and Brillinger (1981), none easily fits in our frame-
work. For example, Priestley (1981) assumes the underlying process is a linear pro-
cess. Hence, we include a direct proof under weak dependence assumptions on the pro-
cess. In the theorem below, k4(s,r,v) is the fourth joint cumulant of the distribution of
(X5, Xj4ry Xjtsy Xjtstr+v). The assumptions of the theorem are similar to those used
by Brillinger (1981) and Rosenblatt (1984) in establishing consistency for spectral density

estimates.

Theorem 1. Let X1, X5, - be a strictly stationary process with covariance function R(-)

satisfying R(0) + Y, |[rR(r)| < co. Assume

Z [ks(u,v,w)| = K < oo. (10)

u,v,w
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Assume p = pn — 0 and Npy — oo. Then, the bootstrap estimate of variance &IZV,pN

tends to o2, in probability.

Proof. For purposes of the proof, we may assume E(X;) = 0. Let

N-1
sk = 5% pn = Bro(0) +2 Y by (i) B (0), (11)

=1
where By o(i) = E;\;’ X;X;+i/N and bn(7) depends on p = py and is given in (7). Then,
it is easily verified by (5) that

N-1

=1
Under the assumed conditions, Xy — 0 in probability, and actually Xy = Op(N~1/ 2).
Also, Zfi}l bn(?) £ 1/pn, which implies

N-1
X% Y bn(i) = Op(1/Npy) = op(1).

i=1
Hence, it suffices to show the estimator s% in (11) satisfies s% — 02 in probability. To
accomplish this, we show the bias and variance of s, tend to zero. By (7) and E[By o(i)] =

N R(3), it follows that

N-1 .
E(s}) = R(0) +2 ) (1 - 5)bn(i)RG)

N-1 . N-1 . .
= R(0)+2 3 (1 )" —pn)'RG) +2 ) (1 — )51 — W)V RG).

The absolute value of the last term is bounded above by 23 io [iR(7)|/N = O(N~1). To

handle the first summation, use the approximation (1 — px)’ &~ 1 —ipy to get this term is
N-1 N-1

2Y R(i)—2pn Y iR(i)+ o(pn). : (12)
=1 =1

Hence, E(s%) = o2, + O(pn). To calculate the variance of s%;, by the result (5.3.21) of
Priestley (1981) originally due to Bartlett (1946),

cov [IA%N,o (%), RN,O ()]
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 N-j-1
1 J

=% > -2 yrm)Rin 4§ — i) + ROm + ) R(m - i) 4 ra(msiyj — i)
~(N—i)+1

where n(m) = m if m > 0, n(m) = —m — (j —¢) for —(N—-i)+1<m< —~(j—1),and
n(m) = 0 otherwise. Note that, for the values of m and j considered, |1 — "—('-n%l <1

Also, |R(j)| < R(0) for all j. Hence,

?

2|«

coolRna(i), Bvo() < 20D Y R(m)+ K —

m=—o00

where S = 2R(0)Y > ____ R(m)+ K. Now,

N-1

N-1
var(s%v,p) = Z Z bN(i)bN(j)COU[RN,o(i), RN,O(j)]

i=—(N-1) —=(N—1)

N-1 N-1 oo oo ) .
SF XY <SS Y b+ o)k + (1 - o)
i=—(N-1) j=—(N-1) t=—00 j=—00

S 1-pn+pk
= e —
N pn(1-pn)
if Npny — o0 and py — 0. Thus, the result is proved.

In fact, with only slightly more effort, it can be shown that, under the same conditions
of Theorem 1, 6%, = tends to o2 in the sense E(6% , — 0%)* — 0. The proof actually

shows much more. In particular (see (12)),

E(6}pn) = o — 2PN ) iR(i) + o(py) (13)

i=1
and var(&lzv’pN) = O(1/Npn). Consequently, if the goal is to choose P = pn so that the
mean squared error of &?V,pn as an estimator of 0% is minimized, then the order of the
squared bias, p%, should be the same order as the variance, (Npy)™!. This occurs if
pN o« N=1/3, The calculation also points toward the difficulty in choosing p optimally.
For if the goal remains minimizing the mean squared error of &%V,p, then py should satisfy
NB3pyn — ¢, where the constant ¢ depends on intricate properties of the original process,

such as ). iR(7). Estimation of this constant ¢ appears difficult. Fortunately, fundamental
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consistency properties of the bootstrap are unaffected by not choosing p in an optimal
fashion. It appears that it is important to have p tending to 0 at the proper rate to achieve
second order properties, but getting the constant ¢ right seems to enter in third order

properties.

Note that, the assumption in Theorem 1 of strict stationarity of the series X;,---, Xy
was not used in full force. In fact, the proof shows that the bias of &IZV,pN will tend to 0
if the process is second order stationary, and the variance of &]Zv,p ~ Will tend to zero if the

process is fourth order stationary.

Remark 3. We now compare the stationary bootstrap estimate of variance, &?V’p, with the
moving blocks bootstrap estimate of variance. Suppose, for simplicity, that N = kb. Then,
the moving blocks bootstrap estimate of variance is k/N -var(Xy + --- + X7 X1, - - Xn),
where (X7, -+, X)) is a block of fixed length b chosen at random from By, - Bn—pp-

Except for end effects, the moving blocks bootstrap estimate of variance is equivalent to

m%\,,b = b~ 'var(Sr | X1, - -, X N), where S; 3 is the sum of the observations in B; ; defined
in (1),, and I is chosen at random from {1,---, N}. By an argument similar to Lemma 1,
b-1 .
~ 7. 4 .
mirs = En(0) +2 3 (1= 1)Cni). (19)
i=1

Comparing m%v’b with &%,’p in (5), the two are quite close, in view of the approximation
(1 —iN~1)(1—-p) = 1 —ip, provided p~! is approximately b. Intuitively, the stationary
bootstrap scheme samples blocks of random length 1/p, so the two approaches are roughly
the same if the expected number of observations in each resampled block is the same
for both methods. In fact, (14) shows that the moving blocks and stationary bootstrap
variance estimates are approximately equivalent to a lag window spectral estimate using
Bartlett’s kernel. A perhaps more interesting way to view the two variance estimates is
the following. One can compute m}; , defined by (14) for each b and then average over a
distribution of b values. In particular, compute E(m%,’ p)s Where B (independently) has a

geometric distribution with mean px,l, yielding

oo b-1

E(m%p)=Cn(0)+2) Y (1- %)(1 —pn)" o Cn (i)

b=1 i=1
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= Cn(0) + 2§: i (1- %)(1 —pn) " 'pnCN (D)

=1 b=:+1
= Cn(0) +2 Z bn(:)Cn(i),
=1

where by (i) = (1—pn ) [1-(1—pn)~tipnlog(pn)]. Because 1—iN~! ~ 1 and pnlog(pn) —
0 as py — 0, by (3) ~ by(i), where bN.(z') is given in (7). Hence, the stationary bootstrap
estimate of variance may be viewed as a weighted average over b of estimates of variance
based on resampling blocks of fixed length b, suggesting that the choice of p in the station-
ary scheme is less crucial than the choice of b in the moving blocks scheme. Moreover, it

may be shown by an argument similar to Theorem 1 that
var(&lzv,pN - m%,-’bN) — 0

if b = by = 1/pn, and the conditions of Theorem 1 are satisfied. The same claim can
be made if m?v,b is replaced by the exact moving blocks estimate of variance. To further
substantiate the claim that mfv,b = &]2\,’? if p = 1/b, note that Kiinsch’s expansion for the

bias of the moving blocks estimate of variance exactly coincides with (13).

We now take up the problem of estimating the distribution of N/2(Xy — 1), with the
goal of constructing confidence intervals for p. A strong mixing assumption on the original
process will be in force. That is, it is assumed that data X;,---, Xy are observed from an
infinite sequence {X,,n € Z}. Let ax(k) = supa, B|P(AB) — P(A)P(B)|, where A and B
vary over events in the o-fields generated by {X,,n <0} and {X,,n > k}, respectively.

The bootstrap approximation to the sampling distribution of N'/2(Xn — p) is the
distribution of N*/2(X% — Xn), conditional on X3, - -, Xn. The fundamental consistency

result is the following,.

Theorem 2. Let X1, X5, -- be a strictly stationary process with covariance function R(-)
satisfying R(0) + 3 _ |rR(r)] < oo. Assume (10) in Theorem 1. Assume, for some d > 0,
that E|X;|%? < oo and 3, [ax(k)]4/(*+9), Then, o2, given in (3) is finite. Moreover, if
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Oco > 0, then
supzlp{Nl/z(XN — ﬂ') < -T} - Q(x/a'oo)' — 0, (15)
where ®(.) is the standard normal distribution function. Assume py — 0 and Npy — oo.

Then, the bootstrap distribution is uniformly close to the true sampling distribution in

the sense:
sup,|P{N1/2(X'_,"{, - Xn)<z|Xy,-, XN} — P{N1/2(XN —u)<z} -0 (16)

in probability.

Proof. For purposes of the proof, we may assume without loss of generality that u = 0.
The result (15) follows immediately from Corollary 5.1 of Hall and Heyde (1980). We
must prove a central limit theorem for the bootstrap distribution, namely the distribution

of NY/2(X% — Xn), conditional on Xy, -+, Xn.
For now, assume the following three convergences hold for the sequence X;, X, - .
(C1). NX%,/(Npn) — 0.
(C2). Cn(0)+23T2,(1 — pn)iCrl(i) = 02
(C3).

N1+6/2 ZZ |Si,r — |2+6(1 pN) " 'py — 0.

r=1 i=1

In (C3), Si is defined to be the sum of observations in B;; defined in (1). The

following claim is the basis of the proof.

Claim. The distribution of N1/2(X % — Xn), conditional on Xj,---, Xy, tends weakly
to the normal distribution with mean 0 and variance o2, for every sequence X, Xy, - -

satisfying (C1), (C2),and (C3).

The proof of this claim will be given below in five steps. In the proof, all calculations
referring to this bootstrap distribution will be assumed conditional on X;,-.-,Xy. The

following terminology will be used. Set

1
EN,m = N'(SI1,L1 +"'+SIm,Lm)’ (17)
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Whefe, as in.the construction of the stationary bootstrap resampling scheme, the I, I, - - -
are i.i.d. uniform on {1,---, N} and the L;, Ly, -- are i.i.d. geometric with mean 1/py.
Let M be tHe random variable equal to the smallest integer m such that Ly +---+L,, > N.
Also,let J; = Ly++--Lpy—1 and J = Ly + J1. Then, X} is approximately En, . In fact,
the difference En ap — X3 is just N —1 times the sum of the observations in By,, L,,, after
deleting the first N — J; of them. Let R; be the exact number of observations required
from block By, 1, so that N observations from the M blocks have been sampled; that
is, Ry = N — J;. Also, let R = Ly — R;. A key observation is R, conditional (and
unconditional) on (R;,J;), has a geometric distribution with mean 1/py. This follows
from the “memoryless” property of the geometric distribution. Hence, Ena — X5 is
equal in distribution to N~1S; g, where I is uniform on {1,--- N} and R is geometric with

mean 1/pn.

Step 1. Show that N/2(Ena — X}) — 0 in (conditional) probability. By the above
observation, it is enough to show the mean and variance of N~1S r tends to 0. But,

E[Sr rIR] = RXy, so that N"Y2E(S; p) = N/2Xy /(Npn) — 0. Now,
N~Yvar(Sr,r) = N~'E[var(Sr,r|R] + N 'var[E(S1 r|R)]. (18)

But, var[E(Sr,r|R)] = var(RXN) = X%(1 — pn)/P%. Thus, by (Cl1) and Npy — oo,
N—=1E{var(Sr,r)|R] — 0, yielding N~Yvar(Sr,r) — 0 as well.

Step 2. Show that, for any fixed sequence m = my satisfying Npy/my — 1, the distri-
bution of o
myXN

N1/2(EN,mN _ oy

) . (19)
tends to the normal distribution with mean 0 and variance o2,. First, note E(Sr, 1,) =
Xnpn. For1<i<mpy,letYy;= m%ZSI..,L_./Nl/Z. Then, (19) is m%z[}_’mN —E(Yy),
and Yy, = E:’;"{ Yn,i/mn is the average of i.i.d. variables. But, as in step 1, var(Yn;)
is the same as the variance of my /N times the variance of Sy g, where I is uniform on

{1,---,N} and R is geometric with mean py. Again, apply the relationship

var(SI,R) = E[’l)aT'(SI’RIR)] + var[E(SI,R|R)]. (20)
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The second term on the right side of (20) is var(Xn/pn) = 0. Also, r~lvar(Sr r|R = r)
is, in fact, given by m?; . defined in (14). Thus,

%var(SI,R) = %E(Rm%v,fz) = {Z[CN(O) +2 Z(l - —CN(’)]T(l —pN)" 1 ~}

Np () + Z(l — pn)'Cn(d).

By the assumption Npy/mpy — 1 and (C2), it follows that var(Yy ;) — o2,. To complete
step 2, by Katz’s (1963) Berry-Esseen bound, it suffices to show

my2E|Yn; — E(Yn,)|*® — (21)

as my — oo. But, the left side of (21) is (by conditioning on R) equal to

246 _ N 246 r—1
_]\[1+6/2E|‘S'IRl N2+6/2 ZEI ir— PN —[*"°(1 - p~n)"""pN,
which tends to 0 by (C3).

Step 3. The distribution of N'/2(Ey ;v — X n) tends to normal with mean 0 and variance

. This follows by step 2 and (C1).

Step 4. The distribution of N!/2(Ey 3 — Xn) tends to normal with mean 0 and variance
o2,. To see why, if M is any random variable (sequence) satisfying M /Npy — 1 in
probability, then N1/2(E n,5 — X~) tends to normal with mean 0 and variance o2,. This
essentially follows by an extension of Theorem 7.3.2. (to a triangular array setting) of

Chung (1974). In our case, M = Npy + Op(N/2p 1/2)
Step 5. Combine steps 1 and 4 to prove the claim.

Now, to deduce (16), by a subsequence argument, it suffices to show the convergences
(C1), (C2) and (C3) hold in probability for the original sequence Xy, X5, --. First, (C1)
holds in probability because N X% is order one in probability and Npy — co. Second, the
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convergence (C2) holds in probability by an argument very similar to Theorem 1. Finally,
to show (C3) holds in probability, write the term in question as

PN Xn 246

It suffices to show that (22) raised to the power (2 + §)~! tends to 0 in probability, which
by Minkowski’s inequality is bounded above by

1
(2255) ™ [BIS1,e - REN+)7H 4 ( INE(R-pR . (29

e )

The second term in (23) is of order Xy N1/2[Npy]~(1+9/(2+8) | which tends to 0 in prob-

ability. It now suffices to show

Nﬁ/zEgsI rR— RXnN|"" -

in probability, or that its expectation tends to zero; that is,
AT Z Z E[|S;y — rXN[**](1 ~ pn)" PN — 0. (24)

In order to bound E|S; , — rXn|?*%, note that if 1 <i <i4+r—1< N, then Yokoyama’s
(1980) moment inequality applies, yielding E|S; .|?*® < Kr!*%, where the constant K
depends only on the mixing sequence {a(k)}. Thus, by Minkowski’s inequality and then

Yokoyama’s inequality, we have
Y _ 1 1246
E[S;, —rXnTe < [Kﬂ‘-‘sr(w%)(f‘:;) + (EerN|2+5)m]

< [Kﬁrm%xﬁ) + %KN(1+§)(ﬁ5)]2+6 < (RK)PHHE

Inthecaset+r—1> Nbutr < N, write S; , = (X;+---+Xn)+ (X1 + -+ Xiyro1-N)-
Apply Minkowski’s inequality and Yokoyama’s inequality to get E|S;,| < 2!H9K ri+s,
Then, arguing as above we find E|S; , — rXy[?1® < (3K)2+6r1+%. In the general case,

suppose r + N(j — 1) + 7, where 1 < # < N. Then, S; , = (j — 1)NXy + S; 7. So,

E|S; . — rX N2 = E|S; ; — FX |2+,
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and the general bound (3K)?+5r1+% applies. Hence, (24) is bounded above by

o 1
N6/2 Z(3K)2+6 (- pN) TN =0 (Nm plT%) = o(1),
N

and the proof is complete.

Remark 4. In Theorems 1 and 2, the conditrion (10) is implied by E|X;|®*t¢ < co and
S B2 [a(K))€/(6+9)] < oo. To appreciate why, see (A.1) of Kiinsch (1989). Hence, the
conditions for Theorem 2 may be expressed solely in terms of a mixing condition and
moment condition, without referring to cumulants. In summary, assume for some € > 0
that E|X;|®%¢ < co. Then, the mixing conditions are implied by the single mixing condition
ax(k) = O(k~") for some r > 3(6 + €)/e. This condition also implies ) _|rR(r)| < oco.

The immediate application of Theorem 2 lies in the construction of confidence intervals

for u. For example, let §n(1 — a) be obtained from the bootstrap distribution by
P{X}-Xnv<in(l—-a)l=1-a. (25)

Due to possible discreteness or uniqueness problems, §n(1— a) should be defined to be the
1 — a quantile of the (conditional) distribution of X% — X; in general, take as definition
the 1 — a quantile of an arbitrary distribution G to be inf{q : G(¢) > 1 — a}. Then, it
immediately follows that the bootstrap interval

(Xn—dn(1 - %)’XN - ﬁN(%)]

has asymptotic coverage 1 — a. Indeed, the theorem implies gy (1 — a) = 0271 - a)

in probability.

Other bootstrap confidence intervals may similarly be shown to be asymptotically
valid in the sense of having the correct asymptotic coverage, such as a simple percentile
method. The bootstrap-t method would require approximating the distribution of (Xy —
p)/on(Xi, -+, Xn), by the (conditional) distribution of (X5 — Xn)/on(XF, -+, X%),

where on(X;,---,Xn) is some estimate of o such as the bootstrap estimator &y ,.
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Because of Theorem 2, the validity of the bootstrap would follow once it is shown that,
conditional on X;,Xs,- -, on(X7, -+, X)) converges in probability to . In fact, an

argument similar to Theorem 1 could establish this result.

In practice, it seems inevitable that a data-based choice for p would be made. For
example, as previously mentioned, if p is chosen to minimize the mean squared error of &%V,p’
then p should satisfy N3py — C. The constant C will depend on the spectral density
and can be estimated consistently, say by some sequence Cn. One could then choose
pN = N"13Cy. In fact, with some additional effort, Theorem 2 can be generalized to
consider a data-based choice for p. One would expect that a data-based choice, py, for p
would have to satisfy Npy — oo in probability and pny — 0 in probability, in order for the
bootstrap central limit theorem to remain valid. This assumption is clearly satisfied for
the above “optimal” construction for py. Subsequent work will focus on a proper choice
of p. At this stage, it is clear that as long as p satisfies p — 0 and Np — oo, the choice
of p will not enter into first order properties, such as coverage error, of the stationary
bootstrap procedure. Getting the right rate for p to tend to 0 will undoubtedly enter
into second order properties, but getting “optimal” constants correct will be a third order
consideration. Such an investigation, though of vital importance, is beyond the scope of
the present work. A step toward understanding second order properties is presented in

Lahiri (1990) in the case of moving blocks bootstrap.
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4. Extensions.

In this section, we extend the results in Section 3 to more general parameters of
interest. A basic theme in this section is that results about the sample mean readily imply

results for much more complicated statistics.

4.1. Multivariate Mean. Suppose the X; take values in R?¢, with jth component
denoted X; ;. Interest focuses on the mean vector, p = E(X;), having jth component
p; = E(X; ;). The definition of ax(-) readily applies to the multivariate case. As before,
the stationary resampling algorithm is the same, yielding a pseudo multivariate time series

X, -+, X with mean vector X¥.

Theorem 3. Suppose, for some € > 0, that E|X; ;|®*¢ < co. Assume that ax(k) =
O(k~7) for some r > 3(6 + €)/e. Then, N1/2(Xy — u) tends in distribution to the multi-

variate Gaussian distribution with mean 0 and covariance matrix £ = (o;,;), where

oi; = cov(X1,i, X1,5) +2 Z cov(X1 i, X1+k,5)-

k=1
Then, if py — 0 and Npy — oo,
sups|P*{|| X5 — Xn|| < s} = P{||Xn — ul < sfi| — 0 (26)
in probability, where || - || is any norm on R? and P* refers to a probability conditional on

the original series.

Proof. The proof follows immediately by considering linear combinations of the compo-
nents and applying Theorem 2, which is applicable by Remark 4. Then, (26) follows by the
continuous mapping theorem (since a norm is almost everywhere continuous with respect

to a Gaussian measure).

The immediate application of the theorem is the construction of joint confidence re-

gions for p = (p1,---,pq). Various choices for the norm yield different shaped regions.
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Notiée how easily the bootstrap handles the problem of constructing simultaneous confi-
dence regions. An asymptotic approach would involve finding the distribution of the norm
of a multivariate Gaussian random variable having a complicated (unknown) covariance
structure. The resampling approach avoids such a calculation and handles all norms with

equal facility.

4.2. Smooth Function of Means.

Again, suppose the X; take values in R%. Suppose 6 = (61,---,8,), where §; =
E[h;(X;)]. Interest focuses on 6 or some function f of 6. Let 6n = (On1,---,0n,;), where
On; = Zil h;j(X;)/N. Assume moment conditions of the k; and mixing conditions on
the X;. Then, by the multivariate case, the bootstrap approximation to the distribution
of N1/2(@y — 6) is appropriately close in the sense

d (P{N1/2(§N —0) < 2}, P*{NY}@% — by) < :v}) 50 (27)
in probability, where d is any metric metrizing weak convergence in R?. Moreover,
d (P{Nl/z(éN ~0) <z}, P{Z < :c}) 0, (28)

where Z is multivariate Gaussian with mean 0 and covariance matrix ¥ having (3,j)

component

cov(Z;, Z;) = cov[hi(X1), hi(X1)] +2 ) covlhi(X1), hj(X14x)]-
k=1

To see why, define Y; to be the vector in R? with jth component h;(X;). Then, the Y; are
weakly dependent if the original X; are weakly dependent; in fact, ay (k) < ax(k). Hence,
with a moment assumption on the h;, we are exactly back in the multivariate case. Now,
suppose f is an appropriately smooth function from R? to RY, and interest now focuses
on the parameter p = f(6). Assume f = (f1,---, fq), where fi(y1,---,yp) is a real-valued
function from R? having a nonzero differential at (y1,---,yp) = (61,--+,6p). Let D be
the p x ¢ matrix with (z,7) entry 0f(y1,---,yp)/9y; evaluated at (61,---,6,). Then, the

following is true.
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Thebrem 4. Suppose f satisfies the above smoothness assumptions. Assume, for some
e > 0, E[h;(X1)]%F¢ < o0, and ax(k) = O(k~") for some r > 3(6 +¢)/e. Then, if py — 0
and Npy — oo, (27) and (28) hold. Moreover,

a(P{N'2(f(Bw) - F(O)] < o}, PN [f(B3) - @) S2}) =0 (29)
in probability and

sup,

IP{1(8n) — F()I| < 5} = P{If(8) — SO < s}] = 0 (30)

in probability.

The proof follows as (27) and (28) are immediate from Theorem 3, and the smooth-
ness assumptions on f imply N'/2[f(dn) — f(8)] has a limiting multivariate Gaussian
distribution with mean 0 and covariance matrix DX.D’; see Theorem A of Serfling (1980),

p.122.

As an immediate application, consider the problem of constructing uniform confidence
bands for (R(1),---,R(q)), where R(z) = cov(X1,X14:). (To apply the previous theorem,
let W; = (Xi,+++,Xigq), for 1 < i < N' = N —q.) While even asymptotic distribu-
tion theory for even Gaussian data seems formidable, the stationary bootstrap resampling

approach handles the problem easily. The only caveat is to note that g is fixed as N — oo.

4.3. Differentiable Functionals.

For simplicity, assume the X; are real-valued with common continuous distribution
function F. Suppose the parameter of interest p is some functional T of F'. A sensible
estimate of F is T(FN), where Fy is the empirical distribution of X7,---,Xy. Assume T

is Frechet differentiable; that is, suppose
(@) =T(F)+ [ hedG-F) +o(IG=FI), (31)

for some (influence) function hp, centered so [ hpdF = 0. For concreteness, suppose || - ||

is the supremum norm, but this can be generalized. Then,

N
NYT(Ey)— T(F) = N712 > " hp(X:) + o N2 Fy — F)). (32)

=1
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If, for some d > 0, E[hp(X1)]**? < 00, and Y, [ax(k)]#/(+9| then N=1/2 3. hp(X;) is

asymptotically normal with mean 0 and variance

ER%(X)] +2)  covlhp(X1), hp(X144)]- (33)
k=1

To handle the remainder term in (32), Deo (1973) has shown that if
Y kax(k)]F T < oo
k

for some 0 < 7 < 1/2, then N/2[Fn(.) — F(-)], regarded as a random element of the space
of cadlag functions endowed with the supremum norm, converges weakly to Z(-), where

Z(-) is a Gaussian process having continuous paths, mean 0, and

cov[Z(t), Z(s)] = Elge(X1)gu(X1)] + Y Elgs(X1)ge(X141)] + Y Elge(X141)90(X1)],
k=1 k=1
where g¢(z) = Ij,4j(z) — F(t). Hence, Deo’s result implies N*/2[T(Fiy) — T(F)] is asymp-

totically normal with mean 0 and variance given by (33).

The bootstrap approximation to the distribution of N'/2[T(F)— T(F)] is the distri-
bution, conditional on Xi,---,Xn, of NY/2[T(F%) — T(Fy)], where F% is the empirical
distribution of X{,-.-, X% obtained by the stationary resampling procedure. If the er-
ror terms in the differential approximation of T(F}) are negligible, it is clear that the
bootstrap will behave correctly, because Theorem 2 is essentially applicable. The key to

formally justifying negligibility of error terms is to show that
o (NY2[E5() = Fn ()], 2()) = 0

in probability, where p is any metric metrizing weak convergence in the assumed function
space. By Theorem 3, it is clear that the finite dimensional distributions of N1/2[F%(-) —
F(-)] will appropriately converge to those of Z(-). The only technical difficulty is showing
tightness of the bootstrap empirical process. In fact, by an argument similar to Deo’s,

tightness can be shown if Np% — oo. The technical details will appear elsewhere.
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In fact, the above sketchy argument actually applies if T is only assumed compactly

differentiable. For example, asymptotic validity for quantile functionals follows.

4.4. Linear Statistics Defined on Subseries.

Assume, X; € R?. In this sectioﬁ, we discuss how the stationary bootstrap may be
applied to yield valid inferences for a parameter u € R which may depend on the whole

infinite-dimensional distribution of the process.

Consider the subseries Si m,r = (X(i=1)L+1," > X(i—1)L+M)- These subseries can be
obtained from the {X;} by a “window” of width M “moving” at lag L. Suppose T; 1, is
an estimate of 4 based on the subseries S; 1.1, 50 T; pm,1 = ¢m(Si,m,L), for some function
¢ from RM to RP. Let Ty = Yo%, Tim,1/Q, where Q = [¥7M] 4 1; here, [] is the

greatest integer function. To apply resampling to approximate the distribution of T,

just regard (T4, m,1,---,Tq,m,1) as a time series in its own right. Note that M, L, and
Q@ may depend on N. Weak dependence properties of the original series readily translate
into weak dependence properties of this new series. Hence, we are essentially back into
the sample mean setting. A small technical complication is that we are dealing with the
average of the Nth row of a triangular array of variables, so that Theorem 2 needs to be

generalized slightly.

By taking this point of view, one can establish consistency and weak convergence
properties of the stationary bootstrap. Indeed, this approach has been applied fruitfully in
the moving blocks resampling scheme in Politis and Romano (1989, 1990). The technical
details of this approach, as applied to the stationary bootstrap, will appear in a future re-
port. It is fully expected that the results established for moving blocks will have immediate

counterparts for the stationary bootstrap.

To appreciate the applicability of this approach, consider the problem of estimating
the spectral density f(w). Suppose T; p,L(w) is the periodogram evaluated at w based on
data S; ps,.- Then, in fact, Ty(w) is approximately equal to Bartlett’s kernel estimate of

f(w). Other kernel estimators can be (approximately) obtained by appropriate tapering of
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the individual periodogram estimates. A great advantage of the resampling approach is it
easily yields simultaneous confidence regions for the spectral density over some finite grid
of w values. Other examples falling in this framework are the spectral measure and cross-
spectrum, where asymptotic approximations to sampling distributions are particularly

intractable.

4.5. Future Work. Subsequent work will focus on three important problems. First,
establish theoretical results to construct uniform confidence bands for the spectral mea-
sure. The discussion in Section 4.4 will readily allow one to construct confidence bands for
the spectral measure over a finite grid of w values, but this is theoretically unsatisfying.
By constructing uniform confidence bands over the whole continuous range of w, a basis
for goodness of fit procedures can be established. Second, higher order asymptotics are
necessary, especially to compare procedures, just as in the i.i.d. case. Finally, the prac-
tical implementation, especially the choice of p, and the finite sample validity based on

simulations will be addressed.
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