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STEIN’S METHOD AND MULTINOMIAL
APPROXIMATION

BY WEI-LIEM LOH

Purdue University

In this paper, Stein’s method is considered in the context of ap-
proximation by a multinomial distribution. By using a prob-
abilistic argument of Barbour, whereby the essential ingredi-
ents necessary for the application of Stein’s method are derived,
the Stein equation for the multinomial distribution is obtained.
Bounds on the smoothness of its solution are derived and are
used in two examples to give error bounds for the multinomial
approximation to the distribution of a random vector.

1 Introduction

Stein (1970) introduced a powerful and general method for obtaining an ex-
plicit bound for the error in the normal approximation to the distribution of
a sum of dependent random variables. This method was extended from the
normal distribution to the Poisson distribution by Chen (1975). Since then,
Stein’s method has found considerable applications in combinatorics, prob-
ability and statistics. Recent literature pertaining to this method includes
Arratia, Goldstein and Gordon (1989), (1990), Baldi and Rinott (1989), Bar-
bour (1988), (1990), Barbour, Chen and Loh (1990), Bolthausen and Gétze
(1989), Chen (1987), Gotze (1989), Green (1989), Holst and Janson (1990),
Schneller (1989), Stein (1990) and the references cited in them. Stein (1986)
gives an excellent account of this method.

In this paper, we consider Stein’s method in the context of approximation
by means of a multinomial distribution. To obtain the necessary ingredients
for the application of Stein’s method, we use a probabilitic argument of
Barbour (1988) which we shall now sketch. At the heart of Stein’s method
lies a Stein equation. For example, in the case of the normal approximation
we have

fl(w)—wf(w)=g(w), wEeR,

and in the Poisson approximation, we have

Af(w+1) —wf(w) = g(w), we Zt.
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Barbour (1988) observed that we can associate with each of these equa-
tions a stochastic process. For the normal approximation, we have the
Ornstein-Uhlenbeck process and for the Poisson approximation, we have
the immigration-death process with immigration rate A and unit per capita
death rate. One of the basic ingredients of Stein’s method lies in the prob-
lem of getting smoothness estimates for the solutions of Stein’s equations.
By embedding the Stein equation in a stochastic process, bounds on the
smoothness estimates may be obtained by probabilistic arguments. In many
cases, these arguments are easier to apply than the usual analytic ones.
This probabilistic technique has been successfully applied to Poisson process
approximations, multivariate Poisson approximations [see Barbour (1988)],
diffusion approximations [see Barbour (1990)], compound Poisson approxi-
mations [see Barbour, Chen and Loh (1990)] and multivariate normal ap-
proximations [see Gotze (1989) and Bolthausen and Gotze (1989)].

The rest of this paper is organized as follows. Section 2 develops the
basic ingredients of Stein’s method. In particular, the Stein equation for the
multinomial distribution is obtained together with smoothness estimates
of its solution. In Section 3, these results are used in two examples to
give error bounds for the multinomial approximation to the distribution of
a random vector. The first example involves the base M expansion of a
random integer and the second gives a multinomial approximation to the
multivariate hypergeometric distribution.

2 Multinomial Approximation

We first consider the following multi-urn version of the Ehrenfest model with
continuous time. Let there be M urns and N balls are distributed in these
urns. The system is said to be in state n = (n,...,nas) if there are n; balls
inurn4,¢=1,..., M. Events occur at random times and the time intervals
T between successive events are independent random variables all with the
same exponential distribution

P(T > t) =exp(—Nt), t>0.

When an event occurs, a ball is chosen uniformly at random, removed from
its urn and then placed in urn ¢+ with probability p;, 1 = 1,..., M.
The state of the system at time ¢, Z(")(t), is a stationary Markov process
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with continuous time having state space

M
Q={(k,....,kn) : )_ki =N,k >0,1<i< M}

=1

where Z(™(0) = n. It is clear that the stationary distribution of Z(™)(t) is
MULT(N, p1,...,pm), the multinomial distribution with parameters N, py,
..., M. Multi-urn versions of the Ehrenfest model were first proposed by
Siegert (1950) and a treatment can be found in Karlin and McGregor (1965).

The rest of this section is heavily influenced by the techniques developed
in Barbour (1988). For A C Q, define

(1) fam) = [TIPE) € 4) - PO < A)Jar

where W ~ MULT(N, py,...,pn) and 1M, n; = N. Also for simplicity, we
define I4(.) to be the indicator function of A and e(*) to be the M-tuple with
the 1th component equal to 1 and its remaining M — 1 components equal to
zero. We shall now proceed to derive a bound on f4.

Proposition 1 With the above notation, sup,cq|fa(n)| < N.

PROOF. Let r; denote the time taken for ball ¢ to be chosen the first time,

t =1,...,N. Then it is easy to see that when ¢ > max;<i<n 7i, we have
ZM)(t) ~ MULT(N, p1,...,pr). Thus

fam)| = | /0 ” BlIA(Z2™(8) - La(W)| maxn > f]P(maxr; > £)dt|

(o]
< N/ P(ry > t)dt
0

= N.

The last equality uses the fact that r; is a standard exponential random
variable. O

Theorem 1 Let f4 be defined as in (1). Then fa satisfies the equations

M .
> nipj[fa(n— ) +eV)) — f4(n)] = P(W € 4) — Iu(n), VneQ.
=1
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PROOF. Let fa(n,t) = [j|P(Z")(u) € A) — P(W € A)]du. By considering
the first jump of the process Z("(u), we have

fa(n,t) = /0 ' e N4 {uN[I4(n) — P(W € A)]

M
+ > mpifa(n — et + €), ¢ — u)}du
£,7=1
+te~Nt[I4(n) — P(W € A)].

Since fa(n,t) — fa(n) as t — oo, the theorem follows by letting ¢ tend to
infinity. O
Now we shall give two bounds on the ‘smoothness’ of f4.

Theorem 2 Let f4 be defined as in (1). Then

sup  |fa(n—e® +el)) — f4(n)] < 3/2.
n,n—e(‘)-{-e(i)eﬂ

PROOF. Let n,n—el) +¢l?) € Q. It is convenient to couple fa(n—el) 4el))
and f4(n) on the same probability space as follows. Let there be M urns
and N + 1 balls are placed in these urns such that n,, balls are placed in
urn m, m # j, and n; + 1 balls are placed in urn j. Again, we assume that
events occur at random times and the time intervals 7' between successive
events are independent random variables all having the same exponential
distribution
P(T' > t) = exp[-(N +1)t], t>0.

When an event occurs, a ball is chosen uniformly at random from among the
N +1 balls, removed from its urn, and the placed in urn m with probability
Pm,m=1,..., M. At time ¢t = 0, select a ball from urn ¢, call that ball a,
and select a ball from urn 7, call that ball b. At time ¢, define a(t) = e(™
[5(t) = e{™)] if ball a [ball 4] is in urn m respectively, m = 1,..., M. Writing
n' = (ng,...,ni_1,n; — 1,n441,...,np), we have

fa(n — e +el)) — f4(n)
= /0 TP (1) + () € 4) — P(27) (1) + a(t) € 4)]dt.

Let 7, and 7, denote the times when balls a and b are first picked up respec-
tively. By symmetry, we observe that Z (') (t)+a(t) has the same distribution
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as Z(")(t) + b(t) whenever t > 7, V 7. Hence

fa(n — e +eld)) — f4(n)
= [TABUIAZ@ +5(0) - W(ZPQ + el < £ < 1]

XP(ra <t <)
+E[Ia(Z2™(2) + b(t)) - La(Z2™)() + a(2))|7a > t > 7]
XP(ra >t > 1)
FE[I4(Z")(8) + b(2)) — I4(Z™)(t) + a(t))|t < 72 A ]

(2) XP(t < 14 ATp)}dt

and

| fa(n — e® + ) — fa(n)]

IN

o0
/ [2P(ra < t < 1)+ P(t < 14 A1y)]dt
0

= /(;oo[2e_t(1 — e—t) + e_2t]dt
= 3/2.

The second last equality uses the observation that 7, and 7, are independent
standard exponential random variables. O

Theorem 3 Let fo be defined as in (1). Then

sup  |fa(n— e+ @) — f4(n)| < Clpy,...,pm)/VN,
n,n—-e(") +een

where C(py,...,pm) = sup;<;[C(i,5) A C(4,9)] with
2 .3 1 3 1
c(t,7) = = —+_1/2+ _+_1/2
(g) = 3{(p,- ep,-) (p‘_ ep’_)
3
1

2, 4

p;  epi(1-p;)
PROOF. Let n,n — eli) + elf) € Q with i # j. Also let n', Z(*), a(t), b(t),
7, and 7 be defined as in the proof of Theorem 2. We write

z2 @) =w () + Y (1),

where W (t) = (Wi(t),. .., Wam(t)) and Wy, (t) denotes the number of balls
in urn m [neglecting balls a and b] at time ¢ which has not been picked even
once. It is easily seen that

]1/2+

8 — D
+=+ — p_,,‘ (2ep,-)_1/2 + (Zep,-)'llz}.
pi pj

B(nm,e™) fm#1,
Won(t) ~ { B(n; — 1,e7%) ifm=1.
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B(ny, e~ ) denotes the binomial distribution with parameters (ny,e™%).
Furthermore, given that W{t) = k, with k = (k1,...,kn) and K = Y, ks,

Y(t) = (Yi(2),-..,Ym(t)) ~ MULT(N - K — 1,p1,...,PM)-
CASE 1. Suppose t < 74 A 73, then
P(ZU) () + b(t) € A) — P(Z2(")(t) + a(t) € A)

= P(Z2(")(t) + e € A) — P(Z20) (1) + ) € 4)
EP(W(t) =k) ) {P[Y())=1-eDW() =K

ll+keA
(3) CPve) =1 O = &),

We observe that

Y AP () =1- W (t) = k]

Li+keA
-PlY (t) =1 - Hw(t) = K]}

< Y PY@) =1-Dw() =K1~ ’PJ|
1:1;#0
+P[Y;(t) = 0|W () = k|
(4) < {E[1- ﬁ]z}l/z (1 p)VE,

where L = (L1,...,Lp) ~ MULT(N — K — 1,py,...,pm)- The last in-
equality uses the Cauchy-Schwarz inequality. To bound the right hand side
of (4), we first write

Lip; 12
Bl (L; +1)p.]
_ Pj Piy2 L; (L,‘ — 1) L;
= BO-C )L gl e e ey Sl ey g )
6) (L ) & I}
(L +1)2(L; +2) (L +1)2(L;+2)

Some straightforward algebra reveal that

Pi o Li
Ay ) Nl S - L:=0
P+ 1= P(L;=0),
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(2—1)2E Li(Li — 1) < 1-— P(LJ = 0),
i

(Lj + 1)(Lj + 2) -
(Biy? L <
i (Lj-l-l)(Lj-l-Z) - p,'(N—K)’
s L,-(L,' - 1) 3
P+ 1@ 1D S mm-E)
Pj L; 1
PG TG D S s B

Hence it follows from (5) that

2 " 3 < Cy
PN-K) (N -K) - N-K’

E[1- L‘p")piP < P(L; =0) +

(Lj+1
where 9 3 1

Cr==—4—4+———0.
Tmp epi(l—py)
Now from (3) and (4), we get

|P(Z2")(t) + b(t) € A) — P(Z(")(t) + a(t) € A)]

_ L;p; . \N-K-
< POV = HEO - T ()
< (O + e (- 2V TN E )

6 < Glt- N,

with Cy = C’%/ 24 [2ep;(1 — pj)?]~1/2. The second last inequality follows
from Jensen’s inequality and the last inequality uses the observation that
5 Wnlt) ~ BN — 1,¢7%).

CASE II. Suppose 7, < t < 13, then

P(Z)(t) + b(t) € 4) — P(Z2"™)(8) + a(t) € A)
= S PwE) =k 3 {PY(t)=1-DW() =k
k

L:i+keA
(7) —P[Y (t) + at) = |W(t) = K[}
We observe that

| Y {PY(@) =1- D () = K

Ll+ke€A
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—P[Y (t) + a(t) = l|W (2) = K]}

< PlYj(t) +a;(t) = 0|W(t) = k|
+ Z P[Y(t) =[- e(j)lw(t) — k]ll _ _(JV—I—K)PJ_I
1:1,;#0 ;
® < mp- T Eipan g vk

Lj+1

where a(t) = (a1(t),...,anm(t)) and L = (Ly,...,Lp) ~ MULT(N — K —
1,p1,...,pm). Here we have used the fact that given W (t) = k, Y (t)+a(t) ~
MULT(N — K,p1,...,pm). As in Case 1, it can be shown that

(N—K)Pj]2< Cs
Li+1 | SN-K’

E[1-

where C3 = (3/p;) + (ep;) ™. It follows from (7) and (8) that

|P(Z2") () + b(t) € A) — P(Z2(")(2) + a(t) € A)|

P00 =G g

1A

! /
C4(EN _ Zm Wm(t))l 2

Csl(1 - e *)N] 72,

IA

(9)

where Cy = CL/2 + (2ep;)~1/2.
CASE III. Suppose 7, < t < 74, then by symmetry we have

IA

1P(Z2™)(2) + b(t) € A) — P(Z™)(t) + a(t) € A)]
(10) < Gs[(1-e N2,

where 3 1
Cs = (= + =) + (2ep:) ™1/,
pPi  epi

Finally, it follows from (2), (6), (9) and (10) that

|fa(n — €9 + &) — fa(n)|

[l = NG 4 (Cut Cr)eH(L - e
= C(,5)/VN,

IA
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with C(1, 5) = (2/3)(2C; + C4 + C5). Hence from the symmetry of ¢ and j
in the above argument, we observe that

|fa(n — e + ) — f4(n)| < [C(i,5) AC(4,4)]/VN.

This completes the proof. O
Corollary 1 Let fa be defined as in (1) and py =---=pps = 1/M. Then
Supn,n—e(")+e(j)60|fa4("’ - e(i) + e(j)) - fA(n)l < 74 v M/N
PROOF. The proof is immediate from Theorem 3. O

3 Applications

3.1 On the base M expansion of a random integer

Let k and M be natural numbers, with M > 2, and X a random vari-
able uniformly distributed over the set {0,...,k — 1}. Define N to satisfy
MN-1 < < MN . Then the base M expansion of a =k — 1 and X can be
written as
N N
a=) aMN, X=Y x;MN,
i=1 i=1

where a;, X; € {0,...,M — 1}. Also define for¢ =1,..., M,

N
U’.=ZI{X_,'=|'—1}7 U=(U1,...,UM),
Jj=1

We are interested in approximating the distribution of U by a multinomial
distribution. We note that the distribution of U is exactly MULT(N, 1/M,
o, 1/M) if k= MYV,

Variations of this problem when M = 2 have been studied by Delange
(1975), Diaconis (1977) and Stein (1986). In particular, the expected value
of the number of ones, Us, in the binary expansion of a random integer was
studied as a function of k by Delange. Diaconis (1977), jointly with Stein,
exhibited a central limit theorem for U,. Stein (1986) showed that for large
k, Us has approximately a binomial distribution.

We shall use the total variation distance as a means of measuring how
close the distribution of U is to MULT(N, 1/M,...,1/M).
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DEFINITION. The total variation distance between two probability mea-
sures F and G on (Q is defined by

d(F,G) = sup [F(4) — G(4)];

where the supremum is taken over all subsets A of Q. Also for simplicity,
we denote the law of a random vector S by £(S).

Theorem 4 For M > 2, we have

d(L(U), MULT(N,1/M,...,1/M)) < 3.1(M — 1)M/M/N.

PROOF. First we construct an exchangeable pair of random vectors (U, U*)
on the same probability space as follows. Let I be a random variable uni-
formly distributed over {0,..., M —1} and J be a random variable uniformly
distributed over {1,..., N} with I, J, X mutually independent. Define

N
Xt =3 X;MN,
=1
where

X;, ifi#J,
X=< X;, ifi=Jand X - XyM¥N~7 + (M - 1)MVN-7 > F,
I, ifi=Jand X - X;MN-7 +(M-1)MV-J <k

Define for:=1,..., M,
N

U;‘:ZI{X;:,‘_I}, U*=(Uik,...,U1tl).
i=1

It is clear by symmetry that (U,U*) is an exchangeable pair of random
variables. Next we consider the antisymmetric function

(U, U%) = fa(Ug=p+—e® 1o} — FAU ) ey _ o 4oy
with f4 defined as in (1). Then
0 = Elfa(Uyop+—e@rtey — FAU) gy o) 4etid}]
= E[fa(U)P(U* = U + &) — )| X)
—fa(U - e + e(:‘))p(U* =U — ¢l + e(j)|X)]

= E[fA(U) Uj}\;NRj

— fa(U— e + e(j))UiM;A?i]’
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where By = [{m : X, =1 -1,X — XMN"‘+(M—1)MN"‘>k}|,
l=1,...,M. Now it follows from Theorem 1 that

|P(U € A) — P(W € A)|

M
= |B 3 [fa(U - ) + ) — fu(0)](Re/M)]

t,7=1
M
(11) < sup  |fa(n— e +e)) = fa(n)|EY (1 1/M)R,,
n,n—e('.)-i-e(.?')eﬂ =1

whenever A C 1 with W ~ MULT(N,1/M,...,1/M). We further observe
from the definition of R; that

ER, < i P[X > k— (M -1)MN—™

ﬁ;l
= Y (M-0)M"""/k
< (- )M 1),
and hence v
(12) (1-1/M)>_ ER = (M -1)M/2.

We conclude from (11), (12) and Corollary 1 that

|P(U € A) — P(W € A)| < 3.7(M — 1)M+\/M/N.
This completes the proof. O

3.2 On the multivariate hypergeometric distribution

Consider a population of Ny individuals, of which o are of type 1, ap are
of type 2, ..., ap are of type M, with Ef‘il a; = Np. Suppose a sample of
size N is chosen without replacement from among these Ny individuals. For
each 1 = 1,..., M, let V; denote the number of individuals of type ¢ found
in the sample. Then the random vector V = (V3,...,Vas) is said to have
the multivariate hypergeometric distribution with parameters N, ay, ..., aam
[see, for example, Johnson and Kotz (1969)]. When M = 2, it reduces to the
usual hypergeometric distribution. In this subsection, we are interested in
approximating the distribution of V' by MULT(N, p1,...,ps), where p; =
a;/A%,izz 1,...,A4.
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Theorem 5 With the above notation,

d(ﬂ(V),MULT(N,Pl;,PM))
< min{(¥ - 1)N/(2No),[(3/2) AC(p1,- -, ) /VN]

X(L= " od/NEN?/NG},
=1

where C(p1, . ..,pm) 18 defined as in Theorem 3.

PROOF. Let W ~ MULT(N, p1,...,pr). We couple V and W on the same
probability space in the following way. Choose the sample of N individuals
with replacement from the population of Nj individuals. This determines
W . If there are no repetitions, set V.= W. Otherwise replace those repeated
individuals in the sample by individuals chosen at random uniformly from
the remaining population without replacement so that the eventual sample
has no repetitions. This determines V. Consequently, we have

d(L(V),L(W)) < PV #W)
N-—

1- H1(1 —i/No)
=1

(13) < (N —-1)N/(2Ny).

IA

The above argument was suggested to us by Professor Herman Rubin.

As in the previous example, we now construct an exchangeable pair
of random vectors (V,V*). Suppose we have the sample of N individuals
obtained in the manner described in the first paragraph of this subsection.
This determines V. Now choose an individual, call it a, uniformly at random
from the sample and independently choose another individual, call that b,
uniformly at random from the population of Ng individuals. If b is already
in the original sample, define V* = V. Otherwise, replace a by b in the
sample. Define for each i = 1,..., M, V;* to be the number of individuals
of type 7 found in the revised sample. Write V* = (V*,...,V3y).

By considering the antisymmetric function

(ViV*) = faV) iy oy o edy = AV ) iy e 1o}

with f4 defined as in (1), we have

0 = EfalV)yoys—e@rte} — AV ) yeay o 4eiin}]
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= E[fa(V)P(V* =V + e — V)
—fa(vV - el e(j))P(V* =V — e+ e(j)IV)]

Vip; Vi } o Vip; Vs
= BB - Yy g - e g )Y Yy
FaV) 3P -~y — fal )
From Theorems 1, 2 and 3, we have

|P(V € A) — P(W € A)]

< sup  |fa(n— ¥+ W)~ f4(n)|E D ViVi/No
nn—e() el en 1,597
< [(3/2)AC(p1,---,pm)/VN] D (BVi)(EV;)/No
_ LR

M
(19) < [3/2)AC(1- ., o) VEI(L~ 3 a2 /NDN?/No.

i=1
In the second last inequality, we have used the fact that for ¢ # 5, V; and V;
are negatively correlated. Now the result follows from (13) and (14). O
Corollary 2 Let py =...,ppr = 1/M. Then

d(L(V), MULT(N,1/M,...,1/M))
< min{(N - 1)N/(2No), 7.4(1 — 1/M)VMN3/?/No}.

PROOF. This is immediate from Corollary 1 and Theorem 5. O
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