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Abstract

We consider robust estimation of a location parameter § when the CDF of the error
is of the form F(z) = (1 — eo)H(z) + o H (—j-—’-), where H is symmetric and absolutely
continuous. In practice, H is often taken to be the standard normal CDF &, as in the
pioneering article of Tukey (1960). We assume s is random but we have the information
that E(s) = so. Infimums and supremums of the asymptotic relative efficiencies of the
Hodges-Lehmann estimate W, the median M and the general trimmed mean X, with
respect to the sample mean are calculated under the assumption s 2 3. Here €9, 30, 31
are assumed known, but are otherwise arbitrary.

Parseval’s relation is used to prove that if either H(y/z) or $(v/}) is log convex (for
z, A > 0), where ¢ is the characteristic function of H, then inf e(W, X) and inf (M, X)
are attained at Fy(z) = (1 — £0)H(z) + o H(Z3) over the class of distributions described
above. This establishes, in a sense, the Tukey distribution as an extreme point of the
family of distributions

Fe { F:F(z) = / {(1 —eo)H(z) + €oH (%) } dG(s)} ,

where G satisfies the constraints given above. This result is not necessarily valid for a
general trimmed mean but it is proved that the mixing distribution on s corresponding
to the infimum as well as the supremum is supported on at most 3 points. Extensive
numerical studies indicate that the mixing distribution corresponding to the supremum is
a two point distribution and that corresponding to the infimum is usually degenerate (at
s = 89) but is occasionally two point. It is also demonstrated that the infimum as well
as the supremum of the efficiency remain bounded over F for each of the three estimates
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and in fact they are very close to each other. Thus the efficiency remains stable over the

entire class F. The family F thus behaves like a singleton set. These results also enable

us to answer a general version of a question raised by John Tukey (Tukey (1960)): given
so, how large an €9 > 0 is required for the infimum of the efficiency over F to exceed 17

Key Words: Asymptotic relative efficiency, contamination, Hodges-Lehmann estimate,

median, mean, trimmed mean, convex, log convex, Schur convex, infimum,

supremuim.



1. Introduction

1.1. The basic setup. A common assumption in much of statistical theory is that the
observed samples z1,2,... are iid from a normal distribution. In practice, real data are
rarely exactly normal and yet many standard statistical procedures are “optimal” p~rovided
the population is in fact normal. The realization that real data do not exactly satisfy the
model assumptions that guarantee the optimal behavior of commonly used procedures led
to the study of robustness and construction of robust procedures. There is now a vast
literature on this topic; see Huber (1973) and Hampel et al (1986) for a general exposition

and many other references.

In this article, we confine ourselves to the topic of robust estimation of a single location
parameter. Formally, then, X1, X5, ... areiid with X; = 6+ Z; where Z; areiid, distributed
according to a symmetric distribution F" on the real line. We assume F' is symmetric about
zero. There is a truly rich literature on this topic. It has long been well known that the
sample mean is not a safe estimate of the location parameter 6 if heavy tails are possible.
Variety of alternative estimators are known and have been studied. We would not go
into a discussion of the merits and demerits of such estimators; the literature includes the
fundamental articles of Chernoff and Savage (1958) and Hodges and Lehmann (1963) and
the latter works of many authors including Andrews et al (1972), Bickel (1965), Bickel and
Lehmann (1975) etc. Lehmann (1983) is a particularly good source for a broad exposition.

A particularly attractive way of modelling deviation of F' from the standard normal is
the well known contaminated structure in which we assume that F' is of the form F(z) =
(1—&9)®(z)+¢0 H(z) where & is the standard normal CDF and H is another CDF belonging
to a suitable family of distributions on R. If F is symmetric, so is H and vice versa. In
one of the most fundamental articles on contaminated distributions, Tukey (1960) takes
H to be the CDF of another normal distribution, although with a variance larger than 1.
This can be justified as a model for a small fraction of outlying observations; Tukey (1960)
discusses this in detail. Formally, then, Tukey (1960) takes F(z) = (1—&0)®(z)+&0® (—j-—a)
where s is usually greater than 1 or even substantially greater than 1 (although s near zero

can be thought of as a continuous approximation to a point mass at zero and thus seems
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realistic also). Tukey (1960) allows €¢-and so to be arbitrary, but assumes they are fixed.
We consider generalized Tukey models, with F' belonging to the family of CDF'’s

F= {F:F(z) - / {(1 — e0)®(c) + €0 @ (-j—;) } dG(s),
where Gs1,00) = 1, / sdG=so}, (L.1)

with g, S0, 51 fixed. As will be seen, sp and s; both play a prominent role in determining
the merits and demerits of different estimators. The assumption G[s;,00) = 1 reflects the

belief that s is large.

An even greater generalization would be to use a more general CDF H instead of @
in the definition of F' in (1.1); for example, one can potentially contemplate situations in
which most of the data come from a standard Double Exponential distribution but a small
fraction comes from a stretched Double Exponential. Indeed, barring our results on the
trimmed mean in Section 4, all other results are for the generalization of (1.1) when @ is

replaced by a more general H.

1.2. Discussion on F. Several things need to be pointed out here. First, if s; is 0, then the
contamination is an arbitrary scale mixture of normals with a given mean. The moment
restriction [ sdG = so puts a bound on the heaviness of the tail of F'; also notice, denoting

the density of F' by f, that o

f(0) = \/—%2—? (1 — & +so/—\%-§ dG(s)) ,

so that if s; > 0, then the density at the center also remains in control. We have thus
deliberately kept both the tail and the center of F' in control; our setup thus relates to the
structure in Loh (1984). It is also reassuring that F is a convex family of CDF’s and each
F in F is symmetric and unimodal. Following the arguments in Efron and Olshen (1978),
one can also check that for gy and sp not too small, F is quite broad in the sense that
the probabilities of fixed intervals on the real line vary in a reasonably wide range as F
varies over F. F can thus be regarded as a moderately broad convex subclass of the class

of symmetric unimodal distributions.



The ARE of the Hodges-Lehmann estimate W was earlier considered in Sen (1968).

The family (1.1) can be regarded as a semiparametric extension of the setup there as well.

1.3. Objective. The main technical goal of the article is to find the infimum and the
supremum of the asymptotic relative efficiency (ARE) of the sample mean with res;pect to
three commonly used estimates of location: W = the Hodges-Lehmann estimate,

M = the sample median and X, = the trimmed mean of order a. The median is treated
separately because there are a number of technical simplifications that can be done for the
median but seem difficult for a general trimmed mean. As in Loh (1984), we demonstrate
that the infimum and the supremum of the ARE of each estimator with respect to the
sample mean remain bounded; furthermore, we give evidence that often the infimum and
the supremum are quite close. Other robust alternatives to the sample mean, such as
winsorized means, also are worth investigating. We refrain from doing so due to space

considerations.

We also prove a result which establishes, in a specific sense, the CDF F, ,,(z) =
(1 —€0)®(z) +€0® (ﬁ-) as an extreme point of the family F. Specifically, we show that
for each of the Hodges-Lehmann estimate and the median, the infimum of the ARE with
respect to the mean over all CDF’s in F is attained at Fi,,4,. This result did not seem to be
easily provable for the trimmed mean but we do show that there is a broad generalization
of this phenomenon in the following sense: if F is redefined with ®(-) replaced by H (-)in
(1.1) where H is symmetric and either H(1/z) or (v/A) (where y(}) is the characteristic
function of H) is log convex, then the same phenomenon holds with ®(-) replaced by
H; i.e., the infima mentioned above are each attained at (1 — €0)H(z) + €0 H (\/”,—o) In
particular, if H itself is any scale mixture of normals, then H (vz) as well as (/X are

log convex, although in general the log convexity of one does not seem to imply that of the
other. We also explicitly answer a question originally raised in Tukey (1960), namely, given
so > 0 what is the smallest &9 > 0 required for the ARE of each estimate with respect to
the mean to exceed 1?7 In fact, we answer a more general question: we describe the joint
set of (€0,50) such that the ARE exceeds 1. Here the computations are not new but the

explicit description of the set is new and should be useful.



The main results achieved in this article are thus the following:
i. establishing Tukey type models as extreme points of more general contamination
families;
ii. demonstrating that the family (1.1) behaves like a singleton set in the sense of

stable ARE’s across the whole family; this is very intriguing;

iii. formally answering Tukey’s question about the percentage of contamination

needed for the (infimum) ARE over the mean to exceed 1;
iv. extension of earlier results of Sen (1968).

1.4. OQutline. Section 2 treats the Hodges-Lehmann estimate W, section 3 treats the
median and the general trimmed mean is discussed in section 4. The question of the
relative efficiency of these three estimators between themselves is also of importance. We
do not give any technical results on this but in section 5, we present some numerical

comparison of these three estimates. Section 6 contains some concluding remarks.

Throughout the entire article, e(W,X), e(M ,X) and e(X4,X) denote the ARE of
W, M and X, respectively with respect to X. The reader is reminded that these also
correspond to the Pitman efficiencies of the corresponding tests with respect to the mean

test.

2. Bounds on e(W,X).
Denote the class of measures G such that [ dG(s) =1 and [sdG = s by G. For

[-’1)°°]

q(s) = / h(z)h (—%) dz
Q(s,t) = / h(-;-g) h(—%) dz, (2.1)

where h is the density of H, a fixed symmetric and absolutely continuous distribution. We

future reference, let

will make the following assumption about H:
Assumption (A): Assume H is symmetric and absolutely continuous with density h. Let
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¥()) be the characteristic function of H. Let kh(z) = ho(z?) and ¥(X) = o(A?). Assume
either ho(-) or ¥o(-) is log convex.

Lemma 2.1. Under assumption (A), %';)- and ﬂ?l are both convex functions of s.

Proof: We will only prove that r(s) = ﬂ\/i;l is convex; the proof that _Qﬁ:;’l is convex

is similar. It is well known that because of measurability, it is enough to prove that

r (age2) g Helprlea),
First note that r(s) = q(\/s_) \1[ h(z )h( )da:— / h(z+/3)h(z)dz
= / ho(s22)ho(c?)dz
22
- /ho ((31 ;32) 3:2) ho(2?)dz
< [ VA e ho(a" e

= / Vho(s122)ho(22) v/ ho(s222)ho(2?)dz

S/ ho(slxz)ho(zz);ho(szxz)ho(zz)dx

_r(s1)+r(s2)
=
In the above, the first inequality follows if hg is log convex and the second inequality is a

consequence of the inequality Vab < “—;’i fora, 62> 0.

We will now prove that r(s) is convex if 1 is log convex. But this follows from the fact
that the map k — 1 is an isometry and hence by Parseval’s identity (see Rudin (1973)),
[ h(z)h(zy/3)dz = [P(A)$p(Ay/3)dA; the rest of the proof follows by a straightforward

repetition of the argument given above.

Cor. The function u(s) = 23/(5) + an"”) is convex if a > 0.
Lemma 2.2. Under assumption (A), iréffu(a:)dG'(:c) = u(3g).
Proof: By a standard theorem (see Karlin and Studden (1966)),

ixalf/u(m)dG(z) = sup {asg + b: for z > z;, u(z) > az + b}. (2.2)
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The result now follows from (2.2) on noting that u(z) is convex and the line tangent to

u(z) at the point so is below u(z) for all z.

Lemma 2.3. Under assumption (A), the function

a(s) | o) | 2Q(s:?)
f(s,t) = \/— \/- \/—

Proof: Since 1\(71 is convex, it follows that {(7’-)- + q—\(;-l is Schur convex (see Marshall and

is Schur convex.

Olkin (1979)). It will then be sufficient to prove that v(s, t) = —i\/——l is also Schur convex.

However, v(s,1) = = / h (—%) h (-%)"dx

- / h(z/3)h(ev/E)dz
- / ho(s2?Yho(tz?)dz
a2
= / h? (\/s—f z) dz

s+t s+t
=\ T2 T2 )¢

where the only inequality follows if hg is log convex. The proof when o is log convex

follows by again using Parseval’s identity in the lines of Lemma 2.1. This completes the

proof.

Theorem 2.4. Let F be defined as in (1.1) with &(-) replaced by H(-). Under assumption
(A), inf e(W,X) is attained at Fro,s0(z) = (1~ €0)H(2) +eoll (%)-

— o0

Proof: Recall that e(W, X) equals 12-0} -( [ fY(z)dz)? where f denotes the density of F'
—00

and a} denotes the variance of X under F. If h denotes the density of H, then by direct

calculations,
e(W,X) =12-c- (1 — €0 + €050)

c[a-er [ r2e0-co) [ [ 7 mn (F5) doterie g

e [ [ () () o]
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where ¢ = f z2h(z)dz.

-_00

If we let @ = y%2-, then the problem of computing inf e(W, X X) is equivalent to com-

puting
[ / a(s )dG’(s)+a / / Q%da(s)da(f)]
—iot [ [ [{22490 + 2D ag(paee)
dof ;g / [ £(5,)dG(5)dG(2)
over G.

We claim the infimum is attained at the measure degenerate at s9. Towards this end,

note that
f(80 ’ 30)

> inf / / F(s,£)dG(s)dC(E)

Zi%f//f(s-;t, 3'2”> dG(s)dG(D)

>3t [ [ e,5)46(2)
=f (30 »80);
here the first inequality is trivial, the second inequality is a consequence of Lemma 2.3, the

third inequality follows from the fact that the marginal distribution of -"—%’i also belongs to
G and the last inequality is guaranteed by Lemma 2.2. This proves the theorem.

Remark: Assumption (A) holds if H is any scale mixture of normal distributions with
mean zero. In particular, the following result holds:

Cor. Let F be defined as in (1.1). Then I{'n; e(W, X) is attained at
Fey50(z) = (1 —€0)2(z) + €02 (\/’5-) and hence equals

def. 3 + 2v/2¢9(1 — &) N €2

ew(€0730) = _(1 + (30 - 1)60) [(1 - 80)2 m \/ga (24)

Cor. Let F be defined as in (1.1) with @ replaced by H. If H is any scale mixture of
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normals, then,

inf e(W, X) = 12¢(1 + (so — 1)eo) - [(1 —€)? / h%(z)dz + 2ﬂ(—\17_‘;:—€-°—)- / h(z)h '(%) dz

& (22 ae]
+2 ()l
where ¢ = [ z?h(z)dz.

Discussion: One question of interest here is what is the overall infimum of e(W, X) over

all families F when H is also allowed to vary over arbitrary scale mixtures of normals;
32 . .

thus, if one lets h(z) = [ 7};;6"27 dv(t), then by using the above corollary, one wishes

to minimize [ [ (7%_*_7 + \Fobs =+ \/ﬁbt _H) dv(s)dv(t) where b is a suitable positive real.
One may assume that [¢dy(t) =1 for the purpose of this minimization because of scale
invariance. The argument used in Theorem 2.4 can now be used essentially word for word
to prove that the minimum occurs at the measure vy degenerate at t = 1. The implication
of this is that the overall infimum is a_._ttained at H = ® and thus equals the expression in
(2.4). This is, however, an expected result.

We next derive sup e(W, X ) where F is as in the statement of Theorem 2.4.
FeF

Theorem 2.5. Under assumption (A) and the additional assumption that k() is uniformly
bounded by some finite number,

sup e(W, X) = 12¢(1 — o + s0€0) X [(1 — 60)2/ R%(z)dz + eo(1 — €o)-
FeF —o0

12

{235;)+0Q(:,81)} . (25)

Again, the proof of this requires several lemmas. We state them below with a short sketch

of the proof in each case.
Lemma 2.6. Let J(s) be defined as

g(2s —31) , aQ(s1,28—3s1)

V28 —3s1 V/51(238 — 31) ’

Then under assumption (A), J(s) is convex.

82> 3.

J(s) =
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9(28—s1) 3o
28—2)

: g(2s—s1) Q(s1,25—21)
Proof: We prove that YT and oi@o—sn) are separately convex. That

convex follows from Lemma 2.1. The convexity of 91’—‘(131:1‘; follows on noting that
. 51(28—s1

def. Q(31,23 — s1)
N(s)= v/$1(28 — s1)
- / h(zr/a)h(cv/25 = 51)dz

= /ho(slzz)ho((2s — 51)z?)dz,

and hence

N(u) + N(v)
2
U — 81 :272 0 V—381)F
=/h0(31$2)h0((2 ) );h ((2 ) 2)d$

> / ho(512%)2/ ha((2u — s1)a2 ) ha((20 — 1)a%)dz

> /ho(slzz)ho((u + v —81)z?)dz

u+tv
=N .
( 2 )
q(bﬂ) Q-’l;bn)

Lemma 2.7. If h(z) is uniformly bounded, then for any sequence b, — oo, T

and 9(—",;‘"’1’—") converge to zero as n — oo.
Proof: Follows trivially from the definitions of ¢(s) and Q(s,t).

Lemma 2.8. Consider the distribution Gy, belonging to G with G, {s1} = pn, C,.{b,.} =1-

Pn, Where b, = 2472251, Then, there exists a sequence pn — 1 such that [ [ f(s,‘t)dG'n(s)d

Gr(t) converges to 23/(;11) + “Q(::m)

as n — o0,

Proof: We assume sq > 8; for if s9 = 81, then the result follows on taking p, = 1. Actually,

for s9 > s; we will prove that Lemma 2.8 holds for any sequence p, — 1.
By definition of f(s,1),

/ / £(5,8)dGn(3)dCa(t)

_ ’2‘(2:1}.:—;)4'0{@(:,81))
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+2pn(1 — pa) (q\(/“’i) + q\(/z_";) + “Q(,_:;i"))
F—pa)? (zf/(f_ ), aQ(::,bn)) | e

The result now follows from Lemma 2.7.

Proof of Theorem 2.5: Clearly, from (2.3), it follows that it is enough to show that
2‘1(31) a@(s1,31)

sup / / f(s,t)dG(s)dG(t) = \/"1‘ 1

This follows on noting that
2¢(s1) + aQ(s1,31)

e T
= lim / / £(3,8)dGn(3)dCn(2) (Lemma 2.8)
< sup / / f(s,8)dG(s)dG(t) (2 GaeG)

g(s1) L as+t—s)  oQsn,s+t—s1)
<sup /] { N eaie }dG(s)dG’(t)

(Lemma 2.3 and the fact that (s,t) is weakly majorized by (s1,$ + ¢ — s1))

_ 9_(\/%) +sup / / J (s '2”) dG(s)dG(t) (definition of J(-))

< q_(s}_l +sup | J(8)dG(s - the distribution of 2E* also belongs to §
N 2 g

=q—(\/z—i1)-+ini'{aso+b:J(s)5as+bforalls231}

(by a standard moment theorem; see Karlin and Studden (1966))

= q\(/?;) + J(s1) ' (Lemma 2.6)
_ 2q(s1) aQ(s1,81) rs
=75 + . (definition of J(:)).

This proves the theorem.

Cor. If H(z) = ®(z), then

I _ (1 - 60)2 60(1 —Eo) 2 1—_3_9;; 2
sup (W, X) = 1201+ (00— Leo) | 5 7+ — 757 {WJ’\/Q—}] @1)
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The following table gives the values of inf (W, X) and sup (W, X) for various values of

€0, 81 and 8o when H is the standard normal CDF. The values in parentheses are the

suprema.

Table 1: inf e(W, X)(sup e(W, X)) for contaminations of N(0,1)

€o
31 So 01 .05 1
01 | .962(c0) 1.022(c0) 1.143(c0)
0 1 .955(00) .955(c0) .955(c0)
4 .969(c0). 1.020(c0) 1.071(c0)
4 .969(.984) 1.020(1.098) 1.071(1.241)
1 9 1.009(1.031)  1.196(1.337)  1.373(1.719)
16 1.067(1.098) 1.463(1.671) 1.825(2.387)
9 1.009(1.016) 1.196(1.242) 1.373(1.483)
4 16 1.067(1.082)  1.463(1.552) 1.825(2.060)
25 1.150(1.167)  1.814(1.952) 2.412(2.801)

Notice that in general, unless s; is small, the infimum and the supremum of the efficiency

are rather close.

Since an explicit formula for inf e(W, X) is available, we can also answer the following
interesting question: given so, for which values of g, is inf e(W, X) > 17 The following
table gives the two values of €9 = €o(s0) for which the infimum equals 1 for some specific

values of sg. The infimum is 1 or more for g9 between these two values.

Table 2: Roots of inf (W, X) = 1 for given sg

Sp .01 1 25 R 1.5 2 4 9 16 25
Lower root .2098 .4367 .6 .7861 .1151 .0507 .0159 .0059 .0031 .0020
Upper root 9995 .9946 .9829 .9292 .5940 .6978 .7936 .8507 .8791 .8973

Thus, for example, if the variance of the contaminating distribution is thought to be about
4, only about 1.6% contamination is needed for the Hodges~Lehmann estimate to be more

efficient than the sample mean.

3. Bounds on e(M.X). The derivation of the infimum and the supremum of e(M, X) is
technically much easier. Also, it turns out that the infimum and the supremum for different

H are multiples of each other, making computations much simpler too.

13



Theorem 3.1. Let F be defined as in (1.1) with ® replaced by H. If H is symmetric and
absolutely continuous with a bounded density, then llwn;_ e(M,X) is attained at F,, ,,(z) =
&

(1 —e0)H(z) + coH ( \/_)

Proof: Recall that e(M,X) = (2f(0)o;)? where f denotes the density of F and 0% denotes

the variance of X under f. This simplifies to

e(M,X)
— dc(1 — e0 + soc0) - BA0)(L — £0 + €0 / -—\;—;dG(s))z, (3.1)

where ¢ = / z?h(z)dz.

-0

The problem therefore reduces to minimizing [ 2=dG(s) for G in G. This infimum is
v

attained at the distribution degenerate at sg since

(E(L)):(E(-&-s)-E(@): L 11

Ve EWE) ED T EE s
thus giving the Theorem.

Cor. Let H = ® in (1.1); then

11;‘I€].f7 C(M,_.f) = ;2;(1 + (30 - 1)60) (1 —¢&o0+ 76_‘3;) . ) (3.2)

Cor. For an arbitrary H satisfying the assumptions of Theorem 3.1,

2
inf e(M, X) = 4ch®*(0)(1 + (so — 1)eo) (1 —& + %) . (3.3)

Remark:

1. The corollary above implies that for different H, I{'n;__ e(M,X) are multiples of each
other.

2. Suppose that each family F corresponding to a fixed H is considered as a model. Then
(3.3) gives an expression for the minimum efficiency of the median with respect to the

mean. If we now consider all the models generated by different symmetric unimodal H,

14



then (3.3) gives the fact that the minimum efficiency of the median with respect to the

mean simultaneously over all such models equals - (14 (so —1)€o) X (1 —eo+ —\7&=)

since the minimum over the symmetric unimodal densities is %

Theorem 3.2. Under the assumptions of Theorem 3.1,

2y ap2 AN
;1:.}7): e(M,X) = 4ch*(0)(1 + (so — 1)e0) (1 —&o + \/ﬁ) . (3.4)

Proof: Again, from (3.1), we need to find sup [ 7?;dG’(s) over G. That this equals ﬁ is
proved by taking G, as in Lemma 2.8 and using the inequalities

L
/51

= lim —dGns
o/ (5)

<sup/ —dG(s)
= inf aso+b:as+b2—1—fora.]ls_>_31
Nz

(v Jpemecins)
= — is convex in 3
VI Vs ’

thus giving the Theorem.

Cor. Let H = & in (1.1); then

Is_};g e(M,X) = %(1 + (80 — 1)eo) (1 —eo+ %) . (3.5)

Remark:
1. Again, sup (M, X) are multiples of each other for different H.

2. Notice that unlike the infimum, the supremum is not exactly attained at any distri-

bution.

The following table gives the values of inf (M, X) and sup e(M, X) for various com-
binations of £o,51 and so when H equals ®. As in Table 1, the values in the parentheses
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are the suprema.

Table 3: inf e(M, X )(sup e(M, X)) for contaminations of N(0,1)

€9
81 S0 .01 .05 1
.01 .749(00) 1.272(0) 2.071(c0)
0 1 .634(00) .634(c0) .634(00)
4 .649(o0) .696(c0) .747(00)
4 .649(.656)  .696(.732) .747(.828)
1 9 .678(.688)  .833(.891) .998(1.146)
16 721(.732)  1.032(1.114) 1.362(1.592)
9 .678(.681)  .833(.84T) .998(1.034)
4 16 721(.725) 1.032(1.059) 1.362(1.436)
25 177(.782) 1.291(1.331)  1.832(1.953)

Again, inspection of the values in Table 3 show that except when s; is small, the infimum
and the supremum of e(M, X ) are amazingly close. Also, comparison with Table 1 shows
that generally speaking, except when the contamination is of the form of a near point
mass at 0 with a moderate amount of contamination, the Hodges-Lehmann estimate is
probably to be preferred to the median, although an explicit statement to this effect

requires computation of e(W, M).

Again, because of Theorem 3.1, we can find out the smallest &g > 0 required for
inf e(M, X) to be 1 or more for a given so. The following table gives the values of &¢ at
which the infimum equals 1 for given sy. For €9 between these values, the infimum is 1 or
more.

Table 4: Roots of inf e(M,X) =1 for given so
So .01 1 .20 S5 15 2 4 9 16 25

Lower root .03028 .16599 .49992 =* * * *x 00800 .04560 .02667
Uppper root .99406 .91412 .62549 = * * *= 81500 .89285 .92469

(an asterisk (*) represents no root of the equation; this is an indicator of the fact that if

so is “close” to 1, then the median stays less efficient than the mean).

4. Bounds on e(X 4, X). The results of sections 2 and 3 imply that the minimum efficien-

cies of the Hodges-Lehmann estimate and the median are attained at a degenerate mixing
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distribution G. However, a different feature of the results in this section is that in general
it was only possible to prove that the mixing distribution at which the minimum occurs is
supported at at most three points and there are in fact some cases in which the support
has two points. Usually, however, we found that the support again has only one point
in which case the distribution is automatically degenerate at sg. The technique we apply
does not seem easily adaptable to the case of general H; so we restrict ourselves to the case
H = & in this section. Notice that the results in Bickel and Lehmann (1975) and also Loh
(1984) would imply that for every F in F, e(Xq4,X) exceeds the value of this efficiency

under ® because of tail orderings between F' and &. However, ® itself is not necessarily a

member of F.

Recall that for any F,
2

—_— e O'f
C(X a X ) = 0,_37
where 0% is the variance of z under f and

F~l(1-a) 9
o? = (1_—220{? [ /0 2f(t)dt +a {F1(1-a))?]. (4.1)

The problem of minimizing e(X4,X) then is equivalent to maximizing o2 over F in F,
or equivalently over G in G. This can be done by considering the subclass of distributions
in F for which F~(1 — a) equals a fixed constant v and maximizing [’ #2f(¢)dt in this

subclass. The overall maximum can then be obtained by varying v in its appropriate range.

The restriction F~1(1 —a) =7 is equivalent to the restriction

[3 (_}) dce) - (1-a) = (1-e)%() @)

€

4 o0
Also, maximizing [ ¢2 f(¢)dt is easily shown to be equivalent to minimizing [ 2 f(t)dt and
0 ~

straightforward calculations using integration by parts give that
m .
/ t2 f(t)dt
~

76'121 +1-— @(7)] + €0 / {—\/% Vs e +s (1 - & (%))} dG(s),
(4.3)
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so that we require to minimize [ f2(s)dG(s) subject to the restrictions (4.2) and [ sdG(s) =
so (the restriction that [ dG(s) = 1 is automatically imposed by only considering

[311°°)

f2(s) = \/— V3 e T —5d (\/l;) : . (44)
We also let fi(s) =@ (&;)

The following preparatory result is needed.

s > 81), where

Lemma 4.1. For any real b, the second derivative of the function

] e_'}; :
fa(s) = i’iﬁ— —(s+b)@ (%) (4.5)

has at most one sign change.

Proof: First observe that
fa(s) = —[25*fi(s) + (s + B)fu (s)]-
So it suffices to prove that the second derivative of
fa(s) = =25 fi(s) + (s + B)f1(s) (4.6)

has at most one sign change.

Differentiation yields

1(s) = 6£i(s) +8s{(s) + (5 + A (5) + 26 £ (2). (47)
Also, fi(s) = — 74 (%),

nis) = -1 g ( L)+ 4(2L

T4 7/2 /s 4527\ Js)’
5
@y Y 10 (v 15y (7
a'nd fl (3) - 8 11/2 ¢ (\/—) + 889/2 ¢ (\/:9‘) 837/2 ¢ \/E ’ (4‘8)

where ¢(-) denotes the density of the standard normal distribution.
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Substitution of (4.8) into (4.7) and algebra now yields
1
() = 5 7510 +30)s — (07" + 7)) (49)

It follows that f!’(s) has at most one sign change and the desired conclusion follows.

Theorem 4.2. Let F be defined as in (1.1). Then inf e(X 4, X) over F equals inf e(X o, X)
over the subclass of distributions corresponding to those G in G which are supported at at

most 3 points.
Proof: From the discussion preceding Lemma 4.1, it follows that we need to find

inf [ f2(s)dG(s) subject to [ fi(s)dG(s) = c1 (say) and [ sdG(s) = co = 30, Where s 2 3.
However, this infimum equals

sup{bc; + aco + ¢: f2(s) > bfi(s) + as +cforall s > 51}

and furthermore it is sufficient to consider only such G which are supported on contact

sets of the form

{s: f2(s) = bfi(s) + as +c}. (4.10)
Since fa(s) = bfi(s) +as+c

<=>fo(s) —bfi(s) =as+¢c

< f3(s) = as +¢,

it follows from Lemma (4.1) that the contact set (4.10) can have at most 3 points, which

proves the theorem.

Since Theorem 4.2 is less explicit than Theorem 2.4 and Theorem 3.1, the calculation
of inf e(X 4, X ) has to be done numerically, by minimizing e(Xa,X) = ;{;— over 3 point
distributions in G. This is done by taking sz, 33, 84 and a probability vector pz, ps, ps such
that 24: pis; = 3o and solving for 7 satisfying F~1(1 — ) =+, which is equivalent to

i=2

> pi® (%) _lze- (160_ £0)() (4.11)

=2
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One then minimizes
- ¥ 1+ (s0—1)eg (1 -—2a)?

e(Xa X) = e E + o R (4.12)
where }tz f(t)dt
0
= / c'01:2 f(t)dt — / oot"’ f(t)dt
0 +
=1 +(3°2' Do _ [I 12 7(8)dt, (4.13)

where [ t?f(t) is given by (4.3) with G described as above.
v

Even though Theorem 4.2 only enables us to assert that the mixing distribution G is
supported at at most three points, in the examples we considered the mixing distribution

turned out to be either two point or one point.

Following exactly the same arguments of Theorem 4.2, one can also prove the following

Theorem. We omit the proof.

Theorem 4.3. Let F be defined as in (1.1). Then sup e(Xa, X ) over F equals sup e(X o, X )
over the subclass of distributions corresponding to those G in G which are supported at at

most 3 points.

The numerical project for evaluating the supremum is exactly the same as before,
except one now maximizes (4.12) using (4.11), (4.13) and (4.3). Again, the mixing dis-
tribution corresponding to the supremum turned out to be at most two poigt in all the
examples that we considered. The following tables give the values of inf e(X4,X) and
sup &(X o, X ) for various values of «, &9, s; and sg. Again, the values in parentheses are
the values of the suprema.

Table 5: inf e(Xa, X )(sup (Xa,X)) for contaminations of N(0,1):e0 = .01
a

31 | 30 |.01 .05 1 125 25 375
1.5[.996(.998) .975(.977) .944(.946) .927(.929) .838(.840) .741(.742)
1.1] 2 |.997(1.003) .977(.982) .946(.951) .929(.934) .840(.844) .743(.746)
8 [1.033(1.040) 1.020(1.024) .091(:993) .074(.977) .882(.884) .781(.782)
5 |10[1.049(1.059) 1.037(1.043) 1.008(1.012) .991(.995) .898(.901) .795(.797)
15 |1.091(1.097) 1.082(1.086) 1.052(1.054) 1.035(1.037) .938(.940) _.830(.832)
9 |20 [1.134(1.145) 1.127(1.133) 1.097(1.100) 1.079(1.082) .978(.981)  .866(.868)
20 | 1.134(1.137) 1.127(1.128) 1.697(1.697) 1.079(1.08) .978(.979) .866(.867)
16 | 25 [1.179(1.184) 1.173(1.175) 1.142(1.143) 1.123(1.125) 1.019(1.02) .902(.903)
30 [1.223(1.226) 1.219(1.220) 1.187(1.187) 1.168(1.168) 1.059(1.060) .938(.938)
25 | 40 |1.315(1.320) 1.312(1.314) 1.278(1.279) 1.257(1.259) 1.141(1.142) 1.010(1.011)
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Table 6: inf e(X o, X )(sup e(X a, X)) for contaminations of N(0,1):&o = .05

S0

04

.01 .05 .1 125 25 .375

1.1

1.5
2

:007(1.008) .977(.989) .947(.958) .931(.041) .841(.851) .744(.752)
1.001(1.030).985(1.011) .956(.980) .940(.963) .852(.871) .754(.771)

8
10

1.128(1.177) 1.175(1.198) 1.156(1.176) 1.145(1.160) 1.05(1.06) .933(.941)
1.175(1.262) 1.249(1.286) 1.236(1.263) 1.222(1.246) 1.122(1.138) .999(1.011)

15
20

1.285(1.381) 1.44(1.466) 1.433(1.451) 1.418(1.434) 1.306(1.317) 1.163(1.172)
1.372(1.582) 1.633(1.681) 1.632(1.664) 1.617(1.645) 1.492(1.51) 1.329(1.343)

16

20
25

1.372(1.420) 1.633(1.643) 1.632(1.638) 1.617(1.622) 1.492(1.495) 1.329(1.332)
1.441(1.605) 1.829(1.853) 1.832(1.848) 1.816(1.83) 1.678(1.687) 1.496(1.503)

25

31

30
40

1.500(1.569) 2.025(2.033) 2.032(2.038) 2.016(2.020) 1.864(1.867) 1.663(1.665)
1.597(1.873) 2.418(2.446) 2.434(2.452) 2.416(2.431) 2.238(2.248) 1.997(2.004)

Table 7: inf e(X «, X )(sup e(X o, X)) for contaminations of N(0,1):e9 = .15

S0

o

.01 .05 1 125 25 375

1.1

1.5
2

999(1.03) .982(1.016) .953(.986) .037(-969) .849(.878) .752(.777)
1.007(1.094) 1.000(1.082) .976(1.052) .961(1.034) .875(.937) .777(.829)

5

8
10

1.103(1.302) 1.376(1.483) 1.436(1.509) 1.439(1.503) 1.365(1.408) 1.23(1.263)
1.118(1.482) 1.508(1.697) 1.603(1.728) 1.612(1.722) 1.541(1.613) 1.392(1.477)

9

15
20

1.144(1.457) 1.825(1.998) 2.023(2.121) 2.048(2.132) 1.983(2.037) 1.798(1.839)
1.160(1.791) 2.120(2.477) 2.442(2.632) 2.483(2.646) 2.427(2.528) 2.206(2.283)

16

20
25

1.160(1.275) 2.120(2.201) 2.442(2.480) 2.483(2.516) 2.427(2.447) 2.206(2.221)
1.172(1.493) 2.391(2.621) 2.857(2.960) 2.918(3.003) 2.87(2.921) 2.613(2.652)

25

The most striking feature of these tables is the proximity of the infimum and the supremum.
If the expected degree of contamination is small, then a small amount of trimming seems
to be optimal; on the other hand, a moderate amount of trimming (10 to 15%) is optimal
if the expected degree of contamination is larger. Also, for any trimming proportion, the

trimmed mean gets more efficient as the average variance of the contamination distribution

30
40

increases.

Table 8 gives the values of & for which inf e(X4,X) exceeds 1 for various values of

a and so (although we cannot say it conclusively, in all the examples we looked at the

1.180(1.276) 2.640(2.736) 3.271(3.307) 3.350(3.379) 3.312(3.329) 3.020(3.033)
1.191(1.584) 3.069(3.484) 4.092(4.227) 4.211(4.321) 4.194(4.260) 3.833(3.881)
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numerical value of inf (X4, X ) did not depend on s; and only depended on &o and so;
one may thus conjecture that as in the cases of the Hodges-Lehmann estimate and the
median, for the trimmed mean also inf e(X 4, X) is only a function of €¢ and so; Table 8

is correct subject to the numerical accuracy of our computations).
Table 8: Roots of inf e(X 4, X ) = 1 for given sg
So
.01 N 2 3 4 9 16 25
Lower root  .10012 .11042 .03438 .00822 .00391 .00083 .00036 .00020
.01 Uppper root .99996 .99929 .78161 .84876 .86668 .88815 .89411 .89666

Lower root  .11957 .13239 .14881 .03644 .01862 .00464 .00214 .00125
.05 Uppper root .99973 .99601 .63866 .80404 .83617 .86583 .87327 .87643
Lower root  .11634 .13022 * .09897 .05044 .01316 .00623 .00368
.125 Uppper root .99917 .98862 .74837 .81542 .86758 .87613 .87948
Lower root  .08812 .11338 29647 .12565 .03169 .01508 .00895
.25 Uppper root .99798 .97257 .56306 .75854 .88096 .90179 .90753

Lower root  .04870 .11868 * 27904 .05832 .02739 .01620
.375 Uppper root .99635 .94971 * .60568 .86999 .91539 .93320

IR

* ¥ * ¥ *

Note: an asterisk (*) signifies that for this sy, (X4, X ) remains below 1 for all &o; this is
not unexpected since for s close to 1, F' is close to ¢ and therefore e(X o, X ) is expected

to be less than 1.

5. QGeneral discussion and comparisons. The results in sections 2 and 3 imply that the

contaminated normal distribution Fy, s,(z) = (1 — €0)®(z) + €0 ® (\/’;—o) has an extreme
point property in the family of more general mixture distributions (1.1). Also, this result
holds for a CDF H significantly more general than ®. For the trimmed mean, however,
this extreme point property does not necessarily hold since we did find a few cases in which
the mixing distribution G for which inf e(Xa, X) is attained is two point. The supremum

was always attained at a two point distribution.

A comparison of Tables 1, 3, 5, 6 and 7 indicates that in general the trimmed mean
with a moderate amount of trimming seems to provide the best overall protection. For
example, if 3o is 9, inf e(W, X ) varies between 1.009 and 1.373, inf e(M, X) varies between
.678 and .998, while inf e(X 4, X) varies approximately between .97 and 1.6 if « is about

.1 and sq is between 8 and 10.
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A second important feature of the results in sections 2, 3, and 4 is that over the entire
family of distributions F, the efficiency of each of W, M and X o remains amazingly stable

for practically all combinations of €g, s; and so.

Deviation from normality in real data often occur in the form of a slight skewness. Asym-
metric contaminations provide natural avenues for addressing this problem. See Jaeckel

(1971), Collins (1976), Andrews et al (1972) for some related results.

The restriction that [ sdG(s) equals sy < co keeps the variance of F in control. This
may be viewed as somewhat restrictive. But our results are intended to apply to precisely
these situations where the center as well the tail are controlled. There may be other ways
to say that so is a guess for the value of s, like a median restriction instead of a mean
restriction. Conceptually, the moment techniques still apply. But the derivation of the

infimum and the supremum is harder now.
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