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Estimating a Binomial Parameter:

Is Robust Bayes Real Bayes?*

Abstract

In robust Bayesian analysis, a prior is assumed to belong to a family instead of being
specified exactly. The multiplicity of priors naturally leads to a collection of Bayes actions
(estimates), and these often form a convex set (an interval in the case of a real parameter).
It is clearly essential to be able to recommend one action from this set to the user. We
address the following problem: if we systematically choose one action for each X thereby
constructing a decision rule, is it going to be Bayes? Is it Bayes with respect to a prior in

the original prior family? Even if it is not genuine Bayes, is it admissible?

This problem is addressed in the context of estimating an unknown Binomial parame-
ter. Several prior families are considered. We look at the midpoint of the interval of Bayes
estimates; this has a minimax interpretation, apart from its obvious simplistic appeal. We
establish that unless the prior family includes unreasonable priors, use of this estimate

guarantees good behavior and indeed it is usually admissible or even genuine Bayes.

1. Introduction

1.1 The Basic Problem. In the robust Bayesian viewpoint, the parameter 6 of a
random variable X is assumed to have a prior distribution belonging to an appropriate
family of priors, say, I'. Considerable work has now been done in this area on the aspect
of sensitivity of posterior expectations to the choice of the prior. See Berger (1990) for
a general exposition and references to other works. The typical conclusion in all of these
works is that if the body of the prior(s) and that of the likelihood match, then posterior
means and such other measures are moderately insensitive to the tail of the prior and
otherwise they are not. In a broad sense, therefore, the central phenomenon in these

problems is now quite well understood.

A related problem of interest to frequentists and Bayesians alike is the following: if,

from the set of all Bayes actions corresponding to the priors in the family I, a particular
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action is chosen in a systematic way for each value of the sample X, what would be the
behavior of the resulting decision rule? A clearly natural question for a Bayesian here
is if this procedure actually corresponds to valid prior opinion; to put it in the language
of decision theory, one likes to know if there is a prior ¢g(6) (hopefully itself belonging to
the family I') such that the espoused rule is Bayes with respect to g(¢). Note we require
that ¢ be a bonafide prior; that is, g should not depend on the data X. We thus not
only want the procedure to be conditionally Bayes for each fixed X, we further want the
same prior to work for every X. In such a case, we are satisfied that our ‘robust Bayes’
procedure actually corresponds to prior opinion. In the frequentist analysis, the similar
question of interest is the risk behavior of the procedure. In particular, one wants to know
if it is admissible. Notice that the two questions raised here are related because of the well
known relations between Bayes and admissible procedures, although they are not (usually)
completely equivalent. The questions raised here are of clear practical importance, since
in the final analysis we cannot recommend a range of actions to an untrained user and

specific actions must be advised.

1.2. The Selection Criterion. The literature on robust Bayes analysis does not as yet
contain substantial work on how exactly a specific action should be chosen. It may even
be the case that no single method works well all the time. Indeed, this is very likely. In
DasGupta and Studden (1989), several methods for choosing a specific action are proposed
and the resulting procedures are derived and evaluated for estimating a multivariate normal
mean. In this article, we will use posterior regret as the selection criterion and use the
corresponding minimax action. Specifically, given fixed X, a fixed action § and a fixed prior
7 in I, let r(w, 6, X) denote the posterior expected loss of § under = and let r(r, X) =
inf r(m, 6, X); the posterior regret is defined to be r*(7,8,X) = r(n, 8, X) — r(7,X). The
minimax action § = §o(X) then minimizes supr*(=, §, X). If the basic loss in the decision
problem is ordinary squared error and if the ;range of actions for 7 in I is an interval, then
this minimax action simply corresponds to the midpoint of the interval of Bayes actions.
Note that the use of the midpoint may seem to be rather naive at first glance. But we will
in fact give evidence that in the problem we consider, this simple action often turns out
to be itself Bayes and also admissible. More comments about similarities with the normal

problem are made in section 3.



1.3. The Specific Problem. The problems we describe above are relevant in arbitrary
decision problems in any dimension. Since we believe that this is the first work on this
issue, we confine ourselves to the one dimensional problem of estimating an unknown
Binomial success probability. A technical reason for considering this problem is that usable

characterizations of admissible and Bayes procedures are available here; see the works of

Johnson (1971), Kozek (1982), Skibinsky and Rukhin (1989) and Brown (1981).

Formally, then, one has X ~ Bin (n,6), 0 < § < 1. 8 has a prior ; five different

families of priors will be considered:

I'y = set of all symmetric Beta (&, ) priors with a1 < a < ay;

I's = set of all priors symmetric and unimodal about o

I3 = {7r : w(0) = (1 —¢e)mo(8) + eq(6),
where 0 < € < 1,m(0) are fixed, and g, ¢ € I‘z};

1
'y = set of all priors symmetric about X

and I's = set of all Beta («, ) priors with («, 8) belonging to a

suitable bounded triangle in the two dimensional plane.

1.4. Discussion on the Families of Priors. First note that T'; for 7 = 1,2, 3,4 only
contain symmetric prior distributions. If asymmetric priors are considered plausible, I's is

a possible choice.

I'; is a convenient choice as far as calculations are concerned; the bounds on o can
be justified by proving that these correspond to imposing bounds on any one or a fixed
number of quantiles of the prior. Note that unlike in the situation of estimating a normal
mean, use of conjugate priors is not bad here because of the true richness of conjugate

priors in this case.

Use of I'; is an attempt to include nonconjugate priors while preserving reasonable
shape features; I's is like I'; but is less conservative since g is kept fixed. Many authors

have used I's or families like I's in various robustness works; Huber (1973), Berger and
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Sivaganesan (1989), DasGupta and Bose (1988), DasGupta and Delampady (1990), Das-
Gupta (1990) are some references here. I'y is the largest of the first four families and is
really quite conservative. Note that I'y, I's C I'y C T'y but neither of I'; and I's contains
the other. Regarding I's, it will later be demonstrated that varying (a, ) in a bounded
triangle implies that the mean and the variance of the prior are bounded in both directions.
Since priors which allow the parameter to be a fixed constant with a very large probability
are generally not thought of as highly plausible priors in problems where robustness is a
concern, a lower bound on the variance is very natural. An upper bound on the variance

is automatic since 8 is bounded. More will be said of I's later.

1.5. Description of Results. It is proved that the midpoint equals the Bayes estimate
corresponding to a Beta prior (depending on n) for I'y and I'y; thus it is Bayes as well
as admissible. Indeed, if in I'; one takes a3 = 1 and ay = oo (in which case o« = a3 is
not allowed), the midpoint for Iy and I'; coincide. Notice that with a; = 1 and ay = oo,
I'; becomes the collection of all symmetric unimodal Beta priors. For the family I'y, the
midpoint is shown to be a piecewise constant rule equaling 7 for X < [2], I for X = [Z]
and 2 for X > [2]. This is neither Bayes nor admissible for n > 2. The midpoint is
explicitly evaluated for n < 4 for the family I's and shown to be Bayes and admissible for
any € and any mp. For n > 4, explicit evaluation of the estimate becomes difficult, but we
have numerical evidence using characterizations of admissible estimates that for any € and
Ty, the midpoint is admissible for all n. A similar phenomenon holds for the family I's.
Here also we prove analytically the Bayes nature of the estimate for n < 4. Interestingly,
even though in most of the cases where the midpoint is Bayes, it is Bayes with respect to
(infinitely) many priors many of which are ‘nice’ plausible priors belonging to the family
in consideration, in quite a few cases it is Bayes with respect to the unique distribution
which is the upper or the lower principal representation of a moment problem, i.e., the
unique discrete distribution which maximizes or minimizes a particular moment for given
values of lower order moments. In these cases, the prior is finitely supported and does not

belong to the original family under consideration.

Throughout the entire article, the midpoint estimate will be referred to as éa/(X).



2. Main Results

2.1 The Family I';. As stated in the introduction, if § ~ Be(a, a), then bounding «
between a; and ay is equivalent to bounding a fixed quantile between two fixed numbers.
Since intersection of a finite number of closed intervals is also a closed interval, bounding «
in an interval is also equivalent to a consistent set of bounds on a finite number of quantiles.
Since subjective elicitation of bounds on quantiles is considered a relatively easier part of

eliciting prior knowledge, bounding « in an interval is reasonable.

Lemma 2.1.1. Let § ~ Be(a,a), a > 0. Let Z = 6(1 — 6). Then the density of Z given

a has monotone likelihood ratio in Z.
Proof: Straightforward.

Lemma 2.1.2. Let § ~ Be(a,a), @ > 0. Then P,(6 < 7) is increasing in a if 7 > 1 and

decreasing in o if 7 < 1.

Proof: Let 7 > % Then

Pa(9§7)=%+Pa(—;—§9§7‘)

1 1
L4 IPp(1-r<0<
2—|—2P01(1 T<0<71)

P,(0(1 -0)>7(1-1)),

_1+1
T2 2

from which the assertion follows by using Lemma 2.1.1.

The proof for the case 7 < % is similar.

Lemma 2.1.3. Let § ~ Be(a,a). Then bounding a fixed percentile of # in an interval is

equivalent to bounding « in an interval.

Proof: Follows from Lemma 2.1.2.



Theorem 2.1.4. Let X ~ Bin (n,0) and § ~ Be(a,a), where a; < a < ag. Then

n(ar+az)+t4aras

_ 2(nt+a1tasz)
6M('X) - n 4 noaj+nastdoiag

nt+aj+as

n(aitas)t+dason
2(n+ar1+asz) and

Hence, &y is Bayes with respect to the Be(a*,a*) prior where o* =

is admissible for all n.

Proof: Use the fact that for any «, the Bayes estimate with respect to the Be(a, a) prior

ig Xto
n+2a°

Remark: Notice a; < a* < «g; hence ép7 is Bayes with respect to a prior in T’y itself.

Also o* =~ (—‘#?l for large n.
2.2 The Family I's.

Theorem 2.2.1. For the family Iy,

X+2+2

Su(X) = on + 4

Hence, ép is Bayes with respect to the Be(% 4 2, § + 2) prior and is admissible for all n.

To prove this theorem, we need the following two lemmas.

Lemma 2.2.2. Let X ~ ¢g(z), —00 < z < oo. Suppose for z > 0, T(z) = 95(_5) is

nondecreasing and T'(z) > 1. Then E(X| |z| £ 2) is nonincreasing in z.

Proof: By easy algebra,

— fz T- —;Ez;;i (T(z) + 1)g(z)dz
E(X| |z] < 2) = ——— (2.1)
of(T(x) + 1)g(z)dz

Define a new family of densities L(z|z) now as
(T(z)+1)g(z)I0<z < 2

L(z|z) = ~—
bf(T(a:) + 1)g(z)dz

(2.2)
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L(z|z) has monotone likelihood ratio in X. The result now follows from (2.1) on noting

that

B(X|lel <2) = - [ d(a)L(alz)ds, (2.9)
where
T(z)—-1
d(z)==z- T(z ) ) (2.4)
is nondecreasing,.
Lemma 2.2.3. For 0 <2< %, 0 < X < n, define
b4s
f 0X+1(1 _ 9)"_Xd9
3= 1
= < Z
f(z) e if0<z< 5
f 6X(1 — 0)y»—Xdf
1 .
=3 if z =0. (2.5)

Then f is monotone decreasing for X < 2 and monotone increasing for X > >

The case X < 2 follows from Lemma 2.2.2 on noting that f(z) = $+FE(0—3| [§—31| <
z), when 8 ~ Be(X +1,n — X 4+ 1). The case X > 7 follows by symmetry.

Proof of Theorem 2.2.1: Denote a general prior in I'; by G and the corresponding
Bayes estimate by dg. By Theorem 2.3.1 in Sivaganesan and Berger (1989),

supég(X) = sup f(2)
G OSZS%

and

infég(X) = inf f(z),
G OSZS%
where f is as in Lemma 2.2.3.

Hence, by Lemma 2.2.3, for X < [—2'5],

supde(X) = f(0) = 5
G



and
. 1 X+1
nfée(X) =1(3) =15
giving the required expression for §p. For X > [7], the proof is similar and for X = [Z],

the proof is trivial.

Remark: A comparison of the assertions of Theorems 2.1.4 and 2.2.1 shows that §u
is the same for the family of all symmetric unimodal priors and all symmetric unimodal
Beta priors (these correspond to I'y with a; = 1 and as = 00). This result is not entirely

obvious since I'; is not weakly dense in I's.

2.3. The Family I';. Technically, this is the hardest family to handle. Indeed, even an
explicit formula for éps involves formidable calculations and we have succeeded in doing
so for n < 4. For these values of n and any arbitrary symmetric unimodal 7y and any
0 <e <1, the midpoint dps is an admissible Bayes procedure. Once an explicit expression
for 6pr is found, the Bayes nature and the admissibility of 3 is proved by using the
characterizations of Bayes or admissible procedures as in Kozek (1982) or Skibinsky and
Rukhin (1989). Since this indeed involves nontrivial calculations, we give a complete proof
for the case n = 2 and give the main steps of the proof for n = 3 and 4. The details are

avallable from the authors. First we need some notation.

Let p} = Exy(67), uj = E4(67) and oo = 757 (the case € = 0 is uninteresting and the

l1—¢

case € = 1 corresponds to the family T'y).

If 6 ~ q where ¢ is symmetric and unimodal then 26 — 1 admits the representation
0—==u-2,

where u ~ u[-1,1],2 > Z > 0, and u, Z are independent (see Khintchine (1938)). Let
W =27, so that 0 < W < 1. Consequently,

o

]

J 1
<2i> 2i+1°" (2:6)

lj,]__.]_
=0

where ¢; = EW?.



Let ¢%,¢c3,... correspond to my and ¢j,cs,... correspond to a general q.

Theorem 2.3.1. For n = 2 and the family I3,

3—6u3+o n 2—4pdto
12p0+4a 8ud+2a

2 )

dm(0)=1-6m(2) =
and 6p(1) = %

Furthermore, 637 is admissible and Bayes.

Proof: Let G = (1—¢)my+eg denote a general prior in 'y and 8¢ denote the corresponding

Bayes rule. Then, direct calculation gives
X n—X

T O e D (T e
ba(X) = =0 . (2.7)

L (7 Dimxta 5 () (Diksex

which simplifies to

6G(0) = Iug + Ol;z 2 )
ba(1) = %,
6c(2) =1— 65(0) (2.8)

Using (2.6), it follows that uq varies in the interval i <pg < % Maximizing and minimiz-
ing 6G(0) over this range, the expression for §3/(0) follows. The facts that §3/(1) = £ and
6m(2) =1 — 6p(0) are immediate.

To prove that é6ps is Bayes and admissible, it is enough to prove that 0 < §37(0) <
Sm(1) = 2 < 6m(2) < 1 (see Skibinsky and Rukhin (1989)). That §3,(0) > 0 follows from
the fact that 3 —6u3 + @ and 2 — 445 + « are both positive. That §3/(0) < 1 follows from
the fact that 6¢(0) < 6¢(1) = £ for each G by monotonicity of Bayes rules. The remaining

two inequalities are immediate since §p7(0) = 1 — 837(2). This proves the Theorem.

Remark: Since the plausible priors were thought to belong to I's, the more natural
question is whether 057 is Bayes with respect to some prior in 'z itself. The following

example illustrates this.



Example 1. Suppose mg is the uniform distribution on [0,1]. Then, using (2.7), dur is
Bayes with respect to G = (1 — €)mg + ¢¢ if and only if there exists a symmetric unimodal

g with second moment p9 satisfying

2etd) 1 toaly— %)
2 3+ aps

1, o _ _oti

1z T2 6(a+%)

a8+ 2
4 ' 2(a+3)

& po = (2.9)

Recalling that for symmetric unimodal distributions % < pg < %, it follows that éps is

Bayes with respect to a prior in I's if and only if the right hand side of (2.9) is between i
and -;— This is indeed the case for each € between 0 and 1. Also, since the value of ps in
(2.9) does not correspond to an upper or a lower principal representation, for any ¢, s is

Bayes with respect to infinitely many priors in I's.

Theorem 2.3.2. For n = 3 and the family I's,

5 (0)_i 5—y+5a 5—z?+4da
M) =00\ T+a+z  1+2a+z )’

_ 3 [5—y+da N
m(2) = 3 (3—x+3a+2c>’
S0(1) = 1 — 632(2)

and §p(3) = 1 — ép(0),

where z = ¢}, y = ¢} and c* is as in (2.15). Furthermore, 6 is admissible and Bayes.

Proof: Using the notation of Theorem 2.3.1,

16 — 35 T (35 — §5)

b(0) = s1+2)+ 21 +a)’
bo(2) = 11— 8+ oli = &) (2.10)

6

1 T 1

s —2stols — 5%

It is clear that 6¢(0) is decreasing in both ¢; and ¢z. Since ¢;, ¢g belong to the set
{(c1,¢2): 0< 2 < ey <eq €1},
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elementary calculations give
sup 86(0) =
G
(2.11)

and irGlf 66(0) = ¢

The expression for §37(0) follows from (2.11). Also, éG(2) is clearly decreasing in ¢, for

fixed ¢1, implying

(2.12)

16 ~ 35t 16
inf66(2) = T o (2.13)
§ " 2ats

On the other hand,

supég(2) = su g 2.14
Gp o) O_<_c21 %_23"“0‘(%_264 ( )
This supremum is attained at
c*:3—3:—{—301—\/(3—:c+3a)2—oz(5—y-|—a), (2.15)
a
which, on algebra, gives
3 *
sup§g(2) = . (2.16)
G 5
The expression for §37(2) now follows from (2.13), (2.16).
To prove that §ys is admissible, we verify that
(81 — 80)(1 — 81)(63 — 82)62 > 80(1 — 63)(82 — 61)?, (2.17)

(see Kozek (1982) or Skibinsky and Rukhin (1989)), where 6§; = 637(z). On simple algebra,

this reduces to

82(1 — 63)
_
1 25 (2.18)

(2.18) can be verified by a lengthy argument which essentially shows that if (2.18) holds
for & = 0 and oo, then it holds for all 0 < a < co too. We omit these details.
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Finally, since 637 is admissible and 0 < §p7(¢) < 1 for all ¢, it is also Bayes (see Johnson
(1971)). This proves the result.

Theorem 2.3.3. For n = 4 and the family I's,

15+ 10z — 9y + 16ac 15+ 10z — 9y + 15a>

1
522(0) = =
m(0) 4(15+30x—|—3y+48a 15+ 30z + 3y + 15a

s (1)_1 15— 10z + 3y + 15a 3y — 5z + 5VA
MAS) =4 15 — 3y + 15a 15— 3y + 150 |’

631(2) = =, 811(3) = 1 — 6n(1) and ar(4) = 1 — 622(0),
2

where

A=(3—-z+3a) —a(5-—y+5a).

Furthermore, 637 is admissible and Bayes.
Proof: The proof uses arguments similar to that of Theorem 3 and will be omitted.

Example 2. The expressions for §p(z) get much simplified for specific priors 7,. For

example, if mp is u[0, 1], then

32 4 20a
5p(0) = — 2
m(0) 6(32 + 10a)
32 + 50
ou(l) = 3(32 + 40a)
1

Notice that for small ¢, this estimate is nearly equal to é,,, an expected result. Also notice

that |6a7(X) — 6x,(X)| < % uniformly in o and X.

For any given m, 0 < € < 1, and n, the admissibility status of §5s can be verified by
using the characterization of admissibility in Kozek (1982). Numerical evidence suggests

that §as is admissible for all 7y, € and n.

From Kozek (1982), 6y is admissible if and only if the matrices My, M, are nonneg-
ative definite where My = ((biy;)), 0 <1, j <k and My = ((bitj41)), 0<4, j <k—1for
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n=2k—1and My = ((bitj+1), 0 < 4,5 <k and My = ((bi4;)), 0 < 4,5 < k, for n = 2k;
see (2.21) for the definition of b;. The following table gives the value A of the minimum of
the minimum eigenvalues of M; and M, for various 7, € and n. In each case, 7y is taken

as a Beta (a, a) distribution so that 7 is indexed by .

Table: Values for A

n
€ a 5 10 15 20
1 3.73x107° 7.9x 10710 0 0
.01 4 6.84 x 1075 3.26 x 10° 0 0
8 3.46 x10™* 2.87 x107° 0 0
1 3.8 x107% 8.43 x1071% 0 0
.05 4 551 x10~°  4.81 x10~° 0 0
8 3.45 x10~%® 2.67 x10~° 0 0
1 3.9 x10% 9.09 x1071° 0 0
1 4 4.72 x10™° 6.68 x107° 0 0
8 3.45 x107%  2.64 x107° 0 0

2.4. The Family I'y. This is the broadest family of symmetric priors. As will be seen,
however,use of such a large prior family leads to bad consequences. The midpoint estimate

6p here is a rather unattractive estimate and becomes inadmissible for every n > 3.

Theorem 2.4.1. For the family I'y,
) n
6M(X) 1f0§X<[§]
n
Y
if X =[]
i [g-] <X <n.

Furthermore s is admissible if and only if n < 2.

Proof: Since symmetric distributions are mixtures of two point symmetric distributions,

by a familiar argument (see, for example, Casella and Berger (1987)), sup bc(X) and
Ge

1nf 5g(X) can be calculated by evaluating sup 6g(X) and inf dg(X), Where

Ge Gel'y GeT,

M= {Gely Gz +2) =05 - =3,0<2< ).

L\Dln—l
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Now, clearly,

1 X411 _ \n—X 1 _ NX+4101 n—X
sup 66(X) = sup (G+2)7 (G =2 + (5= 2)"" (3 +2) (2.19)

Ger, o<t (3+HX(G -2 X+ (G -G+
1 C
On making the transformation y = 11%, the supremum on the right in (2.19) equals
2

1 y + yTL—ZX .
’ n—2X"

sup
1<y<oo y+1 14y

calculus shows that for X < [Z], the supremum is attained at y = 1, giving sup 6g(X) =
Gely

7. A similar argument shows that for X < [Z], Glg%" 6c(X) = 0, giving dp(X) = § for
4

X < [%]. The case X = [%] is immediate and the case X > [2] follows from symmetry.

That 637 is admissible for n = 1,2 is trivial. We will now prove it is inadmissible for
n > 3. We will prove this for the case n is odd; the case when n is even is similar. Let then

n =2k —1, k> 2. It follows from Kozek (1982) that it suffices to prove that the matrix

bo b1 - by
b by  r bryt
Mi=| . (2.20)
bk brt1 ccc Dok
is not nonnegative definite, where,
14,3
nt1 = 6081 ... 86, = ()F(>)F
bpt1 = boby...6 (7)7(7)
1
by = (1= 6a)6081 ... 6 = (2)FH ()1
4 4
Lokt 3 k41
by =(1=6)(1 =6n1)...60 = (Z) (Z)
1.k,3 .k
bo=(1—6)1—=6n1)...(1=8) = (Z)’“(Z)‘. (2.21)
3k 3k-—1 . 31 30
1 3k—1 3k—-—2 . 30 31
30 31 . 3k—1 3k
1
= 4n+1G (say).
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We claim that the matrix G is not nonnegative definite. To prove this, one can check
directly that |G| = (——l)ﬂ%ﬂl8k # 0 and every other leading principal minor of G is
zero. If |G| is negative, clearly M; is not nonnegative definite. If |G| is positive and G is
nonnegative definite, then each eigenvalue of G must be strictly positive which contradicts
the fact that G has leading principal minors equal to zero. Hence G cannot be nonnegative

definite, proving the theorem.

2.5. The Family I's. Although symmetry may be natural in some problems, it may not
be so in others. Asymmetry of the prior can be modeled in various ways. Since conjugate
priors form a rich family of priors in the Binomial problem, it is natural to study the
behavior of the midpoint 63 by taking general Beta priors. The family of all beta priors
is unreasonably large. We will therefore take Beta priors with some additional constraints

which seem natural.

Basically, we will have a location constraint and a variability constraint. A location
constraint can be given in terms of any of the mean, median or the mode (if one exists) or
a combination of these. We will use a restriction of the form % -b<u< % + b where p
is a measure of location of the prior. A restriction on only the mean or the median does
not seem tenable as it cannot rule out priors of the form Beta («, a) where « is arbitrarily
close to zero. Since the priors Beta (a, o) weakly converge to the two point distribution
with mass % at 0 and 1 each as a — 0 and this latter prior is hardly ever a realistic prior, a
bound on the mean alone cannot give us a satisfactory class of priors. The same objection
applies to the median. The problem can be overcome by using only such Beta priors which
have a unique mode in the interior of (0,1) and by assuming the mode is between  + b for
some fixed 0 < b < 1. As we will momentarily see, this constraint automatically implies
that the mean and the median of the prior are also each between %:I: b. This really provides

a very satisfactory resolution of the problem.

A constraint on the mode aloné, on the other hand, leaves open the possibility that
the prior can be Beta (a, a) for arbitrarily large «; since these converge weakly to a point
mass at % which again is rarely realistic, it seems necessary that we also require the prior

to satisfy a variability constraint.
If 6 ~ Beta («, ), the contour of equal variance (i.e., the set of all («, 3) such that
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3

8 —
(a+p)*(a+p+1) T
at its unique point of intersection with the 45° line is a line of the form a + 8 = v. We

constant) is symmetric about the line & = . The tangent to this contour

take all Beta («, ) priors of the form

ge—1(1—-6)5-t 1 1
~—~b< modeof §< =+b < 2.22
B(a,ﬂ) 2 2 -— mode o -—2+ b] a+ﬂ_"/} ( )

Note that bounding a + 8 automatically places a lower bound on the variance of 8; also

recall that the mode of 8 is aigl—z if « > 1, B > 1. Thus the set of («, ) satisfying

the constraints in (2.22) is a triangular region on the plane; Figures 1 and 2 describe the

I's = {m: =(6) =

contours of equal variance and also the triangular regions in two special cases. Notice that
using the triangular region instead of the exact set satisfying the modal and the variance
bound enlarges the class of priors slightly while making the problem technically much

simpler.

We first describe two propositions which relate to the analysis here.

Proposition 2.5.1. Let § ~ Beta (a,8), o > 1, 8§ > 1. If a < mode of § < b, where
0<a<gz<b thena < E(§) <o

Proof: Trivial.

Proposition 2.5.2. Let § ~ Beta (a,8), a > 1, § > 1. If mode of § = b > -;—, then

median of 8 < b; if mode of § = a < %, then median of 8 > a.

Cor. If § ~ Beta (a,), @ > 1,8 > 1, and if for some 0 < b < %, %—bg mode of
HS%—i—b, then%—bgmedianofas%—}—b.

Proof of Proposition 2.5.2: We will only prove the first part. The second part follows

on transforming to 1 — 6.

e . b ea—l(l_e)ﬁ—l
Clearly, it is enough to show that [ '_BWde > % Towards this end, observe
0 )

that
b—1 b 1

- 2 9&—1(1 _ 9),3—1 9&—1(1 _ 9)ﬂ—1 90(_1(1 . H)ﬂ_l
b= / B(a, ) 46+ / B(a, B) do +b/ B(a, B) db (2.23)

2b—-1
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Consequently, it will suffice to show that

1

b
go-1(1 — 6)F1 go-1(1 — 9)F~1
/ Blap) 02 / Blaf)

2b—1

o —

1-b 1-b
& /[(b—u)b(l—b+u)1"b]ab;ld92 /[(b+u)b(1_b_u)1-b] T dg,  (2.24)

on substituting 8 = b — u in the first integral and 8§ = b + u on the second integral and

using the fact that the mode of § equals b. However, (2.24) follows since calculus gives

that EZ;”Z;ZS:Z;Z;:Z <lfor0<u<1-hb.

As in the case of I'3, we can analytically prove that §as is admissible and Bayes for
all0 < b < %— and all v > 2 if n < 4. s is easy enough to describe for this family. Let the
three vertices of the triangular region in which («, ) are assumed to lie be (1,1), (of, B7)

and (a3, 53) (see Figures 1 and 2). Then

Xi14_2+a2
by (X) = P F0<X <m
X+
= 2 ifng < X < ny
n+
Xi1+z+a*z
:n+22"+7 ifn, < X <n,

where n1 = [n(3 — b) — 2] and ny = [n(3 + b) + 2b]. Note af = (7 — b) + 2b and
ay = 7(% + b) — 2b and B} = v — a. Interestingly, épr always equals the average of Bayes
estimates with respect to two Beta priors whose parameters coincide with two vertices of
the triangle and also dps is symmetric even though I's contains asymmetric priors. This
is because for any X, the supremum as well as the infimum of the Bayes estimates with
respect to the family I's are attained at one of the three vertices of the triangle. The

following theorem will be stated without proof since the techniques are the same as before.

Theorem 2.5.3. Foreach 0 < b < %, v > 2 and n < 4, 6pr is admissible and Bayes. For

each n < 4, there exists b, such that b, <b < % implies that djs is Bayes with respect to

the Beta (7, %) prior. Furthermore b; = %, by = i, by = 13—0 and by = %
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Discussion: For n > 4, an analytical proof of the admissibility of é3s was not possible.
However, a numerical implementation of Kozek’s (1982) characterization again indicates

that éps is admissible for any b,v and n, although we are less sure that it is Bayes.

3. Risk Behavior

Since a number of prior classes was considered, it seems necessary that a comparison
of their risk functions be made. This is to help understand in which cases the use of
8p1 1s reasonable and in which cases it is not. Figures 6, 7 and 8 give the estimates §pr
themselves, while figures 3, 4 and 5 give the plots of the risk functions of é3s for various
prior classes; the unbiased estimate is used as a standard. The plots are obtained by
calculating each estimate and then exactly calculating its risk function as a polynomial in
. Since the plots are self explanatory, no effort will be made to illustrate them verbally.
The very clear moral is that use of §)s is very reasonable and safe when either I'; or I's is
used (with respect to I's, mo was taken as u[0,1] in the plots), or even I'y unless n is very
small. This is saying that as long as I' does not contain unreasonable priors, the use of
dpr should be sensible in this problem. Note how I'; and I'y are both rather conservative
classes of priors. I'y includes a prior degenerate at .5 and I'y contains in addition the prior
which assigns mass only at 0 and 1. By the same token, even I's is conservative without a
lower bound on the variance since degenerate priors will be included. Not surprisingly, for

each of n = 4, 10 and 20, the risk function of 8¢ is unattractive.

The results indicate that in general, the minimax method for choosing among Bayes
estimates leads to good risk properties. This was also evidenced in the normal problem, as
in DasGupta and Studden (1989). However, we do not expect that in other problems, such
estimates will be actually Bayes corresponding to a fixed prior. We believe the Binomial
case may be an exception in this sense. The lack of a verifiable characterization is also

going to make resolution to this question difficult in most other problems.

4. Conclusion

Analytical derivation of systematically chosen Bayes actions from a set of actions is
a hard mathematical problem. Geometrically intuitive estimates such as the midpoint are

much easier to evaluate. Of course, whether such apparently naive estimates have any
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optimality property is the important issue.

Our results here indicate that they in fact do, although excessive conservatism by
using very large classes of priors will not help here. The problems we address here are
equally and perhaps more important in higher dimensions. It is usually the case that the
collection of Bayes actions for many natural families of priors form a convex set in the
appropriate dimension (see DasGupta and Studden (1988)). Epicenters of these convex
sets are easy enough to identify and their use can be more justified if they turn out to be

genuine Bayes or admissible.
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FIGURE 2
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FIGURE 3
The Risk Functions of Estimates for 7 Classes of Priors
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FIGURE 4

The Risk Functions of Estimates for 7 Classes of Priors
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FIGURE &

The Risk Functions of Estimates for 7 Classes of Priors
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FIGURE 6

The Midpoint Estimates for 7 Classes of Priors
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FIGURE 7

The Midpoint Estimates for 7 Classes of Priors
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FIGURE 8

The Midpoint Estimates for 7 Classes of Priors
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