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Abstract

In this paper we investigate the problem of selecting a population close to a con-
trol or a standard in a nonparametric setup. The measure of distance between two
distribution functions is assumed to be Kolmogrov-Smirnov distance function. The
problems of selecting the distribution closest to the control under the indifference zone
approach and the subset selection approach are investigated. Asymptotic results on
the probability of correct selection are obtained. Finally, results of some simulation
studies concerning small sample performance of the procedures is given.
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1 Introduction

In many practical situations the goal of the experimenter is to compare two or more popu-
lations with a control and select one ( or more ) which is (are) closest to the control. For
example, one may wish to select a simulation method among several simulation methods.
Statistical selection and ranking methodology provides useful techniques for solving such
problems. Often in practice, especially for the new treatments (methods) or when the obser-
vations are expensive, there is very little past data available which could lead us to assume
some parametric model. For this reasons we adopt a nonparametric approach.

Selection and ranking problems have been generally formulated using either indifference
zone approach due to Bechhofer (1954) or the subset selection approach due to Gupta (1956).
In the indifference zone approach, a single population is chosen and is guaranteed to be the
best with probability at least P*. However, in this formulation it is assumed that the “best”
population is sufficiently apart from the remaining k¥ — 1 populations. Subset selection
approach requires no such restriction. A random size subset of k£ populations is selected and
is guaranteed to contain the best population. Additionally, the subset selection approach
is much more data-dependent i.e. the decision rule takes into account the outcome of the
experiment.

In the nonparametric setup, considerable amount of work has been done on the problems
of selecting the population with the largest ath quantile (or the largest location parameter).
Some references are Barlow and Gupta (1969), Gupta and McDonald (1970) , Gupta and
Huang (1974), among others. An extensive review of nonparametric procedures is in Desu
and Bristol (1986). Recently Gupta and Hande (1990) have solved the problem of selecting
a population with the largest functional (or selecting a subset containing a population with
the largest functional) of the associated distribution function.

To formulate the problem, let IIo, II;, ..., be the k + 1 populations. The population



II; is associated with the cumulative distribution function F; over R, for ¢ = 0,1,2,...,k.
We are interested in selecting the population which is closest to II,. Problem of selecting
the populations when they are compared with the control are considered in the literature by
Bechhofer and Turnbull (1978), Roberts (1964), Dunnett (1955), Gupta and Sobel (1958),
Gupta and Singh (1979, 1980), among others.

To measure closeness, one finds many measures of distance between two distribution
functions. In this paper we use the distance between two distribution functions as the
Kolmogrov-Smirnov distance. A vast amount of literature is available for statistical infer-
ence based on the Kolmogrov-Smirnov distance. For references see, for example, Billingsley
(1968).

We will propose selection procedures under the indifference zone and the subset selection
approach. Under some regularity conditions, lower bounds for the probability of correct

selection associated with proposed procedures are obtained.

2 Formulation of the Problem

Let 114, II,, . .., IIx denote k populations with associated distribution functions Fi, Fs,..., Fy,
respectively. We assume no prior information about the distribution functions. Let the
population Ilp be the control with associated distribution function Fp(.). We define the

distance between two distributions F', and G as the Kolmogrov-Smirnov distance function,
d(F,G) = sup |F(z) — G(z)].
z€ER

Define y; = d(F;, Fo) and let By < pg)--- < g denote the ordered values of pq, pa, . . ., pt-
We assume no prior knowledge about the correct pairing of the ordered and unordered p;’s.

Let

Q={p:p=(p1,p2,. ..}



and
F={F:F=(R,F,...,F}), F;is a continuous distribution function on R}.

In general, if we allow F to take any value in F there does not exist a procedure which would
satisfy the P* condition, hence we need to restrict the space of distributions. Let d be the

real number in the interval (0,1). Define
V=Qd)={p: pp - ey 2d;

and

F =F(d)={F: sup |Fi(z) — Fo(z)| = pi; p € Q(d)}-

Correct Selection (CS): Selecting the best.
Goal: For given P* (1/k < P* < 1), define a procedure R such that for all n > n,(d)

Pr(CS|R,n) > P* for every F € F(d).

Let X;1, Xi2,...,X;, be the observable independent random variables from population

IL;, for : = 1,2,...,k. Let Fi,(.) be the empirical distribution from population II; i.e.

Fu(eg)=n"") I(x:;<a)-

J=1
Let Tin(z) = supseg | Fin(t) — Fo(?)]-
Now we propose the following selection procedure:

Procedure R:

Select the population II; for which
Tin(z) = min T}, (2);
J

and in case of ties randomize.
The following theorem insures that there exists an ng = n(d, P*) such that for every

n > ng the P* condition is satisfied.



Theorem 2.1
inf Pr(CS|R,n) — 1 as n — oo.
FeF!

Proof:
If necessary, making transformations, without loss of generality we can assume that F; is
uniform distribution over the interval (0,1) and T, = sup | Fin(z)—Gi(z)| where G; = FoF;?,

and p; = supppq) [t — Gi(t)]. Let II; be the best population i.e py = ppy) and
Ai={t: [t —Gi(t)| > pi—¢} fori=2,...,k,

where 0 < € < d. It is easy to see that,

Tin < sup|Fin(t) = t| +sup |t — Gu(2)]
i
< sup [Fia(t) —t] + p.
And for i =2,...,k,
Tin = sup [t —Gi(t)| — sup |Fin(t) — ]
tEA;
> p2—e—sup|Fin — .

Hence

Pr(CS) = P(Sgp |Fin(t) — t| + p1 < p2 — € — sup | Fin(t) — t])

> P(sup [Fin(t) —t| < d — € —sup | Fin(t) — £]).
t
Note that the last term of the above equation is distribution free. Hence we have
jnf Pr(CS) 2 P(sup |Fia(t) — t| < d — € —sup | Fin(t) — 1]).
t

By Glivenko-Cantelli theorem, it follows that for every i = 1,2,...,k, sup, |Fi(t)—t] —

0 almost surely as n — o00. Since d is a positive number the result follows.
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In the subset selection approach a random size subset of the k& populations is selected.
The selected subset of the k populations is guaranteed to contain the best population (pop-
ulation closest to the control) with probability P*. In this approach we need not assume
any restriction on the “parameter space”. This approach is due to Gupta (1956). Following
Gupta (1956), define
Correct Selection (CS): Selecting a subset containing the best.

Goal: For given P* find a procedure R such that
Pr(CS|R,n) > P* for every F € F. (1)

Now we propose Gupta’s maximum type procedure.
Procedure Ry

Select population II; if and only if
T (@) < minTya(z) + 4,
where d = d(n, k, P*) is a constant in the interval (0,1] which is determined in advance to
satisfy the P*-condition.
For mathematical convenience we assume, that no population is identical to the control
i.e. min; sup, |F;(z) — Fo(z)] > 0. Let
F,={F: miinsgp | Fi(z) — Fo(z)| > 0}.
The constant d is to be chosen to satisfy the probability requirement (1). We have the
following theorem analogous to Theorem 2.2.
Theorem 2.2 For every d > 0;
}ggPF(CSIRd,n) —s 1 as n — oo.

We need to find out the required minimum sample size to satisfy the P* condition. The
analytic expressions for Pr(CS|R,n), Pr(CS|R4,n) are almost impossible to handle. We

will study their behavior for large n.



3 Asymptotic Results

First we give some notation. Let Xy, Xs,...,X, be the independent observations from a
continuos distribution F and let G be another independent continuous distribution. Let A =
d(F,G) and K = {z : d(F,G) = |F(z) — G(z)|} K1 ={z:F(z) - G(z) = d(F,G)}, Kz =
K — K. Let Fo(z) =n"' Uiy Iixi<o)y Tn = d(F,G), Zn = suPgex |Frn(z) — G(z)].

We need the following lemma, which was proved by Raghavachari (1973). Here we give

a simpler proof.

Lemma 3.1
Vo|T, — Z,]| — 0 as n — oo.

Proof: Let F' = FG™! ,Y; = G(X;) for i = 1,...,k and U be the distribution function of

uniform random variable. Since

d(F,,G) = max |i/n— G(X()|

1<ikn

= 112%); |z/n — Y(1-)|

= d(F',U).

Without loss of generality, assume that G = U and F is a distribution function on the
interval (0,1).
Case 1: Assume that K = {t}. Without loss of generality assume that F'(t) —t = A =

d(F,QG). Let B(6) be a 6 neighborhood around ¢, then -

P(Va|Ty — Zn| > €) = P((Ta— Zy) > €)
P(v/n(sup |Fu(z) — G(z)| — Za) > ¢€)
B(6)

+ PW/A(sup Fa(#) = G(&)] = 20) > o).

IA

Let A, = {|F.(z) — G(z)| = F.(z) — G(z) for allz € B(6)}, then
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P(x/ﬁ(%lgg |Fa(z) — G(2)| — Z,) > €)

< P(\/E(JSBU(% |Fu(2) — G(z)| = Zn) > €N Ag) + P(A7)
< P(\/ﬁ(g?g Fu(z) — F(z) + F(z) — G(z) — Fa(t) + G(2)) > ) + P(4;)
<

P(\/ﬁ(%; Fu(z) = F(z) + F(t) — G(t) - Fa(t) + G(t)) > €) + P(4;)

P(\/ﬁ(% Fo(z) — F(z) + F(t) — Fa(t)) > €) + P(47).
Hence
P(Vn|Tw = Zn| > €) < P(x/ﬁ(}s;;g Fu(@) = F(z) + F(t) — Fa(t)) > €) + P(A7)
+ P(\/ﬁ(;lcl(g) |Fa(z) — G(2)| — Zn) > €).
Since +/n(Fy(z) — F(z)) converges in distribution to a brownian bridge W(z) for small fixed

§ > 0 as n — oo Also P(A,) — 0 and since (suppge(s) |Frn(z) — G(z)| — Zn) — ¢ < 0.

Hence

limsup P(v/n|Tn — Zn| > €) < P(sup W(z) — W(t) > €)
n~+00 B(&)

by letting 6 — 0 we have
liﬂs;lp P(Wn|T, — Z,| > €) = 0.
Case 2: Assume K = [t,15] a closed interval,
P(Vn|T, — Zy| > €) = P(\/T_l(:éllgc |Fn(2) = F(2)] = sup |Fu(z) = F(2)]) > ).

Let B(6,t1) and B(4,t,) be the open neighborhood around ¢, and ¢, respectively. As before
we have the following inequality.

PWAIT. = 241> ) < Pl sup IFu(e) = Glo)] = [Fa(n) — Gltn)] > )

+ P(\/ﬁ(Bs(liﬁ) |Fn(2) — G(2)| — |Fa(t:) — G(t1)] > €))

+ P(vn( sup |Fn(2) = G(2)| — | Fa(t1) — G(t1)]) > €).

(B(6,t1)UB(6,t2)UK)*
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As n — oo the first two terms can shown to tend to 0 as in Case 1. Since as n — o0
F.(z) — F(z) uniformly almost surely and since for all z € (B(6,t) U B(6,%3) U K)°,

|F(2) — G(z)| — |F(t) = G(t)] < c < 0, as n —>» oo,

P(v/n( sup |Fa(z) — G(2)| = |Fu(t1) — G(t)]) > €) — 0.
(B(s,tl)UB(ﬁ,tg)UK)c

This completes the proof of the Case 2. Now we will consider the most general case.
Case 3: Note that K is a compact set on the interval [0,1], hence it can be written as a
finite union of closed intervals. Then proof of this case is similar as in Case 2. This completes
the proof of the lemma.

Since Xn(.) = Xn(t) = /n(Fy(t) — F(t)) converges in distribution to W (¢), we have the
following corollary.

Corollary 3.1
P(\/n(T, — d(F,®@)) < @) — P(sup W(t) < a; sup —W(t) < a),
teK, teK>
where W (t) is a brownian bridge with EW () =0 EW(t)W(s) = F(s)(1 — F(t)) for s < t.
Following is the result in the direction of obtaining infrez P(CS|R,n).

Theorem 3.1 :

For large n,

1nf P(CS|R,n) > inf P(sup [W(t)|< mm azZ + v/nd) (2)

0<oi<t  tefo,1]

and for every F € F,

Pp(CS|R(d),n) > 1nf<1 P(sup |W(t)| < rgun 0:Z; + +/nd), (3)
Loy tE[O 1]
where W (.) is a brownian bridge and Z,, Zs, . . ., Zy. are independent standard normal random
variables.



Proof: Using Corollary 3.1 for large n
P(CS|R,n) ~ P(Hi(Wh) + Vnpp < Hi(Ws) + Vnpg for i =2,3,...,k),
where W;(t) are independent brownian bridges as defined in the corollary,
H;(W;) = max(sup Wi(t), sup —Wi(t))
Ki; Kai

and

K= {t: Fi(t) = Fo(t) = sup|Fifa) - Fo(a)[} ,

Ko = {t: Fi(t) — Fo(t) = —sup|Fi(z)— Fo(z)[}.
But if ¢; € (Ky; U Kj;) then it follows that,

P(Hy(Wh) + vpy < min Hi(Wi) + v/ap) < P(sup [W(8)| < min Wit:) + v/nd).
2<i<k tefo,1] 2<i<k

But W;(t;) is normal random variable with mean zero and variance Fi(¢)(1 — Fi(¢)). This

completes the proof of (2). (3) can be proved similarly.

If we assume that II; is population closest to Il and there is only one point in the subset

K, then we have the following result.

Theorem 3.2 :

Under the above assumption, for large n,

I;éljf__l Pr(CS|R,n) = OSiﬁfS% P(o1Z; < miin 0:Z; + v/nd), (4)
~ P(Z; < minZ; + 2¢/nd) (5)

and for every F' € F,
P(CS|R(d),n) > P(Z; < min Z; + 2v/nd), (6)

where Zy,Zs, ..., 2y are independent standard normal random variables.
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Proof: The first assertion follows from Theorem 2.2. Notice that

P(o17Z, £ 2r£1_i21k 0iZ; ++/nd) = P(o17, < 2rén<nlc 0:Z; + \/nd; 61Zy — +/nd > 0)

+ P(01Z; < 2r£1j<11k 0:Z; +/nd; 01Z; — /nd <0).

Since the first term on the right is increasing in o3, 03,...,0% and the second term is de-

creasing in 03,03, ...,0%, we have

. . .1
P(o12, < zl’élilélk ciZi ++/nd) > inf P(o1Z; < 221;15% 3 Zi + /nd; 017, —+/nd < 0)

0<01<%

1 1
> P(0'1Z1§ mjn— Zz+\/ﬁd)+P(0<alZl<\/ﬁd)——
2<i<k 2 2
Using a similar argument one can prove that

.1 1 .1 1
P(owZy £ oin 5 Z; ++/nd) > P(§Z1 < Jin 5 Z; ++/nd) + P(ng'lélk EZJ > —+/nd) — 1.

But as n — o0,

1
P(0<01Z1<\/Ed)—§ — 0
and

!
P(Z?J%&ij—\/ﬁd)q —s 0.

This completes the proof of the first assertion. The second assertion can be proved
similarly.
Bechhofer (1954), Gupta(1963) have tabulated the values of d* = 2,/nd for several se-

lected values of & and P* to satisfy the equation
P(Z; < min+2+/nd) = P*.
j

In the following section we give some examples and Monte Carlo results.
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4 Examples

In this section we give some examples and the Monte Carlo results. This section ié designed
to study the small sample performance of the procedures developed. Standard error for all
the estimates is less that 0.033.

Let Ilo,II;, I, ..., II; be the k + 1 populations. The population II; is associated with
the cumulative distribution function Fi(z) = F(z — ps). Let Xi, Xia, ..., Xin be the observ-
able independent random variable from population II;, We are interested in selecting the

population closest to the control. We assume pg is known.

Example 4.1
In this example we assume that Fi(.) is a logistic distribution for ¢ = 0,1,2,...,k. We
choose a slippage configuration. Let p1=pig = ... = pig_1 = d and p = po = 0. Let By
be the nonparametric selection rule, R, be the selection rule which selects the population
associated with smallest absolute sample mean and R; be the selection rule which selects
the population associated with smallest absolute sample median.

Following table gives, n, d, asymptotic probability of correct selection, actual probabil-
ity of correct selections and probability of correct selection for the rule which selects the

population associated with smallest absolute sample mean.

n d P* | P(CS|R,) | P(CS|R»)

20 | 1.88013 | 0.990 0.993 0.998

20 | 1.42353 | 0.950 |  0.938 £ 0.958

20 | 1.19713 | 0.900 0.862 0. 879
Example 4.2
In this example we assume that F;(.) is a double exponential distribution for ¢ = 0,1,2,...,k.
We choose a slippage configuration. Let gy = pp = ... = pz_1 = d and pg = po = 0.

12



Following table gives, n, d, asymptotic probability of correct selection, actual probabil-
ity of correct selections and probability of correct selection for the rule which selects the

population associated with smallest absolute sample median.

n| d P* | P(CS|Ry) | P(CS|Rs)

20 | 1.80998 | 0.990 1.000 1.000
20 | 1.14937 | 0.950 0.989 0.984
20 | 0.87063 | 0.900 0.918 0.952

Form the above tables we see that the asymptotic aproximation for the probabilty of

correct selection for the nonparametric rule works well for the moderate sample size.
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