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Abstract

Thin plate splines and interaction splines are two different multidimensional spline smoothing
techniques, the former being of radial structure and the latter being of tensor product structure.
In this article we discuss a synthesis of the two methods, where the latter serves as a super
structure under which the former acts as axes. The formulation, interpretation, and calculation
of the models are discussed, and an application of the technique is illustrated. This work can be
used to build predictive ANOVA like models which describe a response as a function of spatial,
temporal, and other variables and to explore their interactions.
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1 INTRODUCTION

Suppose we observe
yJ:f(tj)-I'Ej’ j=1---n

where ¢; € R? and the ¢;’s are i.i.d. noise with mean 0 and variance o%2. We want to estimate f

from the data. The smoothing spline method estimates f using the minimizer of
1 n
=2 (5 = f(£))* + M () (L.1)
J=1

subject to f € H, where the square error measures the goodness-of-fit and the J(f) is a roughness
penalty, the smoothing parameter A controls the tradeoff of the two, and the H is a function space
of tentative models. Usually the J(f) and the H come as a pair.

Thin plate splines result from taking # to be all functions with square integrable derivatives of

a fixed total degree m, say, and taking

=3 ad/ / ( _ 8t )dtl---dtd. (1.2)

a1 fag=m &
A technical requirement is 2m > d. The penalty J,‘fl is invariant under a rotation of variables, and
as a consequence, the thin plate splines are rotation-invariant. The thin plate (radial) structure
is natural when the variables are qualitatively the same, such as latitude-longitude for geographic
data, or latitude-longitude-altitude for atmospheric data, or latitude-longitude-depth for oceanic
data. As a matter of fact, the thin plate spline estimate of f with the penalty J¢ is the sum of
a lower degree polynomial (with the total degree less than m) and a linear combination of radial
functions EZ (|| - —t;||), where EZ, is a known univariate function (see next section) and || - || is the
Euclidean norm in R?.

The H for a “classical” interaction spline is a function space of functions which have a unique
decomposition of the form f(t) = C+37, fy(ty)+ 2, <vp Frnore (st )+ - -+ fr,a(t1, - - 5 2a). The
components are in orthogonal subspaces in H and orthogonality conditions impose side conditions
which insure uniqueness, analogous to parametric ANOVA. Each function has a marginal square
integrable m.th derivative with respect to %, where the m,’s may be different. The f,’s are the
main effects, the fy, ,’s are the two-factor interactions, and so on. This decomposition is obtained

by letting H be the tensor product of spaces of functions of one variable, and expanding this tensor



product into tensor sums of subspaces according to the desired ANOVA decomposition. The J(f)
is a (weighted) sum of the roughness penalties on the different components of f. Such a modularity
allows fairly flexible model specifications. For example, deleting higher order interactions leads
to less adaptive but more “estimable” models, and the main-effect-only models reduce to the
popular additive models. The tensor product structure is natural when all the d variables are
qualitatively different, and the ANOVA decomposition greatly enhances the interpretability of the
estimated functions. Interaction spline estimate of f can be written as linear combinations of
products Hz=1 g~(ty)’s, where the g,’s are either polynomials of degree less than m., or functions
Erln.,(| : _t"/,j|)-

In certain applications, the d variables may be partitioned into qualitatively homogeneous
groupé, say t = ({tMT, {tY)T for example, and a natural structure should be invariant un-
der within-group variable rotations. To obtain the modularity and interpretability of an ANOVA
decomposition of f (t(l),t(2)), however, a tensor product structure between groups is desired. The
purpose of this article is to spell out how this can be done. The functions we will be getting can
be written as linear combinations of functions of form gl(t(l))gz(t(2)), where g,’s are either poly-
nomials of total degree less than m., or functions Eg{’,,(“ . —t§-7)||), v = 1,2. Generalization will be
immediate for more than two qualitatively homogeneous groups.

This work represents something of a synthesis and generalization of results in several branches
of the statistical and approximation-theoretic literature. General theory of additive splines is to
be found in Buja, Hastie, and Tibshirani (1989) and the book by Hastie and Tibshirani (1990).
Related references to interaction splines include Barry (1986), Wahba (1986), Chen, Gu, and Wahba
(1989), Friedman and Silverman (1989) and Wahba (1990). Thin plate spline references include
Duchon (1977), Meinguet (1979), Wahba and Wendelberger (1980), Utreras (1988), and numerous
interesting applications by Hutchinson and collaborators to climatological data, see, for example
Hutchinson, Kalma, and Johnson (1984). Work related to data based choice of multiple smoothing
parameters is found in Gu, Bates, Chen, and Wahba (1989), Gu (1989) and Gu and Wahba (1991
a). We use here the model diagnostics developed by Gu (1990 b). A brief preliminary sketch of
the main idea here appears in Gu and Wahba (1991 b). A one-dimensional special case of the trick
we use to define reproducing kernels below goes back at least to deBoor and Lynch (1966). We

remark that the field of multivariate function estimation is growing rapidly and in many directions,



we just mention two other approaches involving continuous functions, MARS (Friedman 1991) and
the JT-method (Breiman 1991).

The rest of the article is organized as follows. In section 2, we describe the general method of
constructing tensor product thin plate splines, where the reproducing kernels play a central role.
In section 3, we describe a sample model in some detail. The calculation of the general model is
sketched in Section 4. An analysis of an application which motivated this research is presented in

Section 5. Finally, Section 6 concludes the article with discussions.

2 GENERAL FORMULATION AND REPRODUCING
KERNELS

We now formalize (1.1) on an arbitrary domain 7. It will be assumed that H is a Hilbert space in
which any evaluation functional [t]f = f(t) is continuous. This is necessary since we are sampling
f at arbitrary points and we wouldn’t regard f and g to be close when f(t) and g(¢) are far apart
at a point £. Such a space is called a reproducing kernel Hilbert space possessing a reproducing
kernel R(:,-) such that R(¢t,-) € H,VEt € T, and < R(¢,-), f >= f(¢),Vf € H, where < -, > is the
inner product in H. As a matter of fact, all members of the space H can be represented as linear
combinations of R(t,-), t € H, or their limits. J(f) is usually taken as a semi-norm in H having a
(finite dimensional) null space Ho. The boundary conditions for making J(f) a norm and a class
of equivalent norms on Hy determine each other uniquely, leading to a tensor sum decomposition
H = Ho @ H1. The reproducing kernel can be decomposed accordingly as R = Rg + R;, where R;
are reproducing kernels of H;, ¢ = 0, 1, respectively.

On a product domain 7 = 7() x T(), given reproducing kernel Hilbert spaces H(1) on 7(1)
with reproducing kernel RMW and H® on 7@ with reproducing kernel R®), one can construct
a tensor product reproducing kernel Hilbert space H = H(1) @ H(® with a reproducing kernel
R({tM, ¢}, {sMW) s@}) = RO(M), YR (), s(2)), where t1),s(1) ¢ T() and ¢2) s ¢
7). The decompositions of HO) = ’Hgﬂ &) Hg’Y), v = 1,2, lead to a decomposition H = ('Hgl) ®
HNY e (HM o HP Yo (P @ HP) @ (KM @ HP) = Ho o ® Hi0® Ho1 ® Hi 1, with reproducing
kernels Ry = R&l)Rm, «a,f = 0,1. A smoothing spline on 7 can then be defined by taking
J(f) = 91_,(1)11P1,0f||%,0 + Ga%lng,lng,l + 91_&||P1,1f||%,1, where P, g are projections onto H, g and



| - lla,6 are the norms on H, g associated with Ryg. J(f) has a finite dimensional null space Hg o
and is a norm on H1,0® Ho,1 ®H1,1 with associated reproducing kernel 6, g R1,0+ 60,1 Ro1 + 61,1 R1,1.
We remark that the developments presented above extend obviously to multiway tensor products
and multiterm marginal tensor sums. See, e.g., Aronszajn (1950), Chen et al. (1989), Wahba (1986
1990), and Gu et al. (1989).

?

With J¢ as a semi-norm, it is known that an appropriate function space X' (cf. Meinguet

1979) of functions with J% < oo (2m > d) can be made a reproducing kernel Hilbert space by

m+d—1
defining a norm on the null space g of J&. This null space is the M = M(m,d) =

polynomials of total degree less than m in d variables. See also Wahba and Wendelberger (1980).
Our remaining task is to define a useful norm on Hy for our purpose and to work out the associated
reproducing kernels. Since polynomials are not integrable on R?, one choice is to define the norm
in terms of sums over a set of points {wr}l,, call it a normalizing mesh. Now let (f,¢)n =
(1/NYSSN, f(wi)g(wy) and let {#, 35! be a set of bases of Hg satisfying ¢o = 1, (bv, )N =1,
and (¢,,¢,)n = 0, v # p. This is only possible when the restriction of Hy to the normalizing mesh
keeps its dimension M. Defining the inner product on Hg as < f,g >o= (f,9)n, f,g € Ho, it is
easily seen that the projection of f € H onto Ho is (Pof)(-) = S M5N by, f)Nd(-). Partitioning
{f: JE(f) < 0} = He ®Hr ®MHs, Where He = {1}, Hy = {¢1,*+, dar—1} (hence Ho = He & Hx),
and H; = {f: Pof =0,J% < 00}, we have the following theorem.

Theorem 2.1 Let I be the identity operator and Po(t) be Py dcting on what follows considered as
a function of t. Associated with the square norm ||f||2 = (Pof, Pof)n + JL(f), the reproducing
kernels of He, Hr, and Hs are Ro(t,s) = 1, Ry(t,8) = S M1 ¢,(t)¢.(s), and Ry(t,s) = (I -

v=1

Foty)(I = Pogs))E(t, s), respectively, where E(t,s) = EL(||t - s|)) and

Cr{(-)¥4log(-)}, d even,

Cr = (—=1)#/2m+1 [ {02m=17d/2(m — 1)(m — d/2)1}
Cm{(1)¥m4}, d odd,

Crm = I(d/2 — m) | {22™x /2 (m — 1)1}

The proof of the theorem is given in the appendix. Using these reproducing kernels to construct
a tensor product reproducing kernel Hilbert space on R% X ... x R%K with marginal orders My,

v=1,---, K, say, we get tensor product thin plate splines. Our construction here depends on the



Table 3.1: Terms in tensor product space H.
7-[c,c Hc,r Hc,s
Hr,c H7r,7r Hw,s
Hs,c HS,‘I\' Hs,s

choice of the marginal normalizing meshes and results in a ready ANOVA decomposition whose
side conditions are consistent with the normalizing meshes; see Section 3. Taking the marginal
normalizing meshes as the marginals of the sampling points {¢;}7., seems natural for many appli-
cations and also leads to convenient calculation; see Section 4. We remark that the special case of

d = 1 can be shown to lead to the usual polynomial smoothing splines of degree 2m — 1.

3 A SAMPLE MODEL

We describe in detail the construction of a sample model for f(t1,t2,%3) = f(t(l),t(2)) on T x
T2 = R x R?, where we take m; = mg = 2. On R, we have H(1) = Hﬁl) &) ngl) &) Hﬁl), where
HY = {1} contains constants, HY = {¢M} contains linear functions summing to zero over the
marginal normalizing mesh {w,(cl)}ivél, and KV = {f: X f(w,(cl)) = > ¢(1)(wl(cl))f(wl(c1)) =
0, /5, f? < co} (the “smooth” part). On R?, we have H(2) = H? o H® @ ’ng), where H(? =
{1} contains constants, H$3) = {¢§2’,¢§2)} contains linear polynomials summing to zero over the
marginal normalizing mesh {wf)}f:’;l, and M) = {f: >k f('wgcz)) = > ¢g2)('w§c2))f(w§c2)) =
T 8 (wP) F(wP) = 0, [ [({8%f/012}2+2{82f/0t,0ts}2+ {02 f/812}?)dtsdts < 00}. The tensor
product space H = HM @ H(? has accordingly a tensor sum decomposition of nine terms as in
Table 3.1. where Ho g = ’H&l) ® H(ﬁ2), a,f = ¢,m,s. The four terms on the upper-left corner have
finite dimensions, and by convention are not penalized (i.e., the corresponding § = oo) in most
applications. The other five terms all have infinite dimension and have to be penalized in a fit.
Defining the side conditions according to the normalizing meshes, i.e., that both main effects
sum to zero on the corresponding marginal normalizing meshes and the interaction sums to zero
over the marginal normalizing mesh on both axes, the ANOVA decomposition is readily available
from the decomposition of H in Table 3.1. Specifically, f; comes from H,. ® H;., fo comes
from Hex @ He,s, and fi2 comes from the four terms on the lower-right corner of Table 3.1. By

eliminating these four terms (i.e., setting the corresponding 6 = 0) one obtains an additive model.



We note that the grouping of the nine terms in model fitting and model interpretation are different.

Finally let us look at the penalties. It can be shown that the norm on H,. is propor-
tional to [ ({82/8t2}(1/N2) S f(t1,w (2)))2dt1 Noticing that the $(1) main effect is fi(t;) =
(1/N2) 3o f(t1,w )) = (1/N1N2) 3k f(wj WY )), we are reassured that the penalty on 7, is

the usual marginal penalty acting on the main effect. Similarly, the norm on H, ;s is proportional

azfz a2f2 2 82f2 2
/ / ( aﬁ) (8t26t3 T\ o ) dadts
where fa(t2,13) = (1/N1) X, f(wk st2,t3) — (1/N1N3) 3.k f(w] y WY )) is the ¢(2) main effect. In

general there are three penalty terms for the interaction, acting on polynomial-smooth (H,s),

to

smooth-polynomial (Hs ), and smooth-smooth (H; ;) interactions. The norm on H, . is propor-

tional to 2
92
/ (5{ > (wi?) +¢£”<w£2’>}f<tl,wf>)) dt,
k

the norm on Hy is similar, and the norm on H, , is proportional to

of \* (95 \
/ / (aﬂaﬂ) 2<at%at28t3) * (81&%01:?,, dtadts.

4 CALCULATION

Tensor product thin plate splines are special cases of smoothing splines with multiple smoothing
parameters, and as such, their computation can be conducted using the generic algorithms of Gu
and Wahba (1991 a). The reproducing kernels of Theorem2.1, however, depend on the choice of the
normalizing mesh, hence some preliminary calculation is necessary before applying the algorithms.

Without loss of generality we consider tensor products of two marginals. It can be shown that

the minimizer of (1.1) with J(f) = Xeta,0) 0;"16||Pa,ﬁf”a’ﬁ has an expression
M-1 n
fO) =32 dud(V+ D ¢i( D bapRap(ti,-)). (4.1)
v=0 =1 se{a,f}

Here M = M(my,d;)M(mq,dy), each ¢, is of the form é,(t) = ¢, (t1),,(t?), o, 8 = ¢, 7, s,
{a, B} indexes the subspaces which are included and penalized, and R, g(t,s) = Rg,l)(t(l),s(l))



Rg)(t(z), s(2)). ¢ and d are solutions to the linear system

({ D 6apQap}+nr)c+ Sd
s€{a,B8}

Yy
sTe = 0, (4.2)

where Qn,p and § are n X n and n X M matrices, defined by Qa3 = (Ras(ti, t;)) and § = (¢,(¢;)).
It can be seen that Qup = Qg,l ) o Qg) , where o indicates component-wise multiplication and
Q((;yl) = Rg,l)(tgl),t;-l)) and Q,(GQ) = Rgz)(tz@),tgz)). Similarly, columns of § are the component-
wise products of all column combinations of matrices §®) and §(2), where §(1) = (qﬁl(,l)(t;-l))) and
@) = (¢f,2)(t§-2))). The algorithms of Gu and Wahba (1991 a) are designed for solving (4.2) with
the A/6, s selected using the generalized cross validation criterion of Craven and Wahba (1979),
given S, Qo pg’s, and y, so the preliminary calculation we need is to generate the marginal matrices
Q%, @Y, 50, and 5@,

In the rest of the section, we let ., and S stand for Q((J) and S, 4 = 1,2, and we drop
superscripts and boldface notations for points £ and w( on the (marginal) domain. It can
be seen that Q. = 117, Qr = $:SF — Qc, and Qs = Kpt — (SiSL/N) Kot — K4 1(SwST/N) +
(S4ST /N Ky (SwSE|N), where Ky o = (Em(ui,v;)), Su = (¢u(u;)), u and v are to be replaced
by ¢t and w, and t;’s are the design points and wy’s are the normalizing mesh. To determine the ¢,’s
and to calculate S, and S;, we take a convenient basis {1, } for the null space with 99 = ¢ = 1
and formulate matrices S, and S; by replacing the ¢, with 1, in the definition of 5, then from

Ry

the QR-decomposition (without pivoting) Sy = (F1, Fy) = F1 Ry we get S,,/V/N = F; and

S/v/N = 8;/v/N = §;R;*, where ¢ = VNR; Ta. For evaluating the model at an arbitrary point
Uy Kpy— (5:SL/NYK 0 — I(t,w(SwSZ/N) + (StSZ,'/N)Kw,w(SwSZ/N) is needed, and the matrices
St/\/J_V_, Sw/\/]v, Ky, and K, need to be maintained.

When {wi} = {t;}, Qs = (I — S:STIN)K (I — 8:5T /N) = R F{ K, ;F5 F], the calculation is
significantly simplified. Similarly, K¢ ,—(S5:S7 /N)K;ou— K 4(StST/N)+(StSE/N)K14(S:ST/N) =
(I — 88T INY (Kt — K;4{S:ST/NY) = FoFT (Ko — Ki4S:RT'RTTS,), where Ky 1SR R7T can
be calculated once for all. We note that the Fy need not to be explicitly formed. These formulas

are especially suitable for efficient calculation using LINPACK facilities.



5 AN EXAMPLE

In this section, we analyze some environmental data which motivated our conception of tensor
product thin plate splines. The data we will be analyzing are derived by Douglas and Delampady
(1990) from the Eastern Lake Survey of 1984 implemented by the EPA. The derived data set
contains geographic information, water acidity measurements, and main ion concentrations of 1798
lakes in three regions, Northeast, Upper Midwest, and Southeast, in the Eastern United States. Of
interest is the dependence of the water acidity on the geographic locations and other information
concerning the lakes. Preliminary analysis and consultation with a water chemist suggest that
a model for the surface pH in terms of the geographic location and the calcium concentration is
appropriate. As illustrations of the methodology, we only present analysis for lakes in the Southeast,
which can be further divided into two disconnected subregions — Blue Ridge with 112 lakes and
Florida with 159 lakes.

We used the sample model of Section 3 with the normalizing mesh given by the design points.
11 was taken as the logarithm of the caicium concentration (mg/L). (t3,t3) were obtained by
converting the longitude and the latitude of the lake location to the east-west and the north-south
distances from a local center. The calculations of the models were performed as described in
Section 4, making use of the generic algorithms of Gu and Wahba (1991 a) which are implemented
in RKPACK (Gu 1989). With the automatic smoothing parameter selection by the generalized
cross validation method of Craven and Wahba (1979), the fits are invariant to the scalings of the
axis domains. The fitted models were then decomposed into a constant, two main effects, and an
interaction, as described in Section 4.

Evaluating a computed model at the design points, we get a retrospective linear model y =
}“0,0 + }1'0 + ]~°011 + }'1’1 + &, and adjusting for the constant effect by projecting on to {1}+ we get
z = f10+ fo1+ f1,1+ e. To measure the concurvity in the fit, we use the collinearity indices
of Stewart (1987), x; = Hfz||||fz(+)|| where fz-(+) is the ith row of the Moore-Penrose inverse of
(f1,00 fo,15 f1,1), which can be computed from cos(f;, f;). The f’s are supposed to predict the
“response” z so a near orthogonal angle between a f; and z indicates a noise term. Signal terms
should be reasonably orthogonal to the residuals hence a large cosine between a f; and e makes a
term suspect. cos(z,e) and R? = ||z — e||2/||z||? are informative ad hoc measures for the signal to

noise ratio in the data. A very small norm of a f; relative to that of z also indicates a negligible



Table 5.1: Diagnostics for Florida Model.
fio  Fou  Fia e i
5. 1.07 113 111 | R*=0.793
cos(z,-) { 0.861 0.045 0.076 0.457 1
cos(e,-) | 0.007 0.106 0.129 1 0.457
-1l 14.53 2.62 2.23 6.53 15.77

Table 5.2: Diagnostics for Blue Ridge Model.

Fio  foa  fia e od
K. 1.08 1.07 1.03 | R?=0.632

cos(z,+) | 0.648 0.574 0.358 0.617 1

cos(e,-) | 0.000 0.124 0.249 1 0.617
-1 | 245 144 114 207 4.10

term. More discussion of these diagnostics can be found in Gu (1990 b).

For the Florida model, the diagnostics are summarized in Table 5.1. The diagnostics indicate
that the interaction and the geography main effect are absent. Fitting a standard cubic smoothing
spline in #; gives the final model plotted in Figure 5.1, where a scatter plot of the data is superim-
posed. We concluded that the water acidity of the surveyed lakes in Florida didn’t illustrate any
spatial pattern other than uniformity.

For the Blue Ridge model the diagnostics are summarized in Table 5.2. All three components
seem nonnegligible. The calcium main effect is plotted in Figure 5.2. The geography main effect
is plotted in Figure 5.3. We plotted contours only where there are data. We have done this
freechand, but we are developing a method which should give an objective measure of how far
one can reasonably extends the model beyond the data. The crest of the Southern Blue Ridge
mountains runs roughly from southwest to northeast with the highest peak slightly to the left of
the center of the figure. Since geography could be just a proxy of elevation, we also tried to fit a
model on calcium and elevation. The diagnostics of such a fit are summarized in Table 5.3. Again
we would preserve all three terms but the diagnostics suggested that elevation was a bit short of
replacing geography in modeling pH. We finally plotted the residuals from the calcium-geography
model versus the residuals from the calcium-elevation model in Figure 5.4, to illustrate the spread

of the residuals and to double check that the calcium-geography model was indeed a “refinement”
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Figure 5.1: Final Florida Model.

Table 5.3: Diagnostics for Calcium-Elevation Model.

fio  fou fia € Z
K. 140 117 122 | R?=10.493
cos(z,-) | 0.714 0.371 0.375 0.713 1
cos(e,-) | 0.038 0.000 0.075 1  0.713
|-l | 250 0.59 0.26 2.81 4.10
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Figure 5.2: Calcium Main Effect of Blue Ridge Model.
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Figure 5.3: Geography Main Effect of Blue Ridge Model.

12



of the calcium-elevation model.

6 DISCUSSION

The models we construct in this article provide convenient nonparametric tools for combin-
ing spatial patterns with other structures of the data. Our examples illustrate how to combine
geography with another continuous factor of unknown form. To incorporate an additive term of
known form, the partial spline structure (Wahba 1986) can be adopted. For example, if one wishes
to include, say a watershed factor, one simply includes a term zf in the Blue Ridge pH model
where z = 11 depending on whether the lake is located on the inland side or the ocean side of
the ridge (that is, 2 is an indicator function for two watersheds). In dealing with three geographic
variables, for example, longitude, latitude, and ocean depth, one might still want a thin plate main
location effect, with depth rescaled by changing the units for depth by a multiplier. In principle,
this multiplier can also be chosen by the generalized cross validation, see Hutchinson et al. (1984).
Similar remarks may apply to time. Replacing mean square goodness-of-fit by mean minus log
likelihood, the same structure can be used to fit odds ratios for binary data and to fit intensities
for Poisson data, etc.; see, e.g., Gu (1990 a). Other extensions include models with inequality con-
straints, models based on aggregated data, etc; see Wahba (1990). For further technical remarks,
see Appendix B.

Compared with model construction, model selection is much less understood. We have chosen
to use the model selection procedures based on a retrospective linear model given in Gu (1990 b).
Although the theory does not exist for determining when a cos(z, f;) is ”small” in the context
of nonparametric regression, clearly these diagnostics are informative and could be calibrated in-
tuitively. We are investigating another approach to model selection in the same spirit, based on
the Bayesian “confidence intervals” discussed by Wahba (1983) and Nychka (1988). In principle,
the generalized cross validation function V' (see Wahba (1990) for the definition) could be used for
model building. In fact, if the estimate of a § corresponding to a subspace is 0, then that subspace
is automatically removed. However, the generalized cross validation is a predictive criterion, and
there appears to be a moderately large chance that the estimated g is not zero even when the
true f has ||Pgf|| = 0 (Wahba 1990). Thus small components generated by noise may be retained.

One could, in principle, develop an hypothesis testing approach for deciding when 83 is signifi-
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cantly non-zero, by looking at the statistic v = V(---;00)/V(-- -;Aégl). Similarly, a likelihood
ratio statistic m = M(---; 00)/M(- - -;)\0;;1) (see Wahba (1990) for the definition) could be used if
the Bayesian model associated with smoothing splines is true. Major practical problems remain,
however, in generating distributions for these tests, by Monte Carlo or other methods. Asymptotic
x? distributions generally will not be useful because the null model is on the boundary of the pa-
rameter space of the 8’s. Tests of the null hypothesis that the true model is in Hg are discussed in
Cox, Koh, Wahba, and Yandell (1988) and Wahba (1990). Distributions under this (simple) null
hypothesis are relatively straightforward to obtain by Monte Carlo methods.

A PROOF OF THEOREM 2.1

To show that R(t,s) is the reproducing kernel for a given space, we need to show that R(%,-) is
in the space, for each fixed ¢, and that < R(¢,-), R(s,-) > = R(¢,s). The assertions concerning R,
and R, are immediate. The assertion concerning R; will follow from a result of Meinguet (1979),
which we give below after a few definitions. Given m and d, a set of N 4 1 points in R? is said
to be unisolvent, if least squares regression on ¢, - -, $ar—1 is unique. A set of (unisolvent) points

wo, -, wn and associated weights hg,---, Ay is called a generalized divided difference if

N
> higy(wr) =0, v=0,1,---,M 1.
k=0

Let

m! o™ f omg
= - oo oo odtg.
<Ho>e= D al!---ad!/ /atgl---atgdat;“---atgddtl dta

aytetag=m

We have the following Theorem.
Theorem A.1 (Meinguet 1979) Let {hg,w;} be a generalized divided difference, and let E(t, s)
be defined as in the text. Let E4(-) = E(t,-). Then

N N
< Z hjij(-), Z thwk(-) >, = ZZ hih E(w;, wg).
7=0 k=0 i k
We now proceed to the proof that R is the reproducing kernel for H;. Recalling that

Ri(t,s) = (I = Pyty)(I — Pos)) E(t, s),
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we have to show that R,(¢,-) is perpendicular to Hy for each ¢, and
< Rs(t,+), Rs(s,-) >«= Rs(t, s).

Since Py(s) is idempotent, it is obvious by construction that Po(s)Rs(t,s) is 0 for all £. We have
that

Rs(t,) = Ey(") - Z ¢V(t)Z¢V(wk)Ewk( )+ 7(),

v=0

where 7(+) is a polynomial of total degree less than m. Rewrite this as

N
By — > hi(t)Erw,(-) + 7(-).

k=1
where
M-1
he(t) = 3 du(t)du (wr).
v=0
Now, we show that (1, —hy(t), -, —hn(t);t, w1, -, wy) is a generalized divided difference. To

do this we have to show that
N
Gu(t) =D he(t)pu(t) =0, pw=0,---,M~1.
k=1

Substituting in the definition of Ay the above becomes

M-1

¢ﬂ-(t) - Z ¢u(t)(¢m ¢u)N = 0.

v=0
which follows by the orthonormality of the {¢,} under (-,-)n. It then follows from Meinguet’s

theorem that

M-1

< Ri(t, ), Bols, ) >u=< By()= D ¢u(t)2¢u(w)l‘7wk() Es()— Z ¢u(S)Z¢u(Wk)Ewk( ) >

v=0 k=1

N
= E(t,s) - Z hi(t)E(wg, s) — Z hi(s)E(t,wg) + Z Z hi(t)he(s)E(w;, wy) = Re(t, s),
k=1

7=1k=1

so R, is the reproducing kernel for H; with the inner product < «,+ >4.

B TECHNICAL COMMENTS

We will not belabor the reader here with the relationship between splines and kriging. See the
Letters to the Editor from Wahba and Cressie in The American Statistician, August, 1990 for
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different points of view, and references cited there for entree to the kriging literature. EZ (|| t—s ||)
is one of the so-called variograms in the kriging literature. In the definition of E%, m does not have
to be an integer. Replacing m by m’ = m + s, the definition of Effl, in Theorem 2.1 remains the
same except that “d even” and “d odd” are replaced by “2m' — d is an even integer” and “2m’' —d
a positive real number not necessarily an integer”. The norm in H; for the thin plate spline with
non-integer m' is defined in terms of Fourier transforms, see Duchon (1979) and Thomas-Agnan
(1989). Of course when talking about polynomials, m must be an integer. Our construction here
involving polynomials of total degree less than m on R? will work if EZ is replaced by any function
F(+) which is m-conditionally positive definite, see Micchelli (1986). F is m-conditionally positive
definite if 3°, ¢ hjhr F(||lw; — wkl|) > 0 whenever {hg;ws} is a generalized divided difference with
respect to the polynomials of total degree less than m. This condition is exactly what one needs to
show that (I — Po(t))(I — Py(s))F(t, s) is a non-negative definite function, i.e., a reproducing kernel.
E;fl, is, according to Matheron (1973), m conditionally positive definite, for 0 < s < d/2; see also
Duchon (1977). It is m + 1 conditionally positive definite whenever it is m conditionally positive
definite, since this latter condition is stronger. Thus we could decouple the m in the definition of
Ho and in the definition of H; (subject to some restrictions), but we have chosen not to do so. We
could in fact use F(||t—s||) = exp{—0]||t— s||?}, which has been used by Sacks, Welch, Mitchell, and
Wynn (1989) and others, or any other positive definite function, with any m. The polynomials can
be replaced by other functions under certain conditions, see Kimeldorf and Wahba (1971), Wahba
(1978), and Dalzell and Ramsay (1990). See Wahba (1990), Chapter 3, for a discussion on limiting

the class of models one would want to consider.
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