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1 Introduction

In many practical situations, the experimenter often faces the problem of comparing
several competing populations, treatments in clinical trials or processes. The selection
and ranking methodology of ranking and selection provides the useful techniques for
solving such problems. There have been two main approaches to selection and ranking
problems, the indifference zone approach due to Bechhofer (1954) and the subset
selection approach due to Gupta (1956). In the indifference zone approach a single
population is chosen and is guaranteed to be the best (worst) with probability at least
equal to P*. However, in this formulation it is assumed that the best population
is sufficiently apart from the remaining k£ — 1 populations. In the subset selection
approach no such restriction on the parameter space is assumed. A random size
subset of k populations is chosen which is guaranteed to contain the best (worst)
population with probability at least equal to P*. In this approach the data or the
outcome of the experiment is used to decide on how many populations to select. For
an extensive review of these formulations see Gupta and Panchapakesan (1979) and
Gupta and Panchapakesan (1986).

Often in practice, especially for the new treatments, or for expensive products
there is not much information (the past data) which could lead us to assume a para-
metric n:'lodel. In this paper we consider a ranking and selection problem in a non-
parametric setup. Considerable amount of work has been done on the problems of
selecting the population associated with the largest ath quantile (or the largest loca-

tion parameter) or selecting a subset of the populations which contains the population



associated with the largest ath quantile (or location parameter). Some references are
Barlow and Gupta (1969), Gupta and McDonald (1970), Gupta and Huang (1974),
Rizvi and Sobel (1967), and Sobel (1967). An extensive review of non-parametric
selection and ranking procedures is in Desu and Bristol (1986).

To formulate the problem, let II,,II,,...,II; be the k¥ independent populations.
The population II; is associated with the cumulative distribution function Fi(.) on R?,

for i =1,2,..., k. The population II; is characterized by the real-valued functional,

oF) = [ si(@)dFy) ,

where g; is a known, real-valued bounded function on RP. In this paper we obtain
the “optimal” classical type procedures. Non-randomized procedures are proposed.
It is also shown that the proposed non-randomized selection procedures are “close”
to the optimal procedures. A lower bound for the probability of a correct selection
is also obtained. The non-parametric procedures which are developed in this paper
are robust and may also be used to do the preliminary analysis. We believe these
procedures would be of use in many selection and ranking problems where the dis-
tribution functions associated with the populations do not possess “nice” properties.
Some applications, examples and Monte Carlo results for the parametric models are

presented in Section 4.

2 Indifference Zone Approach

In this section we consider the problem of selecting the best (worst) population under

the indifference zone approach. The goal is to select the best population with proba-
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bility at least P*, provided that the “distance” between the best population and the
remaining k — 1 populations is at least d, where d is some positive number specified
by the experimenter.

As defined before, let 11, IT,, ..., II; be the k populations. First we consider the
problem of selecting the best population among k populations when the population II;
is characterized by the functional 8(F;) = [ gdF;, for : =1,2,...,k and we are inter-
ested in selecting populations associated with large (small) values of 8. If necessary,

we make the transformation

g —s g —infg

supg —inf g’

and, without any loss of generality assume that sup g(z) = 1 and inf g(z) = 0. Let
Opy < Opg) < ... < Op-1) < O be the ordered values of 6y,0,,.. .,0%. The correct
pairing between ordered and unordered ‘s is completely unknown. The population
corresponding to ) is called the best population, in case of ties we assume that one
of them is tagged to be the best population. Our goal is to select the best population
with probability of a correct selection at least P*. We need to define some notations.

Let

F={F=(F,F,,...,Fy): F; is a distribution on RP }.

In general, if we allow F' to take any value in F then there does not exist a procedure
which would satisfy the P* condition. Hence we need to restrict the space. Let d be

a real number in the interval (0,1) and define, following Bechhofer (1954),

o = {(01,92, ceey ) Oir) — Ofe—1) 2 d}



and
F'={F:(0(F),0(F),...,0(F)) € ©'}.
Correct selection (CS) : Selecting the best population

Goal: For given P* (1/k < P* < 1), derive a procedure R and ng(d) such that for

vV n > ne(d);
Pp(CS|R,n) > P* for every F € F', (1)

where Pr(CS|R,n) denotes the probability of a correct selection for the procedure
R. The above condition is called the P*—condition.

In dealing with the above problem, we need to introduce some notations. Let
p; = (P, Pizs--->Pin); P = (P;sPys--->P,), Where p;; > 0 for i = 1,2,...,k and
for j = 1,2,...,n. Let Z;; be the independent Bernoulli random variables with
parameters p;; for 1 = 1,2,...,k and j = 1,2,...,n, and let Uy, Us,...,Us be the k

independent uniform random variables on interval (0, ). Let

S; = ZZ,'J' + U;.

J=1
Define
¥i(p) = P(S; = max 5). (2)
Now let X1, Xi2,.-.,Xin be the observable independent random vectors from the
population II;, fori =1,2,... k. Let X = (X1, X12,-++--- Xin), and let

g(X) = (9(2{11),9(2(12% ------ 1 9(Xkn))-

Now we propose the following selection procedures.



Procedure R;:

Select one of the populations II;, ITy, . . ., I with probabilities ¥1(§(z)), ¥2(§(z)), - - - , ¥x(§(2)),

F=¥)

respectively.
A non-randomized rule related to the rule R, is the following:
Procedure Rj:

Select the population I; for which

$i(§(2)) = max ¥;(3(z)),

1<5<k

randomize in case of ties.
Notice that the procedure R; is a randomized procedure while Ry is a non-
randomized procedure related to the procedure R;.

First we prove that the decision rule §(X) = (¥1(3(X)), ¥2(§(X)),- - -, ¥x(d(X)))

is “optimum” decision rule for selecting the best population among k populations.

Theorem 2.1 :
The procedure Ry mazimizes the infimum of the probability of a correct selection. i.e.

If R' is any other selection procedure then
I%g;:,PE(CSIR') < FES;IPE(CS|R1).

Proof:
Let II; be the best population. Observe that inf g(z) = 0 and sup g(z) = 1. Fix
e >0, and get a and b such that g(a) < ¢/2 and g(b) > 1 —€/2. We let g(a) = ¢

and g(b) =1 —e,.



Let P; be the counting probability measure induced by a distribution function F;.

Define

P({d})=p;; P({a})=1-p;
Fo= fo(cl,52) =< F: nF'. (3)
0<p;<1; for :=1,2...,k

Using the earlier notation, we define for : = 1,2,...,k,
Ai={X;: Xy=b j=12,...,n} and T|(X) = |Ail.

Note that for a class of distribution functions o, the statistics T' = (T3, T2,...,Tk)
is a complete sufficient statistic.

We also note that Ty,T5,...,T) are independent and they have binomial distri-
butions with parameters (n,p), (n,p2),...,(n,pr), respectively. Since the binomial
distribution has the monotone likelihood ratio property, it is easy to see that for every
permutation invariant prior on Fy, a rule which selects the population associated with
the largest T; (randomized in case of ties) is a Bayes rule for 0-1 valued loss function.

Hence

. / : —_ . .
Eefl'g(lfl.ez) Pr(CS|R) < 2‘571’21{.:2) P(T1+ Uy = mJaX(TJ + U;)),

where
Pleres) = {p=(P1,P2,--»8) t (1 —€2)pr +e(l—p1) 2 f?;gx(l—ﬁz)l’j‘*'fl(l—m)‘f"d}-

Since

Jnf Pp(CS|R) < _jnf  Pp(CS|R)

L€ 0(eq,e2)

and e is arbitrary, letting e — 0 we have
. Y . — i i
A, Pp(CSIR) < Elgg,P(Tl + Uy = max(T; + Uj)),
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where
P'={p:p1 2 maxp; +d}.
~ J#1

But from (2) we get
Pr(CS|Ry) = Epyn(§(X)) = EpP(51 = maz;S5;|X),

_where S; = Y1 Zi;+U; = V;+U,. For given X =z, Z;;’s are independent Bernolli
random variables with P(Z;; = 1) = g(z;;). Hence marginally V3, V3, ..., Vi are inde-
pendent binomial random variables with parameters (n, 0(Fy)), (n, 8(F2)), .. ., (n, 0(Fk))

repectively. Hence
gg};,P(Tl + U1 = max(T; +Uj)) = L,igjfr,P(CﬂRl)-
This completes the proof of the theorem. O

Remark 2.1 :
From this theorem we see that the procedure R; is the “most economical” in the
sense that for a given P* and d there doesn’t exist any other procedure which can

meet the basic probability requirement with a smaller sample. This was also proved

in a special case by Hall (1958).

Theorem 2.2 :

[1] Pr(CS|R1,n) is increasing in n and

[2] Pr(CS|Ry,n) is an increasing function of Oy provided 0y), 0y, . . -, Opp_q) are held
fized.

[3] infres Pr(CS|Ry,n) — 1 asn — co.



Proof:

It is straightforward to see that

Pp(CS|Ry,n) = P(Yin + U = 1‘??<k(yj" + U;))s (4)
where Yi,,Yan,..., Yi, are independent binomial random variables with parameters

(n,6p))s (0,013, - . -, (1, Opsy) respectively, and Uy, Us, . .., Uy are independent uniform
random variables over the interval (0,%). If we consider the problem of selecting
the best population among k binomial populations, the procedure which selects the
population II; for which ¥, + U; = max;(Yj, + U;) is the best invariant and
is a Bayes procedure with respect to every invariant prior on @', provided that the
underlying loss function is permutation invariant, “monotone” (more loss for selecting
bad population) and non-negative. Hence the Bayes risk of the procedure R; decreases
as n increases for every permutation invariant prior on ©'. Thus Pp(CS|Ry,n) is
increasing in n. From equation (2) it is clear that Pr(CS|Ry,n) is an increasing

function of ;.

For F e F
Pp(CS|Ry,n) 2 9i€nefo Py(Yy > (Jax Yin),
where g ={0:0<0;;0,+d=0+d=... =01 +d =0, <1}. But

Py(Yin > max Yin)

1<5<k-1

> P (Y > Yin) (Jensen’s Inequality)

= 1= A (Vi = Yin) > O

1
1= Po(=(Yin = Yen) = > =)]"" 5 p= E[1(Vin = Yin)] = =d < 0



- Var(2(Yin — Yin
> [1- qr(n( ;2 k ))]k’1 (Chebyshe’s inequality)
s o VerGYi) + Var(¥en) .,
42
1
> [1- k=1,
= 2nd2]

Hence for every F € F'

1
> _ k-1
PE(CSIRl,n) = [1 2nd2] ’
i. e
inf Pr(CS|Ry,n) > (1— ! )kt
FeFr = = 2nd?
Letting n — oo the [3] follows. This completes the proof of the theorem. 0

The above theorem insures that for a given P*, there exists no(P*, k, d) such that
Pp(CS|Ry,n) > P* for every F' € F', n > no.

The procedure R; has nice properties, however it is a randomized procedure.
In practice the experimenter would like to use a non-randomized procedure. The
procedure R is a non-randomized version of the procedure Ry. The following theorem

gives the relationship between Pr(CS|R;) and Pr(CS|R;).

Theorem 2.3 :

For every F € F
Pr(CS|R;) > 2 Pr(CS|R;) — 1. (5)

Proof:
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Let II; be the best population, and I be an indicator function then

PE(CSIR) 2 [ Iinansmaxim wisemdE(2)
> [W(3(e)) - maxvu(a(2)dE (2)
[ #r(a()dE(e) - [ maxvi(a(e))dE (2)
= Pr(CSIR) — [ maxii(§(e))dE(2)
> PRCSIRY - [ S h(a(@)iE)
= Pp(CSIR) - [(1 - %:(3(2)dE (2)

= Pp(CS|R)) —1+ Pp(CS|R))

= 2 Pp(CS|Ry) - 1.
This proves the theorem. o

Remark 2.2 :

From Theorems 2.2 and 2.3 it follows that
51‘2;, Pp(CS|R3,n) — 1 as n — oo.

Remark 2.3 :
Observing the method of the proof of the above theorem, we note that, the above
theorem holds for any multiple decision problem with 0-1 loss, R; is any procedure

and the procedure R; is a “non-randomized version” of the procedure R;.

As we noticed before we can generalize the procedures R; and K, to obtain the

procedure for selecting the best population with the highest parameter, when the
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population II; is characterized by the functional
O(F) = [ gdF;

where g; is a known real-valued function with inf, g;(z) = 0 and sup, gi(z) =1, for
i =1,2,...,k. This can be done in the following way.

Define

§(z) = (91(211), 91(T12)s - - - s 91(T1n ) 92(Z21)s - -+ 1 92(Z20)s - -5+ - GE(TH1 )5 -« + s GH(Zkn))-

Let 91,2, ..., be as defined in equation (2).

Procedure R3 : |

Select one of the populations IIy, IT,, . . ., II; with probabilities 1; (§(z)), %2(§(z)), - - - , ¥ (3(2)),
respectively.

A non-randomized version of this procedure is given by:

Procedure R, :

Select the population II; for which

%i(§(z)) = max ¥;(3(z))

1<k
and randomize in case of ties.
Theorem 2.1 , Theorem 2.2 , Theorem 2.3 and the above remarks hold true for these
procedures also.
Theorem 2.3 indicates that the procedure R, (R4) is a “good” approximate non-
randomized version of procedure R; (R3), whenever P* is large, and that is the case in
general. For example, if P(C'S|R;) > 0.99 then Pp(CS|Rz) > 0.98. The procedure

is good, in the sense that we lose at most 1 — P* due to non-randomization. We also
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note that these procedures can be generalized to the problem of selecting the ¢ best
populations.

As given by equation (4) the probability of a correct selection can be written
in terms of the binomial probabilities. The sample sizes, n,(P*, k,d) (exact and
approximate) are tabulated by Sobel and Huyett (1957) for & = 2,3,4,10, d =
0.05(0.05)0.5 and P* = 0.5,0.6,0.75,0.90,0.95,0.99. For k = 2 they conjectured that
the least favorable configuration occurs at 3 = (1 + d)/2 and ;) = (1 — d)/2. This

conjecture is shown to be true by Eaton and Gleser (1989).

3  Subset Selection Approach

In the subset selection approach we select a random size subset of the k& populations
which contains the best population with probability P* (1/k < P* < 1). The main
feature of selecting a subset of random size is to allow the size to be determined by the
observations themselves. Also in the subset selection approach we need not assume
any restriction on the “parameter space”.

Now we describe the problem formally, let us assume that there are k& populations
I1,,1I,,...,t. The random variable associated with population II; has the cumula-
tive distribution function Fi(.) on RP. Again the characterizing function is real-valued
as defined earlier. Let 833 < 0fg),. .., < O be the ordered values of 6y,0,,...,0. The
population associated with 0y is called the best population, in case of ties one of them
is tagged as the best population. Our goal is to select a non empty subset of these

k populations so that the selected subset includes the population associated with

13



with large probability. Let CS denote the event of correct selection and Pr(CS|R)
denote the probability of a correct selection for the procedure R.
CS: Selecting a subset of k£ populations which contains the best population.

Goal: Derive a subset selection procedure R for which
Pp(CS|R) > P* for every F € F.

Let the space D be the decision space consists of 2¥ — 1 non empty subsets of the set

{1,2,...,k}, i.e.
D={a:acC{1,2,...,k} and |a| >1}.

Action @ = {i,%2,...,5,} € D corresponds to the selection of the populations
Iy, Oy, ... 10 . A decision “a” is called a correct selection (CS) if the best pop-
ulation is included in the selected subset. We implement the procedures established
by Gupta and Sobel (1960) for selecting a subset of k£ binomial populations con-
taining the best population. To define the procedures we need some notation. Let
p; = (pitsPias---Pin), 0 < pij S Lfori =1,2,...,k and for j = 1,2,...,n. Let
2= (2 ye- oo By)-

For every a € D define

¥o(p) = P(min 5; > max 5; —d > max 5y), (6)

where S; = 37 Z;jfori=1,2,...,k. Fori=1,2,...,kand forj =1,2,...,n, Z;

are independent Bernoulli random variables with P(Z;; = 1) = p;;. Let X1, Xi2s-- -, Xin

be the observable random vectors form population II; for : = 1,2,...,%. Let

~

§(z) = (9(211), 9(Z12)s - - -1 9(Z1n)s - 1 9(Z81), 9(Zk2)s - - -2 9(Zken))-

14



Procedure R, :
Having observed X = z, select a subset of populations II; ,II;,,...,II; with

probability ¥,(§(z)), where a = {41,12,...,%,}.

Theorem 3.1 :

mf PF(CS|R ) = mf Pg(Yl > ma,)i —d), (7)
where Y1,Ya,...,Y; are i. i. d. binomial random variables with parameter (n,8).
Proof:

Let II; be the best population then

Pr(CS|R) = Er Y $.(X)

a:l€a
= EpP(5: 2 max 5; —d|X),

where S; = 3°7_; Z;; and for given X = g , Z;; ‘s are independent Bernoulli ran-

dom variables with P(Z;; = 1|X = ) = g(z;;). Hence marginally S;, S3,..., Sk are

independent binomial random variables with parameters (n,6:),(n,02),...,(n,0k),

respectively.

Hence we have

1<5<k

I}gg_PE(CﬂRs) 1nf P(.S'1 > max S; — d).
From Gupta and Sobel (1960) we know that

inf P(5 2 max S —d) = inf P(S) > max S; — d),
0<6<6; 8€ 1<5<k

where QO = {(01,02,...,0k) . 91 = 02 =...= gk}
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This completes the proof of the theorem. 0

In the case of k = 2, Gupta and Sobel (1960) proved that
01€nf£) P(S, > max S; —d)

is attained at 6, = 8, = % For k > 2, the common value 6, at which infimum
takes place is not known. The conservative values of d based on the normal approx-
imation have been tabulated by Gupta and Sobel (1960) for k = 2(1)20(5)50, n =
1(1)20(5)50(10)100(25)200(50)500 and P* = 0.75,0.90, 0.95,0.99. Gupta, Huang and
Huang (1976) obtained conservative values of d when lP* = 0.75,0.90,0.95,0.99 and
n = 1(1)4 when k = 3(1)15, and n = 5(1)10 when k = 3(1)5.

The procedure R, is randomized, the non-randomized version of this procedure is
given by
Procedure R, :

After observing X = z select a subset of populations IL;,, I1;,, ..., II; if
$u((z)) = max pu(3(),

where a = {4y, 1s,...,1,}, randomize in case of ties.

As in the previous section we can generalize these subset selection procedures when
population II; is characterized by the functional 6(F;) = [ ¢:dF;, for ¢ = 1,2,...k.
Unlike the indifference zone approach case, we have not been able to get a lower
bound for the probability of a correct selection for the procedure R),. We feel however

that, there exists a constant ¢ = ¢(n) and a non trivial subset F; of F such that

Pp(CS|R.) > Pr(CS|R,) — e(1 — Pg(CS|R,)),
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VF € F.
In the next section we will describe a technique to use the nonparametric proce-

dures developed before for the parametric models.

4 Applications and Examples

Let II,,1l,,...,IIx be the k populations. The population II; is associated with the
cumulative distribution function Fi(z) = F(z — p;). In this univariate case, let
Xi1, Xi9, ..., X;n be the independent observable random variables from population
II;. Let ppy < pg < ... < pp be the ordered p;’s. The population associated
with the largest pp is called the best population. The distribution function F(.) is

assumed to be known. We consider the problem of selecting the best population. Let

0(F)

[ s(z)dFi(z)

= [gle+m)dF (o).

Note that if g is a nondecreasing function then the above transformation is monotone,
hence the population associated with the largest 6 is the best population. After
choosing a proper g we can use the nonparametric procedures developed before for
selecting the best population or for selecting a subset containing the best population.
In the following examples we take g(z) = F(z — u), where p = ppe_1)+ 3(pii — pe-11)-
For large n first ¢ was estimated and then selection was done using the same data.
Now we present some examples and Monte Carlo results. Standard error for all

Monte Carlo estimates was found to be less than 0.035 .
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Example 4.1 :

Let
L bomuil gor g
fi($)=§e “l fori=1,2,...,k,

where f; is the density associated with F; for ¢ = 1,2,...,k. We want to select
the population associated with upj. Take g as the c.d.f. of a double exponential
random variable with parameter p. The problem of selecting the population with the
highest location parameter is same as the problem of selecting the population with
the highest functional. Now we will use the nonparametric procedures and make
comparisons. Let R;; denote the rank of X;; in the set of pooled observations. Let
T; = Y5y Rij, Vi = T3 @71(Rij/(N + 1)), where @ is a distribution function of
standard normal variable and U; = Y°7_, EZg,;), where Z(y, Z(3), .. ., Z(n) are order
statistics of N = nk independent exponential random variables. Let

R,: The nonparametric rule.

Ry : Non randomized version of the rule R;.

Rj : Selects the population associated with the largest rank score (T7).

R, : Selects the population associated with the largest normal score (V;).

Rs : Selects the population associated with the largest exponential score (U;).
Rnedion : Selects the population associated with the highest median.

Roean : Selects the population associated with the highest mean.

Assume pq = pp = 3 = pa =0, ps =1, and n = 13. Then the following table gives

the P(C'S) which was computed using Monte Carlo methods.

18



" P(CS) p=2|p=075 ] p=0.50 "

P(CS|R;) |0.4823| 0.6815 | 0.665

P(CS|R;) | 0.690 | 0.882 | 0.880

P(CS|Rmedian) | 0.887 | 0.887 | 0.887

In practice we do not know the configuration of p;’s, then we may estimate ppy
and ppx—1) by sample medians and set p = estimate of ug_y; + %(p[k] — p{k-1})- Then
for n =23

P(CS|R)) = 04871
P(CS|R;) = 0.994
P(CS|Rs) = 0.990
P(CS|Rs) = 0.983
P(CS|Rs) = 0.962
P(CS'Rmedian) = 0.990
In this example, in terms of P(C'S), the procedure R; is better than the procedure

R; and is as good as other procedures.

Example 4.2 :

Let

1

.F;(:E) = “-‘——1 T e-G-m)’

for:=1,2,...,k.
Assume p; = pg = p3 = g =0, ps =1 and let g be the c.d.f of logistic, u = 0.75.
Then for n = 13

P(CS|R;) = 0.550
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P(CS|R;) = 0.806
P(CS|Rmedian) = 0.748

P(CS|Rmean) = 0.803

As in the previous example we will estimate ujx) and pp_y) and by sample medians

and set p = estimate of pp_q) + %(p[k] — P[k-1])- For n =23

P(CS|R;)) = 0.694
P(CS|Ry) = 0.912
P(CS|Rs) = 0.918
P(CS|Ry) = 0.916
P(CS|Rs) = 0.881
P(CS|Rmedian) = 0.867

P(CS|Rmean) = 0.1

In this example, in terms of P(CS), the procedure R; is better than the procedure
R; and is as good as other procedures.

Let Ry, RS, ..., R, R 4., be the associated subset selection rules. Let P(CS) , E(S)

be the associated probability of a correct selection and expected subset size, respec-

tively. Using n = 13, we have
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Rule || P(CS) ES |P(CS) ES |P(CS) ES

R 0.787 1.942 | 0.895 2.732 | 0.965 3.555

R, 0.849 1.209 | 0.982 2.809 | 1.000 4.282

R; 0.800 1.013{ 0.825 1.028 | 0.828 1.052

R 0.902 1.418 | 0.964 1.865| 0.991 2.528

Ry 0.851 1.408 | 0.935 1.873 | 0.975 2.446

! 0.950 2319 0.976 2.607 | 0.981 2.815

'median

In above examples we observe that P(CS|R;) < P(CS|R;). These results indicate
that the nonrandomized version of the nonparametric procedure works better when
the associated distribution functions are stochastically increasing in the parameters.
In these examples we have used the binomial model to develop appropriate selection
procedures. Note that if we take g as an indicator function (which has been usually
done), the procedures R; and R, are identical, hence the gain in the P(CS) of R,
over R;, which is observed in the above examples, is not possible in this case. It

{

g2(z) =1 (= oy +& (g )} do not perform better than the procedure R,.

was also observed that the procedures associated with ¢g1(z) = I LI and

Now we will prove that P(CS|R;) < P(CS|Rp) for k = 2 and n = 1 in the
location parameter case. Let F(.) be the associated distribution function, X; be the
observable random variable from the population II; with location parameter p; and
X, be the observable random variable from population II; with location parameter

ps2. Let g be the distribution function of X,. Let II; be the best population.
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Then

P(CS|Ry)

Elg(X1)(1 — 9(X2)) + %g(Xx)y(Xz) + %(1 —9(X1))(1 — 9(X2))]
= Blg(X) — g(X2)g(Xs) + 50(X:)g(Xs)]
[ — 5(9(X1) +9(X) + 59(Xn)g(Xs)]

= 3Elg(X) — g(X) + 1.

Let Z; and Z, be the independent random variables with a common distribution

function F(.). Set Z = Z; — Z,. We have the following;

P(CS|Ry) %[P(Z > 1+ ) — P(Z > 0) +1]

1 1
= 5P(Z>-m+mp)+5]
It is straightforward to see that
P(CS'RQ) = P(Z > — M +ﬂ2).

Hence

P(CS|R;) > P(CS|Ry)
if and only if

1 1
P(Z > —p1+ p2) > 5[P(Z > ~pr + i) + 5]

which is true if and only if
1
P(Z > —p + p2) > 2

which is always true.
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4.1 Asymptotic Relative Efficiency

The efficiency of a subset selection procedure can be measured by E(S), where S de-
note the selected subset size. In this section we make comparison of the nonparamet-
ric procedure developed and Gupta’s maximum type procedure based on the sample
means. Let II;,II,,...,IIx be the k populations. The population II; is associated

with the cumulative distribution function Fj(z) = F(x — y;). Let us denote

Qa={p:pm=peg=-..= ppr-1 =0,y = A}.

Definition 4.1 Let R, and Ry be the two subset selection procedures satisfying the

P* condition, then the asymptotic relative efficiency of Ry relative to Ry is
ARE(Ry,Ry;;A) = Eir%ng(e)/nl(e),

where ny(€) and ny(e) are the sample sizes for which E,(S) — P,(CS) = € for Ry and

R, respectively for p € Q4.

Let o? be the variance of a random variable from the distribution F(.). Let
X, X2, ..., Xin be the observable random variables and X; be the sample mean
from the population II;. Let R, be the Gupta’s maximum type procedure;
Procedure R,,:

Select II; if and only if

where d,, is chosen to satisfy the P* condition:
i%fP(CS|Rm) > P*.
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Let R, be the nonparametric procedure for selecting a subset containing the best
population when the population II; is characterized by 8(F;) = [ g(z)dF;(z); g(z) =
F(z — A/2). To define the procedure we need some more notation. Let,

Y;; = 1 with probability g(X;;)
= 0 with probability 1 — g(Xi;).

Let T; = ¥; Yy, for ¢ = 1,2,...,k. Note that T; is a binomial random variable

with parameters n and p = E(g(Xi)).

Procedure E;:

Select II; if and only if

vnd,

113' T_ ]
>rnJa,x i 2

where d; is chosen to satisfy the P* condition:
ixl}f P(CS|R,) > P.

To derive ARE(Rm, Rs; A) we need to find out n,(€) and n,(e) for arbitrarily
small ¢. Hence to find out d,, and d, to satisfy the P* condition we can assume n is

large. Using the central limit theorem we see that d,, = d is chosen to satisfy

/ &1z + d)dd(z) = P". 8)
Gupta and Sobel (1960) have shown that for large n, d; is chosen to satisfy the
condition (8).

Now we will obtain asymptotic expression for E,(S)— P,(CS) for the procedures

R, and R,. We assume u € 5.
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E(S|Rn) — P(CS|Ry)
= (k—1)P(II; is selected)
= (k-1)P(X; > mJaxX'j - %)
(k—D/@“ﬁz+®@@+d—¢@¥m@@)(Am=Aﬁ)

¢

1

(—\I;;AH / *2(z + d)p(z + d — v/nA,)dD(2)

(for large z > 0, ®(—2z) =~ ¢(z)/z)

(k—1) , d— va . d+ i,
= ) [ 5+ =5R)(e)
(k—1) , d— va r  d+ Al
Joa A [l (k= 2)8(=—5 — TR b (a)
( for small z; (1 —z)F ~1— kz)

1

o DDy o viey - (- a(= )
(k=1 d—ihn
~ B ydo i
(k=1 d=vAAn
~ B lgfovitn

for large z > 0, ®(—2) ~ ¢(z)/=.
It is straightforward to see that
E(S|R,) — P(CS|R,) = (k —1)P(Ty > maxT; — -\/—%—lé)
i

Let X and Y be the independent random variables with a common cumulative distri-
bution function F(.). Let Z=X—-Y and py = P(Z > —A/2) and po = P(Z > A/2).
Note that p; = 1 — pg, T1,T2,..., k-1 are independent binomial random variables

with parameter (n,po) and T} is a binomial random variable with parameter (n,p;).
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Using these facts and the central limit theorem we have the following:

E(S|R,) — P(CS|R,)
= (k- l)P(—‘/ﬁ—(ﬁ — po) > max

VR s S S
VPo(l —po) ™ 3 y/po(1 = po G ) 2\/po(1—po))

noting that po(1 — po) = p1(1 — p1),

(k— 1)/(I)k—2(z+ ___d__ P d \/E(pl _pO))dtl)(z)

2y/po(1 - PO)) = 24/po(1 — po) - y/Po(1 — po)

d d
E—1) [ %z + ———ee)®(2 + —————— — /nA,)d®(2),
(k=1) [ o2 T T )d®(z)

where A, = (p1 — po)/y/Po(1 — po). Now using the similar method we see that

1

R

(k—1)¢(“’"—2\/p.,iT.,)‘ \/ﬁAs)
5 i :

Let n(e) be the solution of the equation ®(—n(e)) = e. Substituting ¢ for E(S|R,)—

E(S|R,) — P(CS|R,) ~

P(CS|Ry) and for E(S|R,) — P(CS|R,) we have

nm(e) = (Van(€)+d)*/A,
d

24/po(1 — po)

where € = 2¢/(k — 1). Since n(e) — oo as € — 0, letting ¢ — 0 we have

ny(e) = (Van(€)+ /A,

ARE(Rm,R,:A) = lim ns(€)

e—0 nm(e)

A2

A7,

A?py(1 = po)
o%(py — Po)? .
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