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COMPOUND POISSON APPROXIMATION
FOR NONNEGATIVE RANDOM VARIABLES
VIA STEIN’S METHOD

BY ANDREW D. BARBOUR, Louis H. Y. CHEN
AND WEI-LIEM LOH

Untversitit Zirich, National University of Singapore
and Purdue University

In 1970, Stein introduced a powerful and general method for
obtaining an explicit bound for the error in the normal approx-
imation to the distribution of a sum of dependent random vari-
ables. The aim of this paper is to extend Stein’s method to
a compound Poisson distribution setting. The compound Pois-
son distributions of concern here are those of the form POIS(v),
where v is a finite positive measure on (0,00). A number of re-
sults related to these distributions are established. These in turn
are used in a number of examples to give bounds for the error
in the compound Poisson approximation to the distribution of a
sum of random variables.

1 Introduction

In 1970, Stein introduced a powerful and general method for obtaining an
explicit bound for the error in the normal approximation to the distribution
of a sum of dependent random variables. The method was extended from
the normal distribution to the Poisson distribution by Chen (1974), (1975a).
Since then Stein’s method has been an area of intensive research in com-
binatorics, probability and statistics: see, for example, Arratia, Goldstein
and Gorden (1989), (1990), Baldi and Rinott (1989), Barbour (1987), Bar-
bour and Eagleson (1985), Barbour and Hall (1984), Barbour and Holst
(1989), Bolthausen (1984), Bolthausen and Gotze (1989), Chen (1987),
Gotze (1989), Green (1989), Schneller (1989) and the references cited in
them. An excellent account can be found in Stein (1986).

The aim of this paper is to extend Stein’s method to a compound Poisson
setting. A motivation for doing so is succinctly stated by Aldous (1989) —
The most interesting potential applications require extensions of the known
results on Poisson approximations to the compound Poisson setting: devel-
oping such extensions is an important research topic. In particular, one of
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the questions that we are interested in is: In situations in which the Poisson
approximation is inadequate, when do we have approximately a compound
Poisson distribution?

The following definition of a compound Poisson distribution is taken
from Aldous (1989).

DEFINITION. Let v be a positive measure on (0, c0) satisfying [;°(1 A
z)v(dz) < oo, where (1Az) = min (1,z). We say W has a compound Poisson
distribution POIS(v) if

Bexp(-0W) = exp(~ [~ (1 - ¢*)u(da))

for all 8 > 0.

Thus the usual Poisson distribution with mean X is POIS(A6;) where §;
is the degenerate probability measure at ¢. In this paper we are interested in
the class of compound Poisson distributions of the form POIS(v), where »
is some finite positive measure on (0, 00). Writing ¥ = Au, where A > 0 and
p is a probability measure on (0, 00), we observe that POIS(v) is the law
of the random variable "N, X;, where the X;’s are i.i.d. random variables
with distribution z and N is independent of the X;’s with the usual Poisson
distribution with mean A.

There are many studies on the rates of convergence to compound Pois-
son distributions. Examples of such studies include Le Cam (1960), Chen
(1975b), Brown (1983), Serfozo (1986) and Michel (1988). Arratia, Gold-
stein and Gordon (1990) have recently introduced an alternative approach
to compound Poisson approximation for sums of indicators (also via Stein’s
method) which involves a ‘declumping’ process. In contrast, we approach
the compound Poisson approximation problem using Stein’s method directly
by considering a compound Poisson identity. In this way we avoid having to
‘declump’. An advantage of this approach is that it applies not only to sums
of indicators. Unfortunately, the compound Poisson identity is difficult to
solve in general, and even if a solution is obtained it is difficult to obtain
an effective bound on it. However, we believe that this approach has the
potential of producing the best results when effective bounds are obtained.

The rest of this paper is organized as follows. Section 2 gives some
results related to the compound Poisson distribution. In particular, a com-
pound Poisson identity is obtained. This is specialized to discrete compound
Poisson distributions in Section 3. In Section 4 these results are used in a
number of examples to give bounds for the error in the compound Poisson
approximation to the distribution of a sum of random variables. Example
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1 gives a lower bound on the total variation distance between the law of a
sum of independent discrete random variables and an appropriate compound
Poisson distribution. Example 2 deals with random variables under local de-
pendence (of which finitely dependent and m-dependent random variables
appear as special cases) and example 3 treats a problem on equiprobable
allocations which involves long-term dependence.

2 A Compound Poisson Identity

In this section we consider a slight generalization of the compound Poisson
distribution, namely the compound Poisson measure. We think that in doing
so, the proof of Theorem 1 becomes more transparent.

DEFINITION. Let u be a finite signed measure on (0, c0). We define the
measure |u| on the Borel subsets of (0, 00) by

W(E) = sup Y (),

the supremum being taken over all partitions {E;} of E. Furthermore we
write |p|[(0, 00)] = 4., the total mass of u. The compound Poisson measure
S,u, generated by p and parameter A > 0, is defined by

) S1u(E) = Yo 4 (B)Xe il

for all Borel subsets E of (0,00), where u** denotes the ¢-fold convolution of
p with itself. (Thus if 4 were a probability measure, then S , = POIS(Au).)
We now state the main theorem of this section.

Theorem 1 Let g be a bounded Junction on [0,00). The integral equation

@) wiw) - A [ t(w+8)du(t) = g(w)

has a solution f defined on [0,00) such that sup,sq|wf(w)| < oo if and
only if [ gdSx u = 0. The solution is unique ezcept at w =0 and for w > 0,
it 18 given by

&, ti... teg(w+ti+ -+ tg) N .
f('w)—l;)z\ /'.'/w(‘tU-l-tl)...(w+t1+-..+tk)ni=1dl‘(tt)°
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Furthermore,
sup |wf(w)| < exp(Avy,) sup |g(w))-
w>0 w>0

PROOF. Let Y be the Banach space of all bounded functions defined on
[0, 00) and supplied with the sup norm ||.||y and let Z be the quotient space
of Y with respect to the closed subspace M = {g € Y : ¢ = 0 on (0, c0)}.
Denote the norm of 2 by ||.||z. Also define the following normed linear
space on equivalence classes of functions on [0, c0):

X ={f : sup|wf(w)] < oo}
w>0
where the norm ||.||x is given by

Iflx = sup [wf(w)].
w>0

Let v be a finite signed measure on the Borel subsets of [0, 00) and let f eX

or Z. We define
/ fdv = / fdv.
(01°°)

Since v defines a linear functional on Y through integration, where ambiguity
does not arise we shall use the same notation to denote the linear functional.
Thus vf = [ fdv for every f € Y and ker Sy, ={g€ Y : [ gdSx , = 0}.

Now define the linear operators U, M from X into Y and U, M from X
into Z as follows:

Uf(w) = wi(w),
Mfw) = [tf(w+0dut),

ﬁf = ;J?:
Mf = Mf.

It is clear that U is an isometry and ||M]|| < 4, and hence U — AM is a
bounded linear operator from X into Y. Similarly T is an isometry and
|M]| < 4, and hence I — AM is a bounded linear operator from X into Z.
Furthermore U is bijective and hence U~! is also an isometry. This shows
that X is a Banach space. Next we need a few lemmas.

Lemma 1 The image of U — AM is contained in ker S ;.
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PROOF OF LEMMA 1. Forevery f€ X,
/ U F(w)dSh u(w)
= / wf ()dSy u(w)
= '*Z [ [ e T e,

which by symmetry, is equal to

e Z (k 1)| / /tkf(t1 +---4+ tk)l_[,_ldp,(t,)

= A / / tf (w + t)dp(t)dS),u(w)
— / AM f(w)dS u(w).

This proves Lemma 1. O
The next lemma can be proved by induction.

Lemma 2 Let a4,...,a; be complex numbers. Then, provided no denomi-
nator vanishes,
Or(1) - - - Cr(k)
0, (1) (@r(1) + 0x(2)) - - (@a() T+ F Ga(s)

where the summalion is taken over all permutations «.

Lemma 3 The operator U — AM is bijective. Its inverse is given by
m ~ ~
(3) (T - AM)~ Z “1M)EG 13,

Jor every § € Z. Moreover,
(4) (T = AM0) 7| < exp(My,).

PROOF OF LEMMA 3. Since [/~ exists, we may write U — AM = f/"(I -
AU-1M) where I is the identity operator on X and I — AU 1M maps X
into itself. Hence the bijectivity of U — AM is equivalent to the existence of
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(I-AU-1M)™1. Let A= AU~'M and let f € X. By Fubini’s theorem and
symmetry,

A¥f=h,

where for w > 0,

& tef(wity+---+t) 4 ,
wh(w) = A/ /(w+t1) @ttty )

So

ot
1447l < ¥lx [ [ oy ey Tl 8

which by Lemma 2 and symmetry, is equal to (Ay,)¥| f||x/k!. Hence
O k3 .

(5) D 1A% Fllx < exp(Avu)lifllx-
k=0

This shows that {332, A*f} is a Cauchy sequence in X. By standard ar-
guments using the completeness of X and the boundedness of A, the inverse
of I — A exists and is given by

(I-4)'f= f: AFf.
k=0

The bijectivity of U — AM follows. So does (3). Finally (4) follows from (5)
and the fact that U~! is an isometry. This proves Lemma 3. O
For every § € Z, choose a representative g' of §, g' € Y such that

#(0) = ~exp(3) [ 3dSi,p.

This defines a linear map ¢ from Z into Y and clearly ¢(§) € ker Sj . The
next lemma can easily be proved.

Lemma 4 The map ¢ is injective and im ¢ = ker S ,. Furthermore,
|¢*|| < 1 where ¢* is the left inverse of ¢.

Lemma 5 For every f € X,

(U~ AM)f = (¢o (T - AMD)f.
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PROOF OF LEMMA 5. It suffices to show that
(U — AM)f(0) = (¢ o (T — AM)) f(0).

Indeed the left hand side equals —X [tf(t)du(t) and the right hand side
equals

_e f (T - A fdSh, = —e* /( SCESLD F(w)dSy u(w)
= & / (U = AM)FdSy— A / ££(8)dul(2)
= -3 [tf®)aute),
by Lemma 1. Hence the lemma. O

Theorem 1 is proved by combining Lemmas 3, 4 and 5 and noting that
I =AMy < {I(T = A8) Y1) < 1T - AB2) 7,

where (U — AM) is the left inverse of U — AM. m]
The following corollary gives a characterization of the compound Poisson
measure.

Corollary 1 Let S be a finite signed measure on the Borel subsets [0, 00)
such that [dS = [dS)\, = a#0. Then S = S), if and only if for every
fex,

/ wf(w)dS(w) = A / / £ (w + £)du(t)dS (w).

PROOF. The necessity part follows from Lemma 1. Its sufficiency is proved
by choosing f to be the solution of (2) withg = h—a~! [ hdS) ,and h € Y.
O

The class X in this corollary may be replaced by the smaller class con-
taining f where f is continuous on (0,00) or continuous on (0,00) with
compact support. The next result gives a bound on the ‘smoothness’ of f.

Theorem 2 Let A > 0 and p a probability measure on (0,00). Let E C
[0,00), Ig(.) be the indicator function of E and f be defined as in Theorem
1 with g(w) = Ig(w) — P(W € E), for all w € [0,00) and W ~ POIS(Ap).
Then

sup sup |w[f(v)— f(w)]| < exp(A).

A v>2w>0

The proof of Theorem 2 is similar to that of Theorem 4 below and hence is
omitted.
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3 The Lattice Case

In this section, we specialize the class of compound Poisson distributions
to those of the form POIS(} 2, Ai6;), where 3.2, A\; < co. Due to the
special structure of these distributions, somewhat sharper bounds than that
in Theorem 1 can be obtained. The next result is the lattice case analogue
of Theorem 1.

Theorem 3 Let g : {0,1,2,...} — R be a bounded function, A\; > 0 when-
ever t > 1 and Y2, \; < oo. Then there exists a bounded solution f :
{1,2,3,...} = R of

o0
wf(w) =D i\if(w+ i) = g(w), Vw >0,
i=1 .
if and only if Eg(W) =0, with W having the POIS(> {2, X\ib;) distribution.
The solution is unique except at w = 0 and for w > 1, it is given by

6) W)=Y amug(m)

m=w
where
awrw = l/w!
t jA .
() Gotio = )2 h0utiiw, Vi1

i=1
We shall now proceed to bound f. To do so, we need the next few lemmas.

Lemma 6 For w>1 andi > 1, we have
i
(8) Waytiw = EjAjaw+i,w+j-
i=1
PROOF. Clearly (8) holds for § = 1. Now assume that (8) is true for ¢ < k.
Then it follows from (7) that
k+1 k41 k411

Y iXjCwrkrtwsi = L Y Gwikti-LwtidAih/(w+ k4 1)
j=1 =1 j=1
E+1
= > wiNGyikr1-tw/(w+k+1)
=1
= Waw+k+lw-

The lemma now follows by induction. O
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Lemma 7 Suppose that W has the compound Poisson distribution
POIS(3 21 Xib;). Then

(o] w
P(W =w) =exp(— Y_ Aj) D _ i\itu,, Yw > 1.
j=1 =1

PROOF. The proof of this lemma is similar to that of lemma 6 and is
omitted. O

Lemma 8 Let W be a random variable having POIS(3 -2, Ai6;) distribu-
tion. Then for 1 <1 < w, we have

iaws < P(W = w—1d)exp(D_ Aj).
i=1

PROOF. First observe that the lemma holds when w = . Next, we assume
that w > ¢. By Lemmas 6 and 7, we have

00 w—4
P(W =w—1d)exp(D_ A;) — 10w, = D jAj(Gu—i,j — Gw,i+s) 2 0,
i=1 i=1
since it is easily seen that ay_;; > ayi+; whenever w — ¢ > 5 > 0. O

Lemma 9 Let W be a random variable having POIS(> 2, Aib;) distribu-
tion. If1 <1< w, then

Biawi < P(W = w)exp(z i),

Jj=1
where for all 5 > 1, we define
ﬂl = Al’
j-1
Biv1 = (F+ D1+ M(Bi/5) + Do (5 + 1= k)Ajr1-(Be/k).
k=1

PROOF. It follows from Lemma 7 that to prove the above lemma, it suffices
only to show that for 1 <1 < w,

w
> iAjau,;
=1

w -1
9 = Bigwit Y [FAjowi+ D (Bk/k)(F — k)Aj—kauw ;-

F=i+1 k=1
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The proof of (9) easily follows from induction and Lemma 6.
The following result gives a bound on f.

Proposition 1 Let f be defined by (6). Then we have fori > 1,
: [0 o]
su w)| < 71 A min (871)]ex Aj)su w)l,
sup|f(w)] < 7 A g (8,)] p(j§=1: ) sup lg(w)|

where the B ’s are defined as in Lemma 9.

PROOF. We observe that if w > ¢, then

SIS 3 amls(@)] < 3 om suplo(w).

m=w m=t wZ

It follows from Lemma 9 that

sup|f(w)| < min {exp()_Aj)suplg(w)| 3_ B P(W = m)}
w24 SR> j=1 w24 m=k

IA

(10)

00
. -1 .
i3, e 2 TRl ()l

On the other hand, it follows from Lemma 8 that

splf(@)| < exp(}> ) suplo(w)] Yo POV = m—i)/i
w2t j=1 w2t

m=t

(11) = i‘lexp(io:/\j)sup_lg(wﬂ.
=1 vz

Proposition 1 follows from (10) and (11).

10

O

The next two theorems, which are needed in the sequel, give bounds on

the ‘smoothness’ of f.

Theorem 4 Let f be defined by (6) and A C {0,1,2,...}. Suppose further

that g(v) = Ia(v) — P(W € A) whenever v € {0,1,2,...}, with W having

the POIS(3-2, Ai6;) distribution. Then for i > 1 and j > 0, we have

supsup | f(w + ) — f(w)| < [ A min (8 1)]exp(; ),

where the B ’s are defined as in Lemma 9.
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PROOF. From the proof of Proposition 1, it suffices only to show

(12) G+7) =TI S ams.

m=t

First we observe that

G+ -16) = - glam,,-g(m) — Gmririg(m -+ 3)
2 = 3 loms = POV € A)am — omasors)
e oo
Also, -
fG+3) - 16) < "i[amﬁ,,-ﬂ-w(w € A4)(ams — amtises)
< o
This proves (12). ) ]

REMARK. The bound given by Theorem 4 is sharp in the limit as the
Ai’s approach zero. Furthermore, there are also other instances in which
the bound is reasonably good. For example, suppose W ~ POIS();252). By
taking A to be the set of nonnegative even integers, it can easily be seen
that sup 4 sup,,>; |f(w+1) — f(w)] > A;1(e*2 — 1). However, it is enough in
applications to find one function f with nice properties such that, for any
random variable V',

B{Vf(V)- f:i,\.-f(v +i)} = P(V € A) — P(W € A),

=1
where W has the POIS(}-2; A;4;) distribution. In this degenerate example,
a better choice of f is obtained by taking

(w) = Ii(w) - PW e A) ifwe2Z,
= 0 ifwe 27 +1,
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which is just as good, since P(W € 2Z) = 1. For this function g, f(w) =0
for w € 2Z + 1, |f(w)] < eA~Y/2 and sup,, |f(w + 2) — f(w)] < 1/(2)g) for
some constant ¢. In general, the bound in Theorem 4 is very crude and is
far from optimal. It is hoped that this can be remedied in future work.

Under additional assumptions on the A;’s, substantially better bounds on
the ‘smoothness’ of f can be obtained using the probabilistic perturbation
technique of Barbour (1988), (1990). Suppose that jA; \, 0 as j — co. We
write

i = 1A — (1 + 1) A, i1,
f(w) = h(w)-h(w-1), w > 0.

It can be easily seen that

wf(w) - 3 f (w 1) = wih(w) - (w 1] = 3 k(o + 1) - h(w)]

=1 =1

We observe that the right hand side of the above equation is of the form —A4h
where A is the infinitesimal generator of an immigration (in groups)-death
process whose equilibrium distribution is POIS(}°%2,; A\i6;). Let Z be the
minimal process with the infinitesimal generator 4. For A C {0,1,2,...},
let hy : {0,1,2,...} = R be given by

ha(w) = fo " Pu(Z(t) € 4) - P(W € A)]dt,

where W ~ POIS( }-2, Ai§;) and P, denotes the distribution given Z(0) =
w. We further observe that

|ha(w)| < /0 * Po(r > t)dt = B(r) < oo,

where 7 is the first coincidence of Z(t) started at w and another indepen-
dently started with initial distribution POIS(} {2, Ai8;). The proofs of the
next two lemmas are very similar to the proofs of Lemmas 1 and 2 of Barbour
(1988) and shall be omitted.

Lemma 10 Let f(w) = hg(w) — ha(w— 1), w > 1. Then f satisfies

wf(w)——iil;f(w+i)=IA(w)—P(W€A), w>0.

i=1
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Lemma 11 Let f(w) = ha(w) —ha(w—1), w > 1. Then
supsup | f(w +1) - f(w)] < L.
A w>l

Theorem 5 Suppose jA; \ 0 as j — co. Then

1 1
+1) - <1A +logt 2(A; — 2X3)],
sgpilglf(w )= fw)| < ,\1_2)\2[4(/\1_2,\2) og™ 2(A1 — 2Az)]

where f(w) = ha(w) — ha(w—-1), w > 1.
PROOF. Without loss of generality, it follows from Lemma 11 that it suffices
only to show

1 1
1) - < +logt 2(A1 — 2A2)],
sgngrilf(W+ ) - f(w)] < ,\1—2,\2[4(,\1—2,\2) og™ 2(A1 — 2Az)]

whenever 2(A1 — 2A2) > 1. From the definition of f, it is easy to see that
for w > 0, :

flw+2)-f(w+1)
- /0 {Pws2[Z(t) € A] — 2Ppra|Z(t) € A] + Pu[2(t) € A]}dt.

Define the following four coupled immigration (in groups)-death processes:
Z0) is distributed as Z started at w and

Z0() = Z2O0) + Iy,

z20@) = z2O0) + Iy,

zO0@) = z0@E)+ It 58

where 71 and r; are independent standard exponential random variables,
independent of Z(©), It follows that

fw+2) - flw+1)
= /0 " B{LA[Z29(1)] - Lu[Z2D@)] - L[Z0(0)] + L2 @) }de.

We observe that the above integrand is zero whenever ¢ > (13 A r2). Hence

fw+2) - flw+1) = /0 e (P[Z2O(t) € A2
(13) —2P[Z2O)(t) € A — 1] + P[200)(¢) € A]}dt,
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where A—i = {k: k+i € A}. We observe that ZO)(t) = W (t) + =2, Yi(¢),
where W () denotes those of the original w individuals still alive at time ¢ and
Y;(t) denotes those alive at ¢ who immigrated in groups of size ¢ after time
zero. Furthermore, we observe that W (t),Y1(t),Y2(t),... are independent
random variables and Y;(t) ~ POIS[(1 — e~*)u16;]. Thus it follows that

P[ZO(t) e A-2] - 2P[Z2O(t) € A— 1]+ P[Z20O(t) € 4]
(14) Z PW(t) + Z Yit)=k > nl),

i=2 Lit+keA
where pi(t) = P[Y1(t) =1 - 2] - 2P[Y1(t) = — 1]+ P[Y1(t) =]. As shown
in Barbour (1988), we have

(15) | 22 m®)I<[(1-e)p]™

Lit+keA
Hence we conclude from(13), (14) and (15) that

fw+2) - fw+1)] < / T e (1 - el A2pat
= (— + log™ 241).

This proves the theorem. |

REMARK. We observe from the proof of the above theorem that it
should be possible, at the cost of more technical complications, to get better
bounds by looking at the transition probabilities of the whole u-process, not
just the p; part.

REMARK. Theorem 5 is most useful if A; 3> A3 (as is often the case in
‘perturbation’ problems).

Finally we end this section with a corresponding bound for f. Although
this result is not needed in the sequel, we think it is of some independent
interest.

Proposition 2 Suppose jA; \, 0 as j — co. Then

A —22 <1,

sipigrilf(w)l < { (l/m[z (1/VX1=2X3)] if A —2x2> 1,
where f(w) = ha(w) — ha(w—1), w> 1.

The proof of Proposition 2 is similar to that of Theorem 5 and hence is
omitted.
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4 Applications

In this section, we shall use the results of the previous sections to obtain
bounds for the error in the compound Poisson approximation to the distri-
bution of a sum of random variables. Here the total variation distance is
used to measure how close the distribution of the random variable of interest
is to a compound Poisson distribution.

DEFINITION. The total variation distance between two probability mea-
sures F' and G is defined by

d(F,G) = sup |F(E) - G(E)],

where the supremum is taken over all measurable sets of the real line. We
observe that 2d(F,G) = yr—_g, the total mass of the signed measure F — G
(see Section 2). Also for simplicity, we denote the law of a random variable
X by L(X).

4.1 Sum of independent discrete random variables

Upper bounds on the total variation distance between the distribution of a
sum of independent random variables and an appropriate compound Poisson
distribution have been obtained by Le Cam (1960) and Chen (1975b) using
different methods. Their techniques are more direct and general and give
more reasonable upper bounds than those considered here. As such, we shall
give a complementary lower bound instead.

Let Y3,...,Y,, be independent random variables taking on only the val-
ues 0,1,2,...,n. Definefor 1<t <n,1<j5<m,

bij = P(]G = ’)a V= E;"f:l}’j,
N=YXT1pii, Vi=Xi Y.

The proof of the following theorem is similar to that given by Barbour
and Hall (1984) for getting lower bounds in Poisson approximations.

Theorem 6 With the above notation, we have

d(L(V), POIS(zn: X&) > #(1 A (an iA)™Y) Em:(i kpk,j)*.

i=1 i=1 j=1 k=1
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PROOF. Let h : {0,1,2,...} — R be a bounded function and W be a
random variable having POIS(3_7; A:4;) distribution. We observe that

E[f: INB(V +4) — VA(V)]

=1

= B{ N 1) - > ip (Y)Y = )]}
=1 j=1

= B{ S ipijpeslh(V; ++ k) — h(V; + )]},
j=14i,k=1

It follows from Theorem 3 that
n n
E[) iNh(V +4) — VA(V) = D iXh(W +4) + Wh(W)]
=1 =1

= E{i Zn: ipi,iPki[R(V; + i + k) — h(V; +4)]}.
j=14i,k=1

This implies that
2d(£(V), L(W)) sup| 3 iMch(i + 5) — 5h(3)

J  §=1
n

(16) > f: > i ipk i E[h(V; + £ + k) — h(V; +14)].
j=1%,k=1
Let A=37,1)\; and
h(7) = (4 — Nexp(—(5 — 2)?/(82)), Vj >0,

where # is some positive number to be determined later. To get an upper
bound for sup; | 35, iA:h(i + 5) — jh(4)|, we observe that
n
|2 X:h(i + 5) - 5h(3)]
rt
'n
= 122G +3) - b)) = (4 = X)?exp(=(5 — A)*/(0N)]
i=1

(17) < Amax{n,2ne~%/% + ge1}.
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To get a lower bound for the right hand side of (16), we observe that
1 — d{we™**/N) /dw < 3w?/(6)).

Hence writing U; = V; — A for all 1 < j < m, we have

Uj+ith . Ujtith
/ T < d(we ) fdwldw < / T 3w /(00 dw.
Uj+i U+i

This implies that
k—h(Vi+i+k)+h(V;+5) < [k®+3ik® +3i%k+3U7 k+ 3U;(k* + 2ik)]/(02).

Furthermore it is easy to see that EU; = — Y_p_; kpg,; and EUJ? < nA.
Hence it follows that

(18) E[k — h(V; + 4 + k) + h(V; + )] < k(Tn® + 3n))/(0)).
It follows from (16), (17) and (18) that if we take 8 > ne,

Tn? + 3nA

d(L(V), L(W)) 2 Z(Z kpe,;)?[1 — /122 (2ne=*/% + pe)].

i=1 k=1

As in Barbour and Hall (1984), if A > 1, we take § = 21n? and if A < 1, we
take § = 21n?/). In both cases, we have

ALY, LV)) 2 Sy (LA (300 303 ko).

=1 7=1 k=1

This completes the proof. O
REMARK. In the case where n = 1, Theorem 6 reduces to Theorem 2
of Barbour and Hall (1984).

4.2 Random variables under local dependence

In this subsection, we shall approximate the distribution of a sum of locally
dependent random variables by that of a suitably chosen compound Poisson
distribution.

DEFINITION. Let I be an arbitrary index set. A nonempty family of
random variables {X, : a € I} is said to be locally dependent if for each
a € I, there exist Ay C B, C I with a € A, such that X, is independent
of {Xp B € A%} and {Xp : B € A,} is independent of {Xpg : § € BS}.
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Let A and B be nonempty subsets of I. The set {X, : @ € B} is said to
be a locally dependent set of {X, : & € A} if the latter is independent of
{X,:a€ B}.

DEFINITION. A nonempty family of random variables {X, : @ € I} is
said to be finitely dependent if for every nonempty finite subset A of I there
exists another finite subset B = B(A) (including A) such that {X, : o € A}
is independent of {X, : & € B°} and such that sup, infp |B|/|A] < oo,
where |.| denotes the order of a set. The order of dependence of the family
is defined to be the smallest integer not less than sup 4 infg |B|/|A|. Let C
and D be nonempty finite subsets of I. The set {X, : @ € D} is said to
be a finitely dependent set of {X, : @ € C} if the latter is independent of
{X4 : @ € D°} and |D|/|C| does not exceed the order of dependence.

We observe that m-dependence is a special case of finite dependence
which in turn is a special case of local dependence. We refer the reader to
Chen (1978) for examples of finitely dependent random variables.

For each n > 1, let {X.g,") : a € I} be a locally dependent family of

nonnegative random variables. For each o, let {Xl(Sn) : B € Ag,")} be a
locally dependent set of {X&")} and {X,g") 1B e Bg,")} a locally dependent
set of {X ,g”) :p e A,(,")}. Also let

YW= 3 x{, AR = 5™ Ex((y )L,
ﬂEAg.) a€el

Here we adopt the convention that 0/0 = 0 and we assume that A(") €
(0,00). Define the probability measure u(™) on the Borel subsets of (0, c0)
by
W (E) = (APt Y BXE ()
acl
for every Borel subset E of (0, 00). Further let

Y{MeE}

o = P(x{ > 0), € = P(S, pm X5 > 0),
T(n) = Zael szn)a i(n) = maxaEIpan .

Theorem 7 With the above notation,

d(L(>° xM), Pors(A™Mu)) < 2exp(A™) Y prlelr)
acl acl

2exp(A™) Y 3T ppl).
o€l pep )

IA

IA
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Furthermore if for everyn > 1, {X&") :a € I} is a finitely dependent family
with order of dependence r, we have the following complementary limiting
result: If d(L(Xqer Xc(,,")), POIS(AMu)) = 0, 3™ — 0 and A(®) remains
bounded as n — oo, then Eaelp,(,")&(,n) — 0 as n — oo, where for a € I,
n>1, {X/(gn) :B € B((xn)} is a finitely dependent set of {Xg') :Be A,(,")}.

PROOF. For simplicity we drop the superscript (n) but will pick up the
superscript when the need arises. Let {X, : @ € I'} be an independent copy
of {X, :a € I} and let

W= YaerXas Vo= Ygeas Xp»
Vo = EﬁeB& Xﬂ’ Zy = EﬂeBa Xﬁ)

Ta = zjeBa—Aa Xp’ YIL = EﬂEAa X'ﬂ'
Let E C [0,00), h(w) = Ig(w) and f be a solution of the equation

wf(w) — /\/tf(w + t)dp(t) = h(w) — /hdSA,,,.
We observe that
EW f(W)
= > EXof(Va+Ya)
acl
= E EI{X(,>0} [Xaf(va + Ya) - Xaf(va + Ya)]
acl
+ 3 Bl X (7o + Y2) = XLV + YD+ Y BXF(V +Y2)
a€cl acl
= Ri+Ry+AE / t1 (W + t)du(t),

where R; denotes the #th sum on the right hand side of the second equality.
Now

By =) Elix,>0}l(ra>0}{Xaf(Va + Ya) — Xof (Va + Ya)]
a€cl
and so it follows from Theorem 2 that

|Ri| < exp(N)Y_ Elix,>01 (1.0}
acl

< exP(’\) Z Paba

acl

< exp(A) D D paps-

acl ﬁeBa
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Similarly,

Ry =) Elixi 501 (7,50} Xef(Va + Ya) — XLf(W +Y2)]
acl

and by the same argument as above

|Rz| < exp(A)D_ D~ papp.

a€l BEB,

Hence the first part of the theorem is easily proved using Theorem 1.

For the second part of the theorem, we assume that fora € I, n > 1,
{X&") : o € I} is a finitely dependent family with order of dependence
r. It is easy to see that supaeI|B,(,")| < sup,er r|A,(,,n)| < r%. Hence it
suffices to show that (") remains bounded as n — oo since 6,(,") < rzﬁ("). It
follows from Lemma 12 below that {X.S,") : a € I} can be partitioned into r
subsets of independent random variables with index sets I}"), ceny Ir("). Let

'r,-(n) = Eael_(n) Pg:n)- Suppose {1'(")} is unbounded. Then there exists a

subsequence {n'} of {n} and a sequence {k,} of numbers from {1,...,r}
such that T,S:) — 00 as n — oo. So

P xtM=0<P( Y, X =0) <exp(—r{™),
a€l aet(™”

which tends to zero as n — oco. This is a contradiction and the proof of the
theorem is complete. O

Lemma 12 Let F = {X, : a € I} be a finitely dependent family of random
variables with order of dependence r. Then ¥ can be partitioned into r
subfamilies of independent random variables.

PROOF. By Zorn’s lemma, every random variable in a finitely dependent
family generates a maximal subfamily of independent random variables, i.e.
every random variable in the family is contained in a maximal subfamily of
independent random variables. We note that every subfamily of a finitely
dependent family is itself finitely dependent. So we partition 7 as follows.
Start with a particular X; € 7 and let M; c 7 — Ui_:lle be a maximal
subfamily of independent random variables generated by X; € 7 — U};;lle,
¢ > 1. This process cannot continue beyond ¢ = r. For if it did, then by
virtue of the maximality of each M;, every locally dependent set of every
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X,4+1 belonging to M,4+; would have a nonempty intersection with each M;,
1 =1,...,r. This contradicts the assumption that the order of dependence
is r. Hence the lemma. 0

In the case of a sum of locally dependent indicators, the bound in The-
orem 7 can be improved. Let {X, : & € I'} be a family of locally dependent
Bernoulli random variables with p, = P(X, = 1) = 1—- P(X, = 0) > 0. For
each a € I, let A,, B, be a locally dependent set of {X,}, A, respectively.
We define for ¢ > 1,

w =EQEIX¢¥’ A= E(W)’
Yo = Ypean Xp: M = (1/1) Xaer E(Xoliy,=i})-

We assume that A € (0, 00).

Theorem 8 With the above notation,

(19) d(L(W), POIS(3 M) < 21 AAT)exp(3 ) o 3 paps.

i=1 j=1  a€lpPEB,

However, if we have the additional condition that jA; \, 0 as j — oo, then
the bound can be improved to

d(L(W), POIS(>_ Aibi))
=1
1
< 2{1A log™ 2(A1 — 2 *
< 2 AL — 2)2[4(/\1 —2) ) g ( ' 2)]}11262113;4:? o

PROOF. The proof is similar to that of Theorem 7 with the exception that
the first (second) part of the theorem uses Theorem 4 (Theorem 5) to bound

Sup 4 SUp,,>1 | f(w + 1) — f(w)| respectively. i
Arratia, Goldstein and Gordon (1989) have shown that

d(L(W), POIS(A6)) < A7 (1 —e™*)(Var(W) = A+2D_ D papp)-
a€l fEA.

This together with Theorem 8 imply that in the case that
A7H1 — e7)[Var(W) — )]

is large, for which the Poisson approximation fails, we still have an approx-
imation — compound Poisson approximation, provided the right hand side
of (19) is small.
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For an illustration of a concrete application of Theorem 8, we refer the
reader to Chen (1990) who considered a problem involving head runs. In
particular, an error bound is obtained for the compound Poisson approxi-
mation of the distribution of the random variable which counts the number
of locations among the first n tosses of a coin at which a head run of length
at least ¢ begins. The asymptotic distribution of the length of the longest
run of heads beginning in the first n tosses of a coin is also considered there.

REMARK. Though it will not be covered in this paper, we wish to
remark that Chen (1976) has also used Stein’s method to obtain a number of
limit theorems and asymptotic expansions involving the compound Poisson
approximation of the distribution of a sum of finitely dependent random
variables.

4.3 Equiprobable Allocations

Let there be v balls and k urns. The balls are placed independently and
randomly (uniformly) among the k urns. Let N; denote the number of
urns containing exactly ¢ balls. We are interested in the random variables
U = 2Ny + Ny and V = N; 4+ 2N;. Here U can be interpreted as the
minimum number of additional balls needed to ensure that each urn has at
least 2 balls and V' the total number of balls contained in urns with exactly
1 or 2 balls. It is easily seen that for 1 =0,1,...,v,

B(V) = kCY (D (1 - 2 =,

where C} denotes the number of ways of choosing 1 objects from » objects. In
this example, we shall approximate the distribution of U, V by POIS(A16; +
Xo82), POIS(TZ., X;6;) respectively. For convenience, we write

Yii = 1 if jth urn contains exactly ¢ balls,
¥ 71 0 otherwise.

Thus N; = E;’:lYij- Let A c {0,1,2,...} and g(v) = Ia(v) - P(W €
A) where W ~ POIS(Y?_, \;5;). By Theorem 3, there exists a bounded
function f satisfying

Eg(V) = E[Vf(V)-2_ixf(V +9)]

=1

2 k
= B> {d iP(Yij = VE[f(V)|Yi; = 1] —iNf(V +14)}

=1 j=1
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2
= EZ:',\,-{E[f(V)IYu =1] - f(V +14)}

=1
2
= EY iX[f(Vi) - f(V +9)),
=1
where V; has the conditional distribution of V' given that Y;; = 1. Hence
2
(200 - |Eg(V)| < D_iNEV +i-V] sup |f(w+1) = F(w)].
- i=1 wz

To obtain a reasonable bound for E|V + ¢ — V;|, we shall couple V' and
V; on the same probability space as follows. Distribute v balls at random
(uniformly) among k urns. This determines V. Let Z; denote the number
of balls contained in the jth urn. If Z; > i, distribute Z; — ¢ balls from urn
1 uniformly among the remaining urns. If Z; = 1, do nothing. f Z; < 1,
select 1 — Z; balls uniformly among the balls in the remaining urns and put
them in urn 1. This determines V;.

Lemma 13 With respect to the above probability space, forv > 1, k > 2,
BV +1-i| < (1 - "S5 +4(3) +2(%) +3].
PROOF. We observe that
(21) EV+1-V|=EV+1-V1)+ +EWV1 -V - 1)y,
and
EV+1-W)y = E[(V+1-V1)4|Z =0]P(Z =0)+ P(Z,=1)

+zu: E[(V +1-WV1)4|Z1 = j]P(Z1 = j)-
=2

Furthermore, it can be seen that

E[(V+1-WV1)4|Z,=0|P(Z1=0) = E[

wm — 0]P(2, = 0)

< (1—%)"
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and

v

Y BV +1-W1)4|Z1 = j1P(Z1 =)

j=2
No+ Ny , 4(N3—1) 2353 N;
< = = =
S P =3B+ 1 t—5%-1 1&=1
= ) ) N1+ N. )
+_ P(Z = j)E[2(j - 1)——; — 2|2, = 4]
=3

v 1 v 1
< V201 _ W2 Zh3 __v—3.
< 3PV -2)T+H(ra-7)
Hence we conclude that

1 v 1 v 1 v 1
_ < (1—=Wi(= _ w1 N2 _ W24 (Z\371_— u—3-
B+1-V3)s < (1-3) +(2) (1~ 1) +3(0)2(1- 1) +(2)°(1-%)
(22)
Similarly it can be shown that

L, (¥ -1 (Uy2 L2
S 7 <92(1-= (1 - = 221 - 2y-2,
(38) B3 -V - 1) <21 - 2+ (D - D1+ O - 3)
The lemma follows directly from (21), (22) and (23). ]

Lemma 14 With respect to the above probability space, forv > 2, k > 2,
1
EV+2-Va|<(1— Z)""‘[(%)3 + 4(%)2 + 4(%) +8).

PROOF. The proof of this lemma is similar to that of Lemma 13 and hence
is omitted. O

Theorem 9 With the above notation, we have for v>2, k> 2

2
dLV), POIS(LAG)) < (1= ) ((5)*+4(3) +4(3) +6]

=1

2 2
x(1AATYexp(D Aj) D i

i=1 =1

PROOF. The proof follows immediately from (20), Theorem 4, Lemmas 13
and 14. O



COMPOUND POISSON APPROXIMATION 25

REMARK. An immediate corollary is that d(L(V), POIS(Y% ; \ié:))
tends to zero whenever v and k tend to infinity in such a way that v/k — oo
and A; remains bounded.

The essential difference in the treatment of U and V' comes from the
observation that A\g <« A; < A; for v/k large. Hence in the case of U,
Theorem 5 can be used to bound sup 4 sup,,>; |f(w + 1) — f(w)| instead.
The corresponding result for U is stated next. The proof is similar to that
of Theorem 9 and is omitted.

Theorem 10 With the above notation, we have for v > 2(k—1), k > 2,

d(ﬂ(U), POIS(/\151 + Ao&z))
< (- %)"""[(%)2 + 2(%) +2](2X0 + A1)
1 1

A e 40— 209

+ log* 2(A1 — 2X0)]}.

REMARK. A corollary is that d(L(U), POIS(A161+ Aob2)) tends to zero
whenever v and k tend to infinity in such a way that v/k — oo and A
remains bounded.
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