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ELIMINATION OF NUISANCE PARAMETERS WITH
REFERENCE NON INFORMATIVE PRIORS

1. INTRODUCTION .

The problem of elimination of nuisance parameters in inferential contexts
based on parametric statistical models has been producing, in the last years, a
wide and often confused literature. Given a statistical model (3, Py, Q), where
¥ is the sample space, {Pw, weQ} is a class of probability distributions on £ and
QQR" is the parametric space, we are very often interested only in a function
9,:Q—©. The standard case is when g, is not invertible and OCR*, h<k.
Actually the complementary transformation g,:Q2—A, with AxO=Q is seldom
indicated and it is never a datum of the problem. In these situations we would
need inferential procedures to get rid of the parameter A and, at the same time,

to provide statistical statements on 9.

Under special conditions, if ohe or more components of the sufficient
statistics has a marginal or a conditional distribution depending only on d, we
can use it as a likelihood: in other words we consider a marginal or a conditional
experiment in lieu of the entire one [Kalbfleisch and Sprott(1970); see also
Basu(1977) for a critical discussion). The most general and commonly used
method is the profile likelihood (pl hereafter), where the nuisance parameter A is
replaced by its maximum likelihood estimate (for each J) :\9, and the analysis is
based on L(¥,),), a likelihood function of ¥ only. However, there exist several
examples of bad behaviour of pl which have hinted various suggestions of
”modifications” to the pl. These changes are justified and supported on different
grounds: differential geometry [Barndorff-Nielsen(1983,1988); Fraser and Reid
(1988)], asymptotics [Cox and Reid (1987)], approximations [McCullogh and



Tibshirani(1989)].

From a theoretical point of view Bayesian techniques seem simpler and
more intuitive. Let w(J,A) be a prior distribution over ; every inferential
statement will be then based on the marginal posterior distribution of ¥, after

observing a sample z=(zy,++,2,) from an unknown element of P,

7(9)m(A[9)L(9,2)dA

m(z)

n(9l2)e
A

where L(9,)) is the entire likelihood function and

m(g:):[ () w(A|F)L(F,A)dAd)
Ax©
is the marginal distribution of x. Problems can often rise in computional steps.
Also, in many situations the parameter A is considered a nuisance mainly because
it has not a clear physical meaning and it can be hard to elicit a prior
distribution on it. A possible answer to the second kind of problems can be found
in using ”automatic” prior distribution, depending only on the choice of the class
P,. Provided that, in our opinion, one should use his prior distribution, it can be
very useful to perform a reference Bayesian analysis depending only on the data
and the model. Subjective information can be introduced later, with the adoption
of different prior distributions, inspecting in this way the robustness of the
conclusions. Among a great number of suggestions, the Jeffreys’ approach
(Jeffreys,1961) and the ”reference prior” algorithm (Berger and Bernardo
1989a,1989b) seem the most general and satisfactory. A different way to obtain
marginal posteriors, involving approximation concepts, is developped in Leonard

et al.(1989) and Kass et al.(1988).

The aim of this paper is to analyze the performances of Bayesian
techniques on several examples of theoretical and historical interest, such as the
Fieller-Creasy paradox, which is often mentioned as a challenging example in the
comparison of different inferential approach. In some examples Bayesian
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techniques will be compared to likelihood based methods, when available;
frequentist coverage of the implied confidence procedure will be considered. In
section 2 the Jeffreys’ and reference methods will be briefly illustrated, in section

3 some examples will be more deeply discussed.

2. JEFFREYS’ AND REFERENCE PRIORS.

The most widely used method for determini‘ng a noninformative prior is

that of Jeffreys(1961). He proposed to choose
™ y(w)= {[H(w)| (2.1)
where H(w) is the expected Fisher information. The Jeffreys’ prior is invariant
under reparametrization and, therefore, does not depend on which is the
parameter of interest. When w is a vector, however, even Jeffreys is not clear

on which prior we should use. The obvious generalization of his rule should be

T (W) 1Ia!et|H(c.;)| (2.2)

which is still invariant, but in some examples he seems to prefer assuming the

the use of

indipendence of single real parameters and multiplying the noninformative priors
obtained for each one: it can be seen as a Bayesian version of the
orthogonalization ideas of Cox-Reid(1987) (but the results are generally
different).

Also, the Jeffreys’ priors are usually improper.

The reference prior’s approach was proposed by Bernardo(1979) and it
has been further developped by Berger and Bernardo(1989a,1989b). The

reference prior is the one which maximizes the quantity

| I(W(w)):J J zog”i‘(‘"lf) dz dw. (2.3)
Q%

i.e. the amount of expected information (in the sense of Shannon-Lindley)

provided by an experiment, when n—oo. If QCR the reference prior is equal to
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the Jeffreys’ one; in multiparameter problems the optimal solution can depend on
the ordering and grouping of the parameters according to the inferential interest.
Berger and Bernardo particularly recommend the reference prior based on having
one parameter per group. This algorithm (see App. Al) can be considered one of
the possible generalizations of the univariate Jeffreys’ approach, obtained by
introducing a well defined measure of information. Even the reference priors are

often improper.

Ezample 2.1: Many normal means (Neyman and Scott, 1948).
This very interesting example is known for showing a poor behaviour of the pl,
easily corrected by any of the different types of adjusted profiles. Same problems
arises with a Bayesian analysis using the Jeffreys’ invariant prior but not with

the reference one.

Let =z;,,r;, be two 1i.i.d. observations from a random variable
11042
X,—~N([£i,0'2), i=1,-+-,n. We need an estimate for 02 and the p s are nuisances.

The profile likelihood is

2
pl(a'b’)oc% (3:::1){—2‘5'7_2 } , (2.4)
with

§?=1 f:(azil—a:,-z)z and S%- o—é—-z when n—oo.

This inconsistent estimate can be easily modified by using one of the several
modifications to the pli with different argumentations it can be shown that the
marginal likelihood (Kalbfleisch and Sprott,1969), the conditional profile
likelihood (cpl) (Cox and Reid,1987), the modified profile likelihood (mpl)
(Barndorff-Nielsen,1988), the adjusted profile likelihood (McCullogh and
Tibishirani,1989) are all equal to

2
% exp{—% }:o-"pl(O'?) (2.5)

The Jeffreys prior is computed from the information matrix



H(Uzaﬂl,"'s/‘n)zdiag Uﬂf;, o_?i""a% » (2'6)
T (021 othy) X . (2.7)

Jeffreys’ marginal posterior distribution will be then

2
7rJ(02|'7"11,1"127"""DnbznZ):o%.'.z exp{—%z' } (28)

leading to the same problems of the profile.
The reference prior, indipendently of the ordering and grouping of the
parameters, is (see App. A3)
7rR(0'2a/-‘1,"'1/“n)<xo%‘ (2'9)

with marginal posterior

”R(Uzlxn,xm'",Inbﬂ?nz):
1 s? n 2
gn+2 ea:p{—m }=" T 3(02|211,Z12, 2T p15T02)- (2.10)

In this example the correction of the reference posterior to the Jeffreys’ one is
the same as the correction to the pl induced by all its modifications. Also, note
that the integrated likelihood (i.e. the likelihood obtained by integrating the
entire likelihood with respect w(ul,---,pn|0'2), the conditional prior for the
nuisance parameters) would be equal to the modifications to the pl, either with
the Jeffreys’ approach or with the reference algorithm.

However, we will avoid to use integrated likelihood because, if the prior is
improper, is not always clear how to factorize x(9,A)=n(A|9)x(J), because of the

indeterminateness of conditional probability when 7(Q)=o00.

Ezample 2.2: Poisson Ratio. Suppose that X and Y are indipendent
Poisson random variables with means AY and A. Our parameter of interest is the
mean ratio 9. Several likelihood methods gives the same answer in this example.

The likelihood function is

L(9,2)ox A°*Y 97 ezp(—/\(19+l)) (2.11)
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From :\,,:f_-::—y we obtain the profile likelihood
z
19y —I— . 2.12
pl(v) (1+9) ¥y ( )
The modified profile likelihood is:
mpl(9)= pl(¥) 15,(#:30) "/ *I 22 (2.13)

9
where [j, (J,A)| is the observed Fisher information for A. In this example

INCEDIE{ ) A=Y
and mpl(9)=pl(¥). A conditional pseudo-likelihood is also available if we consider
the sampling distribution of X|T where T=X+Y.
cond.l.(9)=p(z| T=z‘+y,/\,19)o<19$- (1+19)_(z+y)=pl(19).

Fisher information matrix is

A
(9,2) ’ (2.14)
H(9,\)= 2.14
1 1+Y
A
and Jeffreys’ prior is easily obtained as
7 y(9,A) o (2.15)

L

The reference prior is (see App. A2)

Tr(#,A)x —Ltee (2.16)

(1 +9)

However, different prior give the same marginal posterior for 4,

7 (| z,y)=mr(d|z,y)=
In general, different parametrizations will give different marginal posteriors for
any parameter of interest. In this example we can fully appreciate the

importance of the parametrization in a noninformative Bayesian analysis.



3. EXAMPLES

~ In this section some examples will be showed where different approaches
lead to different conclusions. Each of these situations arises interesting

theoretical issues.

Erample 3.1: Fieller and Creasy’s paradoz. Let z be the sample mean of
n ii.d. observations from X~ N(a,1) and y the mean of n i.i.d. observations from
Y~N(B,1). We are interested in making inference on the ratio d=a/F. As
nuisance parameter, we can choose, for computional simplicity, A=8 (for a

different parametrization, see McCullogh and Tibshirani,1990).

This is a simpler version of a famous example proposed by Fieller(1954)
and Creasy(1954). The two Authors gave two different solutions to the problem,
both based on a fiducial approach, showing a counterexample against the

uniqueness of the fiducial argument. In our notation the likelihood function is
L(9,\)x exp{—g[(z—w)2+ (y—A)ﬂ}. (3.1)

J4+y

The maximum likelihood estimate for A, given 9, is :\,,=)1(+192 and the profile

likelihood is

n(z:—t?y)2

pl(¥)x ezp{_2(1+02) . (3.2)

The profile likelihood takes its maximum value 9 at z/y and for ¥— oo

it does not converge to 0 because

) _ —ny?
g dim  pl(I)= ezp (—5=).

The last fact, even if reasonable, is very hard to manage statistically; especially
when the absolute value of the sample ratio %: is high. In these cases any

reasonable likelihood set should be infinite because of the strong support to the
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tails of ©. Similar conclusion were shown by Fieller(1954) from a fiducial

argument. The modified profile likelihood is:

mpl(9)= pl(9) |jxw,x,)|‘”2|§—§,|=pzw)J1+«92. (3.3)

where |7,(9,))| is the observed Fisher information for X. It diverges for big 9, so

its behaviour is even worse.

The Jeffreys’ prior is easily computed from the information matrix . It is
7 oc| Al - (3.4)

After some algebra the marginal posterior for 9 is

o o) [ eory [ mEtey .o n(e0+y)
mlene g I:Jn(1+02)(2q>( {1492 )_1)+ﬁ “”(‘W)} (3:5)

where @ is the cdf of a standard normal random variable. Also 7 (d|z,y) was

derived, as a fiducial distriution, by Creasy(1954).

The reference prior, already given in Bernardo(1977), with a slightly

different argumentation, is

wR(ﬂ,/\)oc; (3.6)

.]1+z92

and the marginal posterior for 9 is

emp(—n(w_ﬂy)z) , 3.7

9|z, 1
WR( II y)ocl 2(1+,‘92)

+9°
It can be easily shown that both reference and Jeffreys’ priors produce proper
marginal posteriors for ¥. When |z/y| is small, both the marginal posteriors show
a behaviour similar to the pl, in a neighborhood of the maximum, but the tails

are different because for each z,y
m 7 ,(d|z,y)= im wg(J|z,y)=0
— 400 ¥— 400

Jeffreys’ and Reference posteriors are dramatically different from pl when
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|z/y| is bigger (see fig. 1). In fact, while posteriors are bound to be proper, pl is
not. So the profile likelihood seems to give very sensible answers but they cannot
be used in a probabilistic way; on the other hand Bayesian analysis is sensible as

much as it can, compatibly with the probability laws.

Even more surprisingly, profile and reference analysis give the same
results if we change parametrization, using 7=tg~'9. Now the parametric space
is T= _72_r, %] (considering only the main value of tg) and it can be easily shown

that

2
pl(r)=7g(T|z,y)= e:cp{—%(:v cosT—y sem') } (3.8)
Bayesian analysis is, by definition, invariant with respect of reparametrizations:

this suggests strong counterevidence against the use of the profile likelihood.

It is hard to find a convincing way of comparing different techniques in
this example. The profile likelihood is never integrable and cannot be treated as a
posterior distribution. We compute the frequentist coverage probability C ¢5(a,8)
for the 0.95 (and 0.05) confidence sets obtained with the x? approximation (see
Kalbfleisch,1983). Following Berger and Bernardo (1989b) we calculate
Pr,5(9<9,), the frequentist probability that ¥, (the posterior quantile from
using Jeffreys’ and reference prior) is bigger than the actual ¥, for ¥=0.95 (and
0.05) and various values of (a,8). Table 1 shows the results of simulations
generating 5000 pairs (z,y) for each («,8). This was done on SUN X-19
computer using Fortran-IMSL subroutines; the standard error of the entries in
Table 1 is about m, where p is the entry. Comparisons between
posteriors show no big differences. Much harder is to say something about the
discrep_a.ncies between profile and posteriors. Frequentist properties of xf
approximation for the pl are of course better, especially when the true ratio a/8
is big, but very often the obtained likelihood sets are cofinite. There are no easy
conclusions from the comparisons. When # is near to 0, no one method seems to
work properly. When @ is big, Bayesian solutions seems better, particularly for
4=0.05. Results of comparisons does not seem to change with n.
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Table 1. Frequentist Coverage Probabilities of 0.05 and 0.95

Posterior Quantiles (7 and mg) and of pl based confidence sets.

C.o5(a,8) P os(a,8) C.os(,8) P os(a,8)
(a,8) pl T TR pl T TR
N=3
(0.1,0.1) .948" .978 .980 .006 .00 .00
(0.1,10) .951  .947  .947 .004 .046 .046
(1,-5) 940 .938 .938 004 .049 .047
(2,2) 946  .945 .948 .003 .030 .028
(-5,1) 949 998  .998 .006 .056 .053
(10,0.1) 947" 921 921 005 .029 .029
N=10
(0.1,0.1) .952* .967 .985 003 .00 .00
(0.1,10) 953 .969  .969 .00 063 .063
(10,0.1) .960* .826 .825 007 .00 .00

A ”x” indicates that more than 80% of samples gives a cofinite likelthood set

Ezample 3.2. Gamma distribution. Let Y;»***»y, be n observations from

Y~T(9,A) with density function

9-1
- )
Pl N=(5)"" ¥y (- %) (3.9)
This parametrization makes A and ¥ orthogonal, to be able to use the
conditional profile likelihood (cpl). The shape parameter ¥ is of interest, while

A=E(Y) is the nuisance. The log:-likelihood function is

L(9,A)oc —n logl'(¥)—nd logh+nd log 9 +(9—1) log p _1X9 t (3.10)

n

n
where p=[] y, and t=3_ y, are the sufficient statistics.
i=1 i=
10



Conditional maximum likelihood of A is A,=t/n, which does not depend
on ¥ (it means that modified profile likelihood= conditional profile likelihood).
The profile likelihood is

pl(¥)ox

(r(;))n (%’)"" p°! exp(—nd) (3.11)

The correction provided by cpl (or mpl) is |j,\(19,;\,,)|—1/2=1/ﬁ, and we have

cpl(ﬂ)«(—r‘(;T (%’)""19"0_1/2 P’ exp(—n¥) (3.12)

The information matrix is
H(\,9)=diag[ £(9)~1]9, 9/)%], (3.13)

where 5(19)_ log I'(J) is the Trigamma function (see Abramowitz and

Stegun,1964)

and the Jeffreys’ prior is
7 (9,3 oc 3 {DE(H)—1. (3.14)
The reference algorithm does not take on account the presence of 4 in i, and the

resulting prior is (see App. A4)

Tr(9,A)ocy ,|£(19)—— (3.15)

TR(3.A) _ epl(¥) _ 1
1rJ(19,,\) pl(¥) — J_

Note that This relation, far from being a general rule, is

very

common in problems involving shape parameters. After some algebra, marginal

posteriors are

7391y, ey, ) = {IE(S) — [f,?;;i) ’;n,,l (3.16)

and

el = {60 ) 20 o= w0l a0
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The following proposition holds:

PROPOSITION 1. For every value of (tp) the marginal posteriors
7 4(91y,5**»y,,) and 7r(Jly,,-+-,y,) are proper.

Proof: see App. A5.

One way of comparing the different methods is to consider pl and cpl as
probability distributions over ¥ and to check frequentist coverage probability of
pl, cpl, my(I]y,,---»y,) and 7r(91y,5**+y,), as in the example 3.1. As stated in
Berger and Bernardo (1989b):< There is no guarantee that this approach will
work; (.....) sensible conditional behaviour and uniform frequentist properties are
often simply not compatible >>. Table 2 shows coverage probabilities for a
variety of values of (9,1). Simulations were done genera.ting 5000 samples for

each (9,)); the standard error of the entries in Table 2 can be estimated by

le(l—p)/ 5000, where p is the entry.

Table 2 Frequentist Coverage Probabilities of .95 and .05

Posterior and Likelthood Quantiles

P g5(9,2) P o5(7,A)
(9,A) pl cpl T TR pl cpl T TR
N=3
(0.5,1) 965 .953 937 .921 405 295 .157 .064
(1,2) 996 991 973  .948 414 291 148 .054
(2,1) 994 988 970 .953 419  .296 .161 .054
(5,3) 997 992 981 .949 430 290 .154 .040
, N=10
(1,2) 902 .895 .886 .869 181 134 .092 .060
(2,1) 921 .896 .879  .842 180 131 .092 .061
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When n=3 evidence in favour of the reference prior is overwhelming, especially
at the 0.05 quantile which is generally too high for cpl! and pl. Jeffreys’ posterior
is better than profiles but inferior to the reference one. Further simulations,
using bigger sample sizes (n=5 and 10), have given less clear results: the
supremacy of the reference is no more so evident. The suspect is that Jeffreys
and reference priors give high probability to small values of J: then, if n is small,
the variability of ”possible likelihoods” is made smaller by the prior but, for
bigger n, a contrast between peaks in the prior and in the likelihood can be
possible. In these cases it can be a good device the use of integrated likelihood
(i.e. to use the reference conditional prior 7g(A|YJ) only)

il(z?):Jw(/\lﬂ)L(ﬂ,/\) dA. (3.18)

A

However, as stated in section 2, this must be considered only an ad hoc device:
noninformative priors are often improper and w(A|Jd) can be not univocally
determined. This is in my opinion, the main reason for considering the improper
priors as not fully justified and treating them only as an useful starting point in

a Bayesian analysis.
Ezample 3.3. Inverse Gaussian distribution. Let z,,---,z, be n i.i.d.

observations from X~ IG(¥J,)), with density function
3
p(x|19,z\)=\J% ezp (m) 2 erp {—%(g+/\x)} (3.19)

We want to estimate the shape parameter ¥, and A is the nuisance parameter.
This problem is deeply discussed by Barndorff-Nielsen(1983,1988) as an example
of the use of the modified profile likelihood. Also it is interesting because the
reference algorithm provides different prior if different parametrizations of the

nuisance are used. The likelihood function can be written

L9, 9"/2 exp{—g(ﬂh+,\t—2M)} (3.20)
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n n
where (h:% 3 %, tz,lz S ) is the sufficient statistics. Conditional
i=1 * i=1

maximum likelihood estimate of A is :\,,:% and the profile likelihood is
n
pl(ﬂ)oc 92 ezp{—%ﬁ( —%)} (3.21)
which, after normalization, can be considered a Gammma density function. The

”correction” factor provided by the modified profile likelihood is 1/ {9 and we

have

n=1
mpl(9)ox 9 2 exp —n-—i-”(h—%)} (3.22)

which is also a Gamma density function.

Jeffreys’ prior is computed from the information matrix

24400 _ 1
49° YRPY
H(9,))= (3.23)
-1 1|9
and it is A PT AN PN
_3
70 ) (93) (3.24)

The marginal posterior distribution for J has not an easy analytical form:

(=]

n_3 _3
7|-J(19|zl’...,zn)=,92 i ezp{—%} J,\ 4 exp{—%(z\t—Zm)}d/\. (3.25)

0

Palmer(1973) shows that Jeffreys’ posterior is proper for every (h,t).
The reference prior which comes naturally from this parametrization (i. e. by

considering a sequence of increasing rectangles 0, COxA) is (see App. A6)

3
TR(¥,A)ocd™ A2 (3.26)

and
14



(o))

n_, _3
Tr(9) 2y, 2n) =97 emp{—%} J,\ 3 exp{_g(,\t—2m)}d,\ (3.27)

0

1
=9 *x,(F|z), - 20).

Let us consider now a new parametrization (9J,8) such that ﬂ=%: the

new density function is

Mqv,m:@ exp{w} i3 ezp{—g(%+ﬂ2x)} (3.28)

The profile and the modified profile likelihoods do not change with the new
parametrization; also, because of the orthogonality of # and ¥, a conditional
profile can be computed and it is equal to mpl. Jeffreys’ prior is easily obtained

via Jacobian transformation:

7 )(9,8) x (3.29)

95

With the same transformation one obtains the reference prior for (9,3)

2]

W&(ﬁ,ﬂ)ocﬂ_% v

However this reference prior is different from the one obtained by choosing an

(3.30)

increasing sequence of rectangles in ©xB, that will be said 7Ry- In fact (see App.

A6)

le(ﬂ,ﬂ)aﬂ_% T (3.31)

Therefore different priors are derived from different parametrizations of
the nuisance and it is hard to say what is the most natural, even if the use of the

euristic device of choosing the reference prior such that

— .1
would make chosen TR1-
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4. Conclusions.

We do not think there exists a "best” method of elimination of nuisance
parameters. For each one it is possible to find examples of poor behaviour. Even
the profile likelihood cannot be discarded in favour of other non Bayesian

techniques (see Example 3.1).

Neverthless there is a great difference among Bayesian and non Bayesian
methods, a difference which makes us to be Bayesians: likelihood based methods
provide conclusions which does not depend on the real meaning of the
parameters. The output of the analysis is a pseudolikelihood weighting different
values of a Greek letter (Lindley, 1990). Bayesian analysis is much more flexible:
if, in some situations, thinking of a Greek letter is not enough, a noninformative
automatic prior should be avoided and one can try to improve results using a

more accurate and specific prior.
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APPENDIX Al.The reference algorithm.

First we briefly sketch the algorithm from Berger and Bernardo (1989a)
for computing ordered group reference priors. Let w=(w(1),w(2),---,w(r)) be the r
groups of parameters;

each w(’.)z(wu,---,wini) has size n;. Let us define

W)=y 9(s) 04 Wi = (W41 Ga2p" ()
Let S(w)= H (w). Corresponding to the partition (“’(1)""(2)""""(,-)) we can

define the decomposition of S(w) as

S(w)=(5;)

§yj=1ye e,y

Define

8= (8k5), jon, o 204 Hi=ST=(Ay)

Eyj=1,0 e,

using the same decomposition, and h;=det( H;).

Suppose QlCcQ?C... are a sequence of compact subsets of Q such that fle'.=Q.
m=

Define

18



= {0 @i € Q7 for some Wiy }

and the indicator function

1 z€Qy. .
r (“”"”tfl)=’9'£m(w)={ .

0 zgsz;',‘[i]‘

Step 1. Define
e (@)1 (w0, 17)

1/2
e (w)| / Pn(w(r)lw[r—ll)dw(r)

T W (o) 9r-1) =
Qm

“lr-1]

Then we proceed by iterating on the groups defining, for ¢=r-1, r—2, ---,1, #®

in terms of the previously defined 77, j=1i+1, ---,r, as

T (Wi |9pio) = Tialwpgle)) -

exp{%EZ‘[’Og’hi(w)l |w[i]:|}lm(w(i)lw[i—1])
[ eon{tmmtosti(ol log T} Gwgoludugs

m
Q“’[.‘-1]

where

EZ[)log]=[A0) 77 (g lut) gy
¥

Finally Wi~o) is interpreted as w and wpp) a8 Vvacuous; therefore 7m(w)=

7"11"(“’[~o]}w[o])° The reference prior is then defined as

L)
W(w)—rrlx—ioo 7™ (wy)’

provided it exists for some wy€N'.
19



APPENDIX A2.

(1+9)9

X —9
HY(9,))=58(9,))=
-9 A
— A _1+49
hl—(1+0)19’ hZ— A

We will define the ranges for ¢ and A to be J€[0,am] and A€[0,bm), find the
reference priors for these ranges and let am, bm =00 as m—co. K’s will indicate

constants.

m(A|9)= LA K(bm) Ip,(})

L|

where B =[0,bm].

Eo[log(l_i_—’\r)ﬂw:l:K(bm)—log (1+9)9).

wm(v,x)=K(am,bm)m 14, x By
where Am=[0,am].

Finally
. mm(d,)) 1
o (9,AN)=lim — = ———0.
R( ’ )m—->00 7™(1,1) ,__,\(1_'_19)19
APPENDIX A3.
H_1(0'29 ﬂla"'a/“ﬂ)=diag|:aﬁ4’ Q'_2_2’. ’ .,%2

For every ordering and grouping of (,ul,---,p .), the reference prior will

20



be the same. We will show calculations for (¢2,(x,,

.“’/"n))'
R il b 2 (3) (%) — . (%)
anges will be 02€[am,+o0], p€lbm’sem’ |, i=1,--+,n, With am—0, bm’— —o0,
cgn)—>+oo
M=%, h=2

1 1 n
Py o bin 02)= K (8520l i

m sCm 4**°

(n)

bm »Cm ) IAm(“l’.“’#ﬂ)
where Amz[[bg), Srll)] . -x[bg:), 53)]]
v EUZ(IOQO%ll‘I,'"a/‘n):loyET%
and

Wm(gg’#l’___’#n) K(amabs'i)s 5711), . b(n) ()

m sCm )0-2 Am(‘ul’.“’#ﬂ) I[am,oo](a.il)
Finally

5 i 71'"‘(0'2,/.41,"',#”)

APPENDIX A4.

— di 0 A2
H_1(19,/\)— dzag[m, -J]
h1=f(’9)“‘1‘, h2=,\%

Ranges are: A€[am,+o0]| and 19€|:bm,cm:| with @b, = 0 and ¢~ 400
Since h; does not depend on A

? [ha] 2
m e L] —
m(9,A)= I_Il " Ig (@)
i= A" dewsy

Qm(“’(i))




= K(amsbmoemE0) =5 T1a 1o Tip, 00 (®)

. m(J,A
el 5 i, Tary = Reo)-

and

APPENDIX A5: Proof of Proposition 1.

Because of the continuity of 7rJ(19|y1,---,yn) and 7rR(19|y1,--o,yn) and of the

relation
7l'_|('(91y1a" "yn) = @
7I'R(’l9|y1,-- "yn)

it will be sufficient to show that

(a) l’li_T)nO WR("?lyla""yn) =0

(b) 7 y(Iy,,++»y,) has an integrable right tail.

To prove (a) we will use the following relations (Abramowitz and Stegun,1964):

1 1=
2

l1-n 1
I(nd) = (21) 2 n" " r(¥+k) (A5.1)
1

k=

go)=Ss —1 9£0,—1,2,. . . .. (A5.2)
=0 (9+k)° T

) I'(nY -
§im, \ng)_z% ( d p':"’l =

r()) *

22



> ! 2 _% 1
_ . \£=0 (9+Fk) B B k
= K(t,p,rz)ﬁlﬂ:r)z0 O . 012—T>n0 ) Ll L(9+7)-

and both the limits are zero.
(b).

_ I(9n) p°-!
(9] oy,) = {9EMW)—1 T P

When ¥-»+00, the following relation holds (Abramowitz and Stegun, 1964)

~1.1 .1 1 1 ...
¢0) 0+202+603 3005+42197 (45.3)

Therefore
J9e@)—1 = 0(-1—) (A5.4)
{9
Also, using formulae (A5.1) and Stirling’s approximation we obtain, for 9—++ oo,

L) | on)'5 gt 9T

[r()]"

Finally, using a well known inequality between geometric and arithmetic means,

2P<
and ot
[i:i%‘)‘]),, Pt-,% = o(k™) (k>.1)
except for the null probability case ( y,= y,=---=y,= 1), and it concludes the
proof.

APPENDIX AS6.

(a) Reference prior from (J,A) parametrization.
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292 229

HY(9,0)=

- 423 1 A2{¥
NI

1 — |9
hl—Pa h2— J—/\:a

Ranges are: A€[ 0, an | and 9€[bmycm]| Wwith bn= 0 and am,cm=+oo.

_3
7r"‘(/\|19)=K(am) A 41[0, am]
Since h, does not depend on A,

3
m(9,0)=K(amsbmocm) A * 971 o 1 b

m,Cm]
and
o wmm(3,A) -2
w0 5, Tarp) = V9
(b) Reference prior for (¥,3) parametrization
Ho= didi 5 S0m=E =20, ]

Ranges are 196[am,bm:| and AE[O, cm] with a,-» 0 and by,,cm —+00.

7m(8]9)=K(cm) ﬂ_%f[o, em]

Also in this case h; does not depend on A and

Lo
7m(8,8)=K(am,bm,cm) 872 9710, ¢.1 fapm,bpm]
Finally

WR(Q’,A) =m£ngo 7r"‘(1 ,1

|
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Fig. 1. Fieller-Creasy paradoz: pl (V) ( continuous line),

7 ,(9|z,y) (slash) and xg(V|z,y) (dot) when r=5, y=0.25.





