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ABSTRACT

Local limit theorems and saddlepoint approximations are given for random walks on
a free group whose step distributions have finite support. The techniques used to prove
these results are necessarily different from those used for random walks in Euclidean spaces,
because Fourier analysis is not available; the basic tools are the elementary theory of alge-
braic functions and the Perron-Frobenius theory of nonnegative matrices. An application
to the structure of the boundary process is also given.



1. Introduction

This paper concerns the asymptotic behavior as n — oo of the convolution powers
p*" of a finitely supported probability measure p on a finitely generated free group G. In
probabilistic terms, this amounts to studying the transition probabilities of a homogeneous
random walk on G with bounded step size. The main results are analogues of the local
limit theorems and (sharp) large deviations theorems for random walks with bounded step
size on the integer lattices Z¢. Because the group G is nonamenable [KV], the character
of these results is somewhat different than that of the corresponding results for Euclidean
random walk; and since Fourier transforms are of no use in G ([FP] notwithstanding) the
mathematical technique is considerably different. The methods and results of this paper
extend easily to discrete groups whose Cayley graphs are trees, e.g., the free product of an
arbitrary number (> 3) of copies of Z;, and to certain inhomogeneous random walks, e.g.,
the periodic random walks of [Ao], sec. 1, but in the interest of simplicity we shall only
consider homogeneous random walks on free groups.

Let G be the free group with generators a;,az,...,ar. Each z € G has a unique
representation as a finite reduced word z = 123 ...z, from the alphabet A consisting of
the letters ay,az,...,ar and their inverses (reduced means that z;41 # z;!); we define |z|
to be the length n of the reduced word representing z. The group identity e is represented
by the empty word, so |e| =0. A finite-range random walk {Z,}n>0 is a Markov chain on
G with Zy = e (unless otherwise specified) and transition probabilities

P{Zn+1 =g$lZn =g} = Pz Vz,g € g,nZO,

where p;,z € G, is a probability distribution on G with finite support. Thus, for some
integer K >1

(1.1) p: >0onlyifz € B

where B = {z € G : |z| £ K}. (Throughout the paper the symbols G, B, and A will have
the meanings assigned here. We assume that the integer K is the least integer such that
(1.1) holds.) The n-step transition probabilities P{Z, = z} will be denoted by p*"(z). We
shall assume that the random walk is irreducible and aperiodic, i.e., that

(1.2) f:p*"(:c) >0 Vzeg
and
(1.3) GCD{n>1:p*"(e) >0} =1

where GCD indicates the greatest common divisor of the set. In particular, we shall
repeatedly make use of the simple consequence of (1.2) and (1.3) stated as Lemma 1.1
below.



Our first main result (Th. 4.1) describes the asymptotic comportment of p**(z) as
n — oo for fired x € G. This corresponds to the local limit theorem for random walk in AR
Specifically, we show that there is a constant 1 < R < oo (depending on the distribution
{pz}) and constants B;,z € G, such that

o B.R™VR
(1.4) p"(z) ~ EV. Lk

Special cases of this have been proved before: [GW] for nearest neighbor random walk (the
special case K = 1 of our result) and [Sa], [Pi], [FP] for isotropic random walk (the case
Pz = P|z|)- The techniques used here differ considerably from those of [GW] and [Sa],
etc. In the isotropic case the theory of spherical functions may be applied, and in the
nearest neighbor case a relatively simple and explicit functional equation may be written
for the Green’s function; neither approach works in the general finite range case. Instead,
arguments combining elements of algebraic function theory and the Perron-Frobenius the-
ory of nonnegative matrices are used to determine the character of the smallest positive
singularity of the Green’s function (sections 2,3). Because algebraic methods are needed,
the results are limited to finite range walks (but the author believes that a modification of
the method may also apply in the infinite range case—this will be discussed in a subsequent

paper).

NOTE: Professor T. Steger of the University of Georgia has informed the author that
he also discovered a proof of (1.3) in the special case of symmetric random walk (p, =
pz-1 V |z| £ K) but has not written his proof down. It is apparently somewhat different
from the proof given here.

The asymptotic relation (1.4) is clearly not uniform in z € G, as p**(z) = 0 if
|z| > nK. In sec. 5-7 we study the behavior of p*™(z) as n — oo for |z| growing linearly
with n. Let A4 be the set of infinite reduced words z;z2z3 ... from the a,lphabet A and let
A be the set of doubly infinite reduced words ...z_1z9z;.... Forz = zy22... 2, € G let
&. € A be a periodic sequence of minimal perlod whose ﬁrst m entries are j,%2,...,Tm.

We show (Theorem 6.5) that there are functlons ,3 $,C1,Ca: A X (0,R) —» R such that

exp{nB({z,m/n)}
\/Sm’;b-(Ez, m/n)

as n — 0o, uniformly in the range ¢ < m/n < 1/I for a certain I > 0; here o: X(G) — Z(G)
is the forward shift, and Sp,¥(T, 1) = ¥(Z, t)+¢(oT,t)+...+¢(c™ 17, t). This corresponds
to the classical “saddlepoint approximations” (sharp large deviations theorems) for sums
of iid random vectors in R?. A major difficulty here is the identification of a suitable rate
function B: this necessitates a careful study of certain matrix products, resulting in an
extension of the Perron-Frobenius theorem to “inhomogeneous” products (sec. 5) and an
extension to products of complex perturbations of nonnegative matrices (sec. 6). In the
special case K = 1 (nearest neighbor random walk) these matrix products reduce to scalar

(1.5) p"(z) ~ C1(€z,m/n)Co(0™ ¢z, m/n)
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products, trivializing much of the theory. The differences between the nearest neighbor
case and the general finite range case become more apparent here. In the nearest neighbor
case the rate function B(¢;,t) is a function only of ¢ and the relative frequencies of the
generators in the reduced word £ = 7123 ... 2, (see [Lal), but in general §(¢;,t) depends
on the order of the letters as well.

The saddlepoint approximations are of interest for another reason. For large n, nearly
all the mass in the probability distribution p**(z) is concentrated in the region |z| > en
for a certain ¢ > 0 (independent of n), where the local limit approximations (1.4) are not
accurate. This contrasts with the situation for finite range random walk in euclidean space.
In fact, Guivarch [G] has shown that for random walks in G generally it is the case that as
n — oo the distance from the identity grows linearly in n, in particular, there is a constant
B > 0 such that |Z,|/n — B. Sawyer and Steger [SS] have further shown that, under
some additional hypotheses, (Z, — nf)/n'/? converges in law to a normal distribution.
Using our results concerning matrix products from section 6, together with some standard
results concerning Ruelle’s Perron-Frobenius operators ([Bo], ch. 1) we derive in Theorem
7.2 saddlepoint approximations for the distribution of | Z,|, specifically, we show that there
are functions B(q),C(q), and D(q) such that

L ep(nB() [ m

uniformly for 2 in any compact subset of (0,Ip), for a certain constant Iy > 0. These
provide independent proofs of the earlier results of Guivarch and Sawyer and Steger, and
show that under the hypotheses (1.1)-(1.3) the limiting normal distribution in the central
limit theorem is nondegenerate. In addition they give large deviations theorems and local
limit theorems.

P{|Z,| = m}

It is clear from (1.3), since R > 1, (or from Guivarch’s theorem) that the random
walk Z, is transient. This is well known - in fact it is known [KV] that an irreducible
random walk on any nonamenable discrete group is transient. It is also known [De] that
the Martin boundary of any finite range random walk on the free group G is the space A
of infinite reduced words (see [DM] for the nearest neighbor case and [CS] for infinite range
isotropic random walks). Now the one-step distribution {p,} has support z € B so the
transition from Z,, to Z,4, affects only the last K letters of the reduced word. It follows
from transience that for each m < oo the first m letters of Z,, stabilize as n — oo; thus,

(1.6) | Zn"5Z 00 = A1AgAs ... € Ay.

This explains in part the fact that A4 is the Martin boundary. Our study of the transition
probabilities p*™(z) yields as a byproduct some interesting information about the stochastic
process A;, Az,... . We prove (sec. 5) that this process is asymptotically stationary, i.e.,
the joint distribution of A,, An+1,... converges as n — oo to that of a stationary process.
The limiting process is a Gibbs state in the sense of [Bo], Ch. 1, hence is isomorphic to a
Bernoulli shift. In the nearest neighbor case the process A, Az,... is a one-step Markov
chain, as can be seen by elementary arguments; in general, however, it appears to be
non-Markovian.



We conclude this section with a lemma that will be called upon repeatedly in the

paper. It will allow us to reduce many arguments to the special case in which p, and
pz > 0for all z € A.

LEMMA 1.1: For all sufficiently large n > 1, p**(e) > 0 and p**(z) > 0 for every z € A.

PROOF: The assumption (1.3) implies, by a well known argument, that {n > 1: p**(e) >
0} includes all sufficiently large integers, i.e., that there exists ng < oo such that for
every n > ng, p*"(e) > 0. By (1.2), there exist integers n; > 1 such that p**(z) > 0.
Set n. = ng + max;e4 n; then the Chapman-Kolmogorov equations imply that for any
n > ny, p*(e) > 0 and p**(z) > 0 for every z € A. O

2. Green’s Function and Associated Generating Functions

The limit theorems stated in section 1 will ultimately devolve from the character of
the singularities of the Green’s function(s) on the circle of convergence. This section sets
forth the key properties of the Green’s function and various related generating functions.
The arguments are based on the Markov property and the tree structure of the group G.
The finite range assumption (1.1) is of fundamental importance: it guarantees that any
positive probability path from e to z in G must pass through each “rosette” zizy...z:B
where z has reduced word representation z = z123 ...z, and 1 < k < n.

For z € G and 2z € C satisfying |z| < 1, define
G:(x) = % p"(@)",
G(2) = G.(2),
T, =inf{n >0: Z, = z},
Fy(2) = EzT=1{T; < o}.

The functions F; and G, are clearly analytic in |2| < 1; G(z) is called the Green’s func-
tion for the random walk. Furthermore, F;,G,, and G satisfy the following fundamental
relations, both simple consequences of the Markov property: -

(2.1) Ge(z) = Fo(2)G(2);

(2.2) G(z)=1+=2 {pe +3 szz—1(z)} G(z) = {1 ~pe =z 3 p,zw,,._l(z)}_1 .

Because each of F;,G, has a Taylor series with nonnegative coeflicients, its radius of
convergence coincides with its smallest positive singularity. Using (2.1) — (2.2), we will show
that all of the functions F;, G, have the same radius of convergence R, that 1 < R < oo,
and that the singularity at R is algebraic in nature. Most important, we will determine
the algebraic character of the singularity (Prop. 3.6).

PROPOSITION 2.1: Let R be the radius of convergence of G(z). Then

(2.3) 1< R< oo and
(2.4) G(R) < oo.
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PROOF: That R < oo follows from the fact that the random walker may return to e with
positive probability: in particular, p*¥(e) > 0 for some k > 1 implies, since p**¥(e) >
(p**(e))™, that im sup (p*"(e))/™ > (p**(e))!/* > 0, so R < (p**(e))"*/*. That 1 < R
is known for (at least) symmetric random walks — see [K;], [K2] for a proof that works in
any nonamenable group — and since the result is not used in the subsequent analysis we
shall omit the proof. (Observe, however, that 1 < R is trivial.) That G(R) < oo is also
known — see [G], p. 85. Since this fact is crucial to our analysis, and since the proof in [G]
is somewhat sketchy, we shall present the argument here.

Suppose that G(R) = oo. Then the random walk is R-recurrent and there exists a
positive R-invariant function v : G — R4, i.e.,

7(z) = RS poy(zz’) Vz €G.

Furthermore, the R-invariant function is unique up to multiplication by a scalar. (These
are standard results in discrete potential theory — see [Se], sec. 6.2 or [N], sec. 5.1.) Now
if 4 is R-invariant then so is any left translate of 4, hence by the essential uniqueness
of v every left translate of v is a scalar multiple of 4. It follows that if £ € G has the
representation £ = 7173...Zn, as a reduced word, then y(x) = y(z1)v(z2) ... y(zm)y(€)-
Without loss of generality we may take vy(e) = 1.
Define
qz = sz'y(:l:), r€g.
Then

Y ¢z:=R Y p: = =1
21 Z P ¥(ze) = v(e)

and, by the multiplicative property of +(-),
q*n(x) — Rnp*ﬂ($)7($) :
¢*"(e) = R"p™"(e) =
o0 o0
T ¢*"(e)= ¥ R"p*"(e) = G(R) = oo.
n=0 n=0
Thus, the random walk with step distribution {¢;} is recurrent. But this is impossible,

because the free group G is nonamenable and, as such, admits no recurrent random walks
with full support — see [KV], sec. 4. O

COROLLARY 2.2: For each z € G the radius of convergence of F(2) is at least R, and
Fz(R) < 0o. Moreover, the radius of convergence of 3 p-F;-1(z) is ezactly R, so there is

at least one x € B such that F,-1(2) has radius of convergence R. For all z € C such that
2| < R,
(2.5) |2{pe + > peFe-1(2)} < 1.

z
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PROOF: Fix z € G. By the irreducibility of the random walk there exist n > 1 and
Z1,%2,...,Tn such that p = H?=1 pz; > 0and 27! = 2175 ... z,. Thus, at each visit to =
there is chance p that the next n steps will take the random walker back to the identity e.
Consequently,

G(z) 2 2"pFy(z).

Since both G(z) and F,(z) are power series with nonnegative coefficients, it follows that
the radius of convergence of F; is no smaller than that of G. Moreover, since G(R) < oo,

F,(R) < .
Since each F,(z) has nonnegative Taylor coefficients, the maximum of |z{p. + }_ p:

z
F,-1(2)}] for |2| £ R occurs at z = R. Now (2.4) implies that |G(z)| < G(R) < oo for
|2| < R, so

1—2p.—2 szF,,-x(z)

has no roots in |z] < R, by (2.2). But zp. + z)_ pzF,-1(2) is zero at z = 0, so the

Intermediate Value Theorem implies that Rp, + R p;F;-1(R) < 1. This proves (2.5).

Finally, (2.2) and Proposition 2.1 imply that z Y p, F;-1(2) has a singularity at z = R.[J
z

Recall that B = {z € G:|z| < K}. According to our standing hypotheses about the
random walk Z,, the support of the step distribution {p,} is contained in B but not in
{z € G:|z| < K}. For z € G and a,b € B, define

7o = 7(¢) = inf{n > 0: Z,, € zB},
HY(2) = B*2" D1 Z,(5) = b},
¢2(2) = E*2Te = F,-1(2).

Here and in the sequel the notation P* and E¥” is used to indicate that the initial point Z,
of the random walk is z; thus, P = P¢. Observe that H,(z) is a |B| x |B| matrix-valued
function of z, analytic in |z| < 1. These matrices were introduced in [SS] . We will let ¢(z)
denote the |B| x 1 vector- valued function whose entries are the functions ¢.(2),z € B, and
#*(z) denote the (JB] — 1) x 1 vector-valued function whose entries are ¢;(z),z € B — {e}.
Also, u will be the |B| x 1 vector whose entries are u, =1 and u; =0 Vz # e.

PROPOSITION 2.3: Let = € G have the reduced word representation z1z2...Ty, and let
b€ B. Then for every z € C such that |2| < 1,

(2.6) H.(z) = Hy,(2)Hg,(2) ... Hy, (2),

(2.7) Fu(z) =u'H,(2)¢(z) Vz#e,

and

(2.8) $(2)=p-1z+ Y, 2M**(2)¢a(2)
a€B—{e}
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where

M*(@2)=pp-1a+ Y. pHiry-1(2)
z:bz¢B

for all a,b € B — {e}.

PROOF: To reach z the random walker must first enter z3, then travel from the entry
point zb to £ = ze. Therefore, by the Markov property

Fi(2) = Z H®(2)¢y(z) Ve
beB—{e}
This is equivalent to the matrix equation (2.7).
(NOTE: In fact, H* =0if z # e.)

The relation (2.6) follows from the Markov property and the fact that the step dis--
tribution {p,} is supported by B. This implies that to reach zB the random walker must
pass through (in order) 1B, z1z2B,...,z1%2 ... Tm-18, then enter zB. Hence,

HP(z)= ) HI(HR®(2)...HIr(2).
b1,b2,..,b;s—1EB

This is equivalent to (2.6).
Finally, if b # e then P*{T, > 1} = 1 so by the Markov property we may condition
on the first step of the random walk to obtain
¢b(z) =pp-12 + Z zpz¢bz(z)'

z:bzF#e

The relation (2.8) now follows from (2.7), since ¢,(z) = F,-1(z). O

Equations (2.6)—(2.8) are fundamental to the analysis that follows. Together with
(2.1)—(2.2) they imply that each of the functions F,(z) and G(z) is a rational function of
z, H#*(2), and ¢s(2), where i € A and a,b € B. Moreover, (2.8) shows that the functions
#5(2),b € B, are rational functions of z and HJ‘-"",j € A and ¢,d € B. Observe that (2.8)
has the form of a matrix equation

(2.9) #(2) = 2p+ 2M(2)¢*(2)

where p is the vector of constants py-1,b # e; and M(z) is a (|B|—1) % (|B]—1) matrix-valued
function of z, analytic in |2| < 1. The matrix M(z) has entries which are polynomials in
z, Hf?. If € > 0 is sufficiently small and |z| < € then (I — 2M(%2)) is invertible, hence

(2.10) ¢*(2) = 2(I — zM(2))"Ip V2| <e.

This shows that all the generating functions of interest are algebraic functions of z
and the finite collection of functions Hfd, j € Aand ¢,d € B. As will be seen (Proposition
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2.5) the functions H;?d are themselves interrelated by a system of algebraic equations;
the nature of this system will determine the character of the singularities of the various
G, F.. Before investigating this sytem, however, we observe that certain of the H#® may
be constant (0 or 1). If @ € iB then P*{r; = 0} = 1, so either Hf® = 0 or H® = 1,
according as a@ # ib or a = ib. If a ¢ iB (but a € B) it is still possible that H2® = 0,
because it may be impossible to first enter :B at ib starting from a. However,

LEMMA 2.4: If a ¢ iB then there ezists at least one b € B such that H?®(2) is not a
constant function.

PROOF: If a ¢ iB then P*{r; = 0} = 0. The irreducibility of the random walk (cf. (1.2))
guarantees that P*{r; < oo} > 0. Since Z,(;) € iB whenever 7; < oo, it follows that
there is at least one b € B such that P*{1 < 7; < oo and Z,(;) = ¢b} > 0. Consequently,

HY(z) = E*2™)1{Z, ;) = ib} is not a constant function. O

Consider those functions H2®(z), i € A and a,b € B, that are not constant. Clearly,
there are only finitely many, and by Lemma 2.4, there is at least one. We may enumerate
them as follows:

ha(2), ha(2), . ., hu(2).

PROPOSITION 2.5: There ezist polynomials Q1(h),Q2(h),...,Q.(h) in the v variables
h = (hy,hs,..., hy), each with all coefficients nonnegative and with at least one nonzero
term, such that Vz € C , if |z| < 1 then

(2.11) hi(z) = 2Qi(h1(2),...,hu(2)) Vi=1,2,...,1.

PROOF': These equations follow from the Markov property. Consider one of the functions
H%(2) that is nonconstant. Under P® the random variable 7; must satisfy 7; > 1 almost
surely, otherwise H#*(z) would be constant, and P*{Z,(;) = ib} > 0, otherwise H#%(z) = 0.
Since 7; > 1 we may condition on the first step of the random walk to obtain

(2.12) H®() ==z prE"z'(")l{Z,(,-) = 1b}
=z szH;ila‘li(z)
z

=2z Esz,ffli(z).

But (2.6) implies that each HZ?,, is a polynomial in the various H ;d, where ¢,d € B and
j € A. This proves (2.11). It is obvious that the coefficients of Q; are nonnegative. At
least one term must be nonzero, since h;(2) is not constant. O

PROPOSITION 2.6: If p; > 0 for each i € A then at least some of the polynomials Q;(h)
in (2.11) have nonzero quadratic terms.



PROOF: Choose i,j € A such that j # i*!, and set a = i¥, b= j71iK-1 ¢ = iK-1, and
d= b1 = j~1iK=2 Since p; > 0, equations (2.12) for H{*(z) include the nonzero term
zpi HY, ;(2), which when reduced using (2.6) will include the term zp; Hi™ (z) H%(z).

This is clearly a quadratic term. That H ;-‘", 2e., and H;?d are nonconstant (and hence

included among hy, ha,...,h,) follows from the assumption that p, > 0 V £ € A, as this
guarantees that all jumps of size one are possible. O

The polynomial equations (2.11) for hy, h2,...,h, lead to a hierarchy of higher order
(in z) equations obtained by making repeated substitutions in (2.11). Consider the ith
equation in (2.11); for each h; occurring in Q;, substitute zQ;(h1, ha,...,hy). This yields
a polynomial equation

hi(z) = 2Q{7 (2, ha(2), - -, b (2))-

For each h; occurring in QSZ), substitute zQ;(h1,...,h,) to obtain an)(z, hiy..., hy).
By induction, there exists for each n > 2 and ¢ = 1,2,...,v a polynomial QS")(z, hi,

...,h,) obtained from QS"_I) by substituting 2Q;(h1,...,h,) for each hj, and for all
n>21=12,...,v,and |z| < 1,

(2.13) hi(z) = 2Q8™ (2, hi(2),. . ., hu(2)).

Observe that each QS") has all its coefficients nonnegative.

PROPOSITION 2.7: Assume that p; > 0 for each i € A. Then for each pair (i,5) €
{1,2,...,v}? there ezists n > 2 such that the variable hj appears as a factor in some term

of an) with strictly positive coefficient.

NOTE 1: This fact will be of crucial importance in the analysis of the system (2.11) to
be carried out in section 3 and Corollary 2.8 below. It will imply that all the functions h;
have the same radius of convergence and the same type singularity at z = R.

NOTE 2: A similar, but simpler, fact holds for the functions ¢4(2),b € B. If p, > 0 for all
¢ € A then by repeatedly substituting for those ¢, such that a € B in the equation (2.8)
for ¢, one may obtain an equation for ¢, in which one of the h; appears as a factor in a
nonzero term. Here is the argument:

Let b = by by ... b; where each b; € A, and let by = j. Then the equation (2.8) for ¢;
contains the term zp;¢p;(2). If bj € B then ¢;(z) may be replaced by the right side of one
of the equations (2.8), which will include the term zp;¢s;;(2). Similarly, if bjj € B then
¢1;;(z) may be replaced by an expression containing the term zp;$s;;;(z). Thus, one may
eventually obtain an equation for ¢; containing a term 2" p7 ¢p;n (z) where bj™ ¢ B. Note
that p} > 0 because p; > 0. Since bj™ ¢ B, if the random walk is started at by™ then to
reach e it must first reach B; consequently,by the Markov property,

$bin(2) = ) Hitop-1(2)da(2).

a€EB
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It now follows from Lemma 2.4 and equation (2.6) that one of the functions h;(2) is a factor
of ¢pjn(2). Therefore , successive substitutions in (2.8) eventually lead to an equation for
¢p in which one of the h; appears as a factor in a nonzero term.

PROOF of Proposstion 2.7: The indices 7, j in question correspond to two of the generating
functions H~ introduced earlier. We will label these H#® and H; ¢d respectively (but note
~ the subscnpts 1,J now have different meaning, in partlcular, they are elements of A).
Neither H#® nor H ;d is constant; consequently, a ¢ iB and ¢ ¢ jB. It follows that a and
¢ have reduced word representations a = ajaz...ax and ¢ = ¢1¢;...cx with a; # ¢ and

C]?é]'.

Recall that the equations (2.11) are equivalent to (2.12) (by way of (2.6)) and that
equations (2.12) are nothing more than the Markov property. Thus, making repeated sub-
stitutions in (2.11) is tantamount to using the Markov property repeatedly, and produces
equations H#® = ¥ ... where the terms in the sum have the form

(2.14) 2™ Do Py - - .p,mﬂgz"lzzmzm)_l,-.

Consider such a term: if a € (2123 ...2y,) " iB then no further use of the Markov prop-
erty (i.e., no more substitutions) can be made in this term, since P*{r(z122...2m)"! =

0} = 1 and thus H(a:122 .z,,)-1i is constant. However, if a ¢ (z122...75)" 1B then

Pe{r(z122...2m)" ' > 1} = 1, so the Markov property can be used again. (NOTE: In
this case it is possible that H “:1 Cpozm)-li = 0, but not = 1; if = 0, using the Markov
property again just replaces 0 by 0.) Consequently, for any finite sequence z1,z2,...,Zm

such that p,,p;, ... Pz, > 0, the term (2.14) appears in an equation H?® = ... obtained
from (2.11) by substitutions iff az1zy ...z, ¢ iB Vs=1,2,...,m

We will show that there exist ¢, 2,...,Tm € G, for some m > 1, such that
(8) PziPzy -« Pzm > 0;
(b) az1zy ...z ¢iB Vs=1,2,...,m
(c) (z122...7m)" ! = wjy where
(c1) H2(2) >0 V z€(0,1);
(c2) HI*(2) >0 Vz€(0,1);
(ca) w has reduced word representation w = wywz ... we with we # j L
(c4) y has reduced word representation y = y1y2 ... ym with yg # j !
Given this, it will then follow by the preceding paragraph that the term (2.14) appears

in some equation H?® = X... obtained from (2.11) by substitutions. By (2.6), the term
(2.14) can be rewritten (for 0 < z < 1) as

m
2 Pz,Pz, - H(zla:z ZIm) 1t
= 2" ps,Psy -+ zmHﬁ,”H;"H;“Hfb + nonnegative terms,
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showing that HJ?“ appears in a term with positive coefficient in some equation for H?®
obtained from (2.11) by substitutions. It follows that either a “precursor” or a “successor”
of this term, including H;d as a factor, appears in one of the polynomial equations (2.13).

It remains, then, to prove (a), (b), and (c1)—(cs). We will show that these may be
achieved with a finite sequence z;,zs,...,znm € A. Recall our hypothesis that p; > 0 for
every £ € A: it follows that (a) holds automatically for any finite sequence z;,z2,...,Zm €
A. As for (b), observe that y € iB only if |y| < K +1, so as long as |az1z2...2,| > K +1
then az;z3...2, ¢ iB. But a = ayay ... ak (as a reduced word) with a; # ¢; consequently,
if £y, = Tm—1 = ax and if the remaining letters z;,z2,...,2m—2 are chosen so that
zet1 # zp " for every £ = 1,2,...,m — 1 then (b) holds. So it remains to show that (c)
can be achieved for some sequence 1,%2,...,Z,m € A, subject only to the constraints
T = Tym—1 = a1 and Te41 # m[l.

To prove that H2%(z) > 0 for all 0 < z < 1 it suffices to show that P*{r(w) > 1 and
Z(w) = wc} > 0. Set

1 -1

W= wWiWs ...Wp = al_lal_ w3y ... w,cl}lckl_l ce.Cy

where the “filler” waw; ...w, is chosen so that (i) there is no cancellation between adjacent
letters (in particular, w3 # a, and w, # cx) and (ii) s > K + 2. Observe that wy = ;' #
§ 71, as required (recall that ¢ = ¢jca...ckx with ¢; # j). Also, since s > K + 2 and
la| = K, P*{r(w) = 0} = 0. Finally, P*{r(w) > 1 and Z,(y) = wc} > 0 because each of
the one-step transitions in the following chain has positive probability:

ayjaz...a —r a142...0K-1
— ad102...0K -2
— a1

-— €

—>a1_1

1 1

—a; a;

1 1

—a; a; W3...Ws.

This proves (c;) and (c3). The existence of y1,ys,...,yr € A satisfying (cz) and (c4)
follows by a completely similar argument. O

COROLLARY 2.8: Assume that p; > 0 for each i € A. Then each of the power series
hi(2),i = 1,2,...,v, Fi(2),z € G — {e}, and Gz(2),z € G, has radius of convergence R,
and

(2.15) hi(R) < oo Vi=1,2,...,v;

(2.16) F,(R) < o0 and Gz(R) <oo Yz €QG.
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PROOF: Each of these power series has nonnegative coefficients, so for each one the radius

(e}
of convergence is a singular point. Also, for a power series ), a,z" with a, > 0 the
n=0

o0
radius of convergence is inf {r: 3 a,r® = o0o0}. It therefore follows from Proposition 2.7

n=0
and equations (2.13) that all of the power series h;(2),7 = 1,2,...,v have the same radius

of convergence (recall that all coefficients of QS") are nonnegative). Call this radius of
convergence r.

Recall that each h;(2) is one of the functions H ;-‘b(z), and that H ;-‘b(z) = E*z7(D1
{Z.j) = b} = H:Ly;(2). Now 7(2) = Typ on {Z,(;) = zb}, so for > 0

H(2) < Fap(z), Yz €G,beB.

By Corollary 2.2 each Fy(z) has radius of convergence > R; consequently r > R.

Corollary 2.2 also implies that at least one of the power series ¢3(2),b € B, has
radius of convergence R. It therefore follows from equation (2.10) that the matrix-valued
function (I — zM(2))~! has a singularity at z = R. Now M(z) is a matrix whose entries
are polynomials in z and h;(i = 1,2,...,v) with nonnegative coeflicients, not all of which
are zero. Hence, zM(2) is an analytic matrix-valued function of z for |z| < r, and each
entry of 2M(z) is a nondecreasing function of z for 0 < z < R. By the Perron-Frobenius
theorem ([Se], Ch. 1), for each 2z € (O, R] the matrix zM(2) has a positive eigenvalue
Az with (nontrivial) nonnegative left- and right-eigenvectors. Elementary arguments show
that z — )\, is nondecreasing and continuous for z € (O, R].

We claim that Ag < 1. For if this were not the case then there would exist s € (O, R]
such that A, = 1, by the intermediate value theorem (observe that lim, o4+ A; = 0 because
lim, o+ zM(z) = 0). But then (I — 2M(2))~!p would have a pole at z = s, because the
vector p has strictly positive entries. This would imply that ¢5(2z) has a pole at z = s for
some b € B, by (2.10), contradicting the fact that F;(R) < oo for all z € G (Corollary 2.2).

o0
Therefore, Ag < 1. This implies that ) R"M(R)™ converges, because Ag is the
n=0
spectral radius of RM(R). Consequently, since (I —zM(z))~!p has a singularity at z = R,
one of the entries of 2M(z) must have a singularity at z = R. But these entries are
polynomials in z and h;,7 = 1,2,...,v; hence, one of the functions k;(z) has a singularity
at z = R. This proves that r = R, that every hi(2),i = 1,2,...,v, has a singularity at
z = R, and that h;(R) < oo for each i.

Now consider the function ¢, where b € B\{e}. By (2.8), ¢s is a polynomial function
of z,¢4, and H;®, where a € B and y ¢ B. Recall that we may substitute repeatedly
for various ¢, on the right-hand side of (2.8) to obtain another equation for ¢, that
contains a nonzero term with some nonconstant H;* as a factor. (See Note 2 following the
statement of Proposition 2.7.) But by (2.6), any such H;® may be written as a polynomial
in hy,hg,...,h, with positive coefficients. Thus, ¢ may be written as a polynomial in
z,$q, and h;, where a € B and ¢ = 1,2,...,v, in which at least one h; appears as a factor
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in a nonzero term, and whose coefficients are all nonnegative. Since h;(z) has radius of
convergence R and each ¢, has radius of convergence > R, it follows that ¢; has radius of
convergence R.

Finally, it follows by a similar argument using (2.7) and (2.6) that each F,(z),z €
G — {e}, has radius of convergence R. It follows from (2.1) and Proposition 2.1 that the
same is true for each G(z). O

3. Generating Functions: Algebraic Character of Singularities

In this section we prove that each of the generating functions G, F;, and h; introduced
in the previous section is an algebraic function of z. Using this fact we then prove that,
at least in the special case where p; > 0 for every ¢ € A,z = R is the only singularity in
the closed disk |z] < R, and we determine the nature of the singularity. The arguments
will be quite general; they apply to any set of function h;(2) subject to the conclusions
of Propositions 2.5, 2.6, 2.7 and Corollary 2.8, and thus may be useful in problems other
than the random walk problem of primary interest in this paper.

PROPOSITION 3.1: Each of the generating functions hi(z),: =1,2,...,v, is an algebraic
function of z, i.e., for each i there exists a polynomial P;(z,&) in two variables over C such
that hi(z) satisfies the functional equation

(3.1) Pi(z,hi(2)) =0 V 2.

PROOF: Define

I' = {(z,w1,wa,...,w,) € C'":|2| < 1 and w; = hi(z) V i},
V = {(z,w1,ws,...,w,) € C'*”:|z| < 1 and w; — 2Q;(w) =0 V i}.

Then by Proposition 2.5, I' C V. Also, I' contains the origin.

Consider the Jacobian matrix J of the system (2.11), i.e., the ¥ x v matrix of partial
derivatives with respect to wy,ws,...,w,. J is continuousin the variables z,w,,...,w, and
at the origin J = identity. Consequently, there is an open neighborhood A of the origin in
C't¥ in which J is invertible. Take any (z; w) € VNAN\{origin}; since (3/9z)(w; —2Q;(w))
is nonzero at such a point, the hypotheses of the (complex) implicit function theorem are
satisfied. Thus each w; is locally an analytic function of z, and so V N N\{origin} is a
one-dimensional complex manifold.

But V N AM\{origin} is contained in a minimal algebraic set W (an algebraic set is
defined to be the set of simultaneous zeros of some set of polynomials in the variables
(2,w1,...,w,). By a standard theorem of elementary algebraic geometry ([L], ch. X,
Th. 4), W is the union of finitely many varieties V4, Va,..., Vi (a variety is an irreducible
algebraic set). We will show that each V; has dimension one, i.e., is an algebraic curve.
We shall use the following general facts about a variety U of dimension d in C™: there is
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a subset S C U (the “smooth points”) such that (1) U = closure (5); (2) each p € S has
a neighborhood in U homeomorphic to C?%; and (3) d is the degree of transcendence (over

C) of the field of rational functions (in z,w;,ws,...,w,) on U. For proofs of these facts,
see [Sh] sections 1.6.1, I1.1.4, II1.3.2, and VII.2.1.

At every point of V; the equations w; = 2Q;(w) must hold, otherwise W would not be
minimal (it could be replaced by W intersected with the algebraic set determined by the
equations w; = 2Q;(w)). Moreover, V; must contain a point of V NN\ {origin}, otherwise
W would not be minimal. Consequently, there must be a smooth point p of V; contained
in VNN —{origin}. Since the equations w; = zQj(w) must hold at all nearby points of V;,
this implies that the topological dimension of V; at such a smooth point p is < 1. In fact
the dimension must = 1, because if not each such smooth point p, being also a point of
V NN, would be a limit point of N;x;V;, hence p € N;jx;Vj, contradicting the minimality
of W.

Finally, it follows that the transcendence degree of each V; is 1. Since z and w; are
both rational functions on V;, there is a polynomial Q;;(z,£) in two variables such that

Qij(z,w;) =0o0n V;. Set Pj(z,§) = H Qij(2,€); then Pj(z,w;) =0 on W. Consequently,

(3.1) holds for all z satisfying 0 < |z| < g, for some € > 0; but it then holds for all z in
|z| <1 by analytic continuation. O

COROLLARY 3.2: For each x € G the functions F,(z) and G.(z) are algebraic functions
of z.

PROOF: By (2.1)-(2.2), (2.7), and (2.9) these functions are algebraic functions of hy, ks,

., h, and z. Let k be the field of rational functions on W, where W is the algebraic set
introduced in the previous proof, and let K be the extension field obtained by adjoining
F,. Then K is an algebraic extension of k, since F; is algebraic over k. It follows that
the transcendence degree of K over C is the same as that of k over C ([L], Ch. X, Th. 1),
hence equals 1. Therefore, there is a polynomial relation between z and F;. The same
argument applies to G;. O

The algebraicity of the Green’s functions G, was also proved in [Ao] and [St].

Our proof of the existence of the polynomials P;(z,£) in Proposition 3.1 appears
to be nonconstructive. However, one can give a constructive algorithm for producing the
polynomials in (3.1) which might be computationally feasible in certain cases where | 4| and
|support {p.}| are not too large. There are two steps: (1) obtain a basis for the polynomial
ideal generated by the polynomials w; — 2Q;(w) in (2.11); and (2) use elimination on one
variable at a time in this basis until only two are left, namely z and w;. An algorithm
for (1) was given by Hilbert (see the discussion in [Ke], pp. 119-120), and (2) may be
accomplished using the elementary theory of resultants ([L], Ch. V). Algorithms for (2) are
included in some computer programs for symbolic computations, such as Mathematica. In
practice, one would probably first try the elimination procedure directly on the polynomial
equations (2.11).
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Our main interest, however, is not in obtaining explicit expressions or functional
equations for the generating functions F,,G;, and h;, but rather in investigating the
location and nature of their singularities in {z: |z| < R}. Recall that each of these functions
is defined by a power series in z with radius of convergence R > 1 (Proposition 2.1 and
Corollary 2.8) and nonnegative coefficients, so each has a singularity at 2z = R. This
singularity is not a pole, by (2.15)—(2.16), so it must be an algebraic branch point, by
Proposition 3.1 and Corollary 3.2.

PROPOSITION 3.3: Assume that p; > 0 for each i € A. Then each of the functions
Fy(2),G:(2), and hi(z), where x € G and ¢ € {1,2,...,v} has a convergent Puiseuz series
in a neighborhood of z = R, the first two nonzero terms of which are

(3.2) Foz) =a® + P R-2)*+... (z#e),

Go(z) = b + 8 (R-2)* +...,
hi(z) = c((,') + cg')(R —2)%+...,

where

(3.3) —o00 < aﬁ’),bi”),ci‘) <0,
0< a((,z), bgz),cgi) < 00,
O<a<oo.

The ezponent « i3 rational, and « s the same for all of the functions G, Fy, and h;.

NOTE: (R — z)? is the positive branch of the a® power. Also, here and in the sequel,
... indicates higher order terms. We are not claiming that the Puiseux series is in integer
powers of (R — 2)%, only that the lowest order nonconstant term is a (negative) multiple

of (R — z)*.
If p; > 0 for each : € A then a = 1/2: see Proposition 3.5 below.

PROOF: That each of F,,G;, and h; has a convergent Puiseux series at z = R follows
from the fact that 2 = R is an algebraic branch point of each (and thus, ultimately, from
Proposition 3.1). Now each of these functions was defined by a power series in z with radius
of convergence R and nonnegative coefficients; consequently, each is monotone increasing in
z for 0 < z < R. Therefore, for each function the first two terms of the Puiseux series must
be as in (3.2), with the coefficients satisfying (3.3). (NOTE: a((,z) = F;(R), b((,z) = G;(R),
and c((,') = h;(R) are all finite and strictly positive, since otherwise the functions F;, G, h;
would be constant.)

It remains to be proved that a is the same for all of the functions F,,G;, and h;.
Consider first the functions hi(z),i = 1,2,...,v; Proposition 2.7 implies that the value of
a must be the same for all. It now follows from equation (2.8) that the same value of a
must hold for all the functions ¢4(2), and from equation (2.7) that the same value of a
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holds for all F;(z),z € G\{e}, and finally from (2.1), (2.2), and (2.5) that the same value
of a holds for all G.(2),z € G. O

Next we shall identify the exponent a in (3.2). To do so we will rely heavily on the
special form of the algebraic system (2.11), especially, the nonnegativity of the coefficients
in the polynomials @; and the “irreducibility” expressed in the conclusion of Proposition
2.7. Recall that (2.11) is the system

h,‘—ZQ,'(hl,h2,...,h,,)=0,i=1,2,...,V.

aQi)
J. = (_
ahi i,j=1,..,0

Observe that the entries of J, are polynomials in hj, hs,...,h, with nonnegative coeffi-
cients; hence, for z > 0 the matrix J, has nonnegative entries and so is subject to the
conclusions of the Perron-Frobenius theory of nonnegative matrices ([Se], Ch. 1).

Define

hy=h.(2)

LEMMA 3.4: Assume that p; > 0 for every i € A and also that p. > 0. Then there exists
an integer n > 1 such that for each z € (O, R] the matriz J* has strictly positive entries.

PROOF: Recall that repeated substitutions in (2.11) lead to the equations (2.13):
hi — 2Q$™ (2, hy, ha, ..., hy) = 0.

Consider the Jacobian matrix (aQEn) /0h;) evaluated at the point (z,hi(2),...,k.(2)):
since (2.13) is obtained from (2.11) by substitutions, the chain rule implies that this Jaco-
bian matrix is J7'. But Proposition 2.7 implies that for some n > 2 the variable k; occurs

as a factor in a term of an) with strictly positive coefficient. It follows that the (3, 7)™
entry of J7 is strictly positive for all 2z € (O, R].

We have assumed that p, > 0. This implies that 2Q;(h1, ke, ..., h,) includes the term
pezhj (recall that the equations (2.11) derive from the Markov property). Consequently,

if QE") includes a nonzero term with h; as a factor, then so does Q£"+m) for every m =
1,2,.... It now follows from the result of the preceding paragraph that J? has strictly
positive entries for all n sufficiently large, provided z € (O, R]. a

Assume, then, that p; > 0 for every 7 € A and that p, > 0. Then by Lemma 3.4 there
exists n > 1 such that the matrix J? is irreducible and aperiodic for every 2z € (O, R)].
By the Perron-Frobenius theorem ([Se], Ch. 1), each J, has a positive eigenvalue X, of
multiplicity 1, and all other eigenvalues are < ), in absolute value. Furthermore, nontrivial
right and left eigenvectors for the eigenvalue ), have strictly positive entries. It follows
that A, is a simple root of the characteristic polynomial of J,, hence by the implicit
function theorem A, is continuous (in fact, real-analytic) in z. Since the entries of J, are
nondecreasing in z, so is A,.
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PROPOSITION 3.5: Assume that pe > 0 and that p; > 0 for every i € A. Then

(3.4) Ar=1/R.

PROOF: Let s = inf{z > 0:z\, = 1}; we will prove that s = R. First, observe that
s < R, because if z\, < 1 for every z € (O,R] then I — zJ, would be nonsingular
at every z € (O, R] and, in particular, at z = R. This would contradict the fact that
z = R is a singularity of each h;(z) (the complex Implicit Function Theorem applied to
the system (2.11) at R,hi(R),...,h,(R) would imply that each of the functions h;i(z)
extends analytically to a neighborhood of z = R). Second, observe that s > 0, because A,
is nondecreasing in z, so lim, o4 zA; = 0.

Finally, suppose that 0 < s < R; we will obtain a contradiction. Let v* = (v;,v2,...,
vy ) be a left eigenvector of J, corresponding to the eigenvalue A\, = 1/s; assume that v; > 0
for each 7. Expand the equation

1 4 14

(3.5) Evihi —zZviQ,‘(hl,hz,...,hu) =0

=1 =1

in a Taylor series around the point z = s, ¥ = h;(s) to obtain

(3.6) (z = s) {Zv,-Q.-(h’{,h;,...,h;)+ }

_ 1 v v ' . . . a2(,th)
- _§SZZ(ht - ht)(hJ - h]) ( ah'ahj )h:h- +...

i=1 j=1

where ... indicates higher order terms. Notice that there are no linear terms in (h; — h})
because v¥(I — sJ,) = 0; this is the rationale for choosing v* to be a left eigenvector of J,.
However, there is a nonzero linear term in z — s, because Xv;Q;(h3, h3,...,h}) > 0 since
each v; > 0. Now since 0 < s < R, each h;(2) is analytic at 2 = s and so may be expanded
in a power series around z = s. Substituting this power series for each occurrence of h; in
(3.6) yields an equation of the form

Ci(z — s) = Cq(2z — 3)2 + Cs(z — P +...
with Cy = Zv;Q;(h}, h3,...,h}) > 0, which is impossible. O

PROPOSITION 3.6: Assume that p. > 0 and that p; > 0 for each i € A. Then the value
of a in (3.2) s a =1/2.

PROOF: Let v* = (v1,v2,...,v,) be a left eigenvector of Jr corresponding to the eigen-
value A\g = 1/R, with v; > 0 for each i. As in the preceding proof, expand (3.5) in a
Taylor series around z = R, h* = h;(R) to obtain (3.6) with s = R. Recall that there are
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no linear terms in (h; — h¥), but that there is a linear term in (z — R). By Proposition 2.6,
the polynomials Q;(hi,...,n,) have quadratic terms with positive coefficients, so (3.6)
includes nonzero quadratic terms in the variables (h; — h}), ¢ = 1,2,...,v. Substituting
the Puiseux series (3.2) for h;(z) at each occurrence of h; in (3.6) yields

(R-—z){C+...}=C"'(R—z)2°'+...

where C > 0,C' > 0, and on each side ... indicates higher order terms. It follows that
2a = 1. O

PROPOSITION 3.7: Assume that p. > 0 and that p; > 0 for each i € A. Then none of the
functions Fy(z),Gz(2), hi(z) has a singularity at any z satisfying |z| < R ezcept z = R.

REMARK: D. Cartwright [C] has proved that the Green’s function of an aperiodic, irre-
ducible random walk on any discrete group has this property.

PROOF: In view of Corollary 2.8, it suffices to consider only points z on the circle |z| = R.
Moreover, since F;(R), G (R), and h;(R) are all finite, the power series for F,G., and h;
converge absolutely on |z| = R, so any singularity would necessarily be a branch point.

Suppose z is a singularity of some h;,i € {1,2,...,v}, satisfying |2| = R. Then by the
complex Implicit Function Theorem (applied to (2.11)) the matrix I — zJ, is noninvertible.
Consider the matrix J;: its entries are dominated in absolute value by the corresponding
entries of Jg, since the coefficients of (); are nonnegative and the functions h; all satisfy
hj(R) > 0. Consequently, the spectral radius of J, is < Ag, and by Proposition 3.5,
Ar = 1/R. Therefore, I — zJ, is noninvertible only if the spectral radius of J, is equal to
Ar = 1/R. We will show that if p. > 0 and p; > 0 for all 7 € A then this is impossible.

Fix j € {1,2,...,v}. The function hj(z) is defined by a power series hj(z) =

Y me0dnz", Where gy is a probability of the form ¢, = P*{r(z) = n and Z,,) = zb}.
Now we have assumed that p, > 0; hence, for any n,m > 1,

dntm = an:an-

Also, h; is nonconstant, so ¢, > 0 for some n > 1. It follows that for all z satisfying
|z2| = R but z # R,
|Rj(2)] < Rj(R).

Consider the matrix J, = (0Q;/0h;). As noted earlier, J? = (BQE") /Oh;) where QS")
are the polynomials in (2.13) obtained from (2.11) by substitutions. By Proposition 2.7,
for each pair (3,5) € {1,2,...,v}? there is an n > 2 such that QS") contains a term with
positive coefficient and having h; as a factor. Furthermore, since p. > 0, this is also true

of each an"'m),m > 1 (see the proof of Lemma 3.4). Consequently, there exists n > 2

sufficiently large that for each ¢ € {1,2,...,v} the polynomial QS") contains a term with
positive coefficient having (hihz... h,)? as a factor. In view of the result of the preceding
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paragraph, this implies that each entry of J is strictly smaller in absolute value than
the corresponding entry of J;. Therefore, the spectral radius of J, is strictly less than
Ar = 1/R. This proves that no hj(2) has a singularity on |z| = R other than the one at
z=R.

Recall from the proof of Corollary 2.8 that (I — zM(z))~! has no pole at z = R, and
since the entries of M(z) are dominated by those of M(|z|) it follows that (I — zM(z))™1
has no poles on the circle |2| = R. Since the entries of M(|z|) are polynomials in z and h;,
it follows from (2.10) that ¢, has no singularities on |z| = R except z = R.

It now follows by routine arguments from (2.7), (2.2), and (2.1) that none of the
functions F3(2), Gz(z) has a singularity on |z| = R except for the singularity at z = R. [J

4. Local Limit Theorem

THEOREM 4.1: Assume that the random walk Z, satisfies the irreducibility and aperiod-
icity hypotheses (1.2) and (1.8). Then there ezist positive constants B;,x € G, such that
for each z € G, as n — oo,

B.vVR
2/mR*n3/2’

Here R is the radius of convergence of the Green’s function G(z) (cf. Proposition 2.1).

(4.1) p(z) ~

NOTE: (1) The relations (4.1) clearly do not hold uniformly in z, since p**(z) = 0 if
|z| > nK. The behavior of p**(z) when |z| varies linearly with n will be discussed in
section 6.

(2) The function £ — B, is R~!-harmonic, i.e., for each z € G,

B, =R) Bypy-,.
1Y

This follows immediately from (4.1).

PROOF: Consider first the special case in which p, > 0 and p; > 0 for every 7 € A. Then
the results of Propositions 3.3, 3.6, and 3.7 are valid. In particular, each G,(z) has a
singularity at z = R, no other singularity in |z| < R, and a convergent Puiseux series in a
neighborhood of z = R:

G.(2) = b + B (R—2)12 + ... .

The series is in integer powers of (R — z)? for some rational 3, and the first nonconstant
term is a (negative) scalar multiple of (R — z)!/2. Consequently, G, may be written

k
G:(2) =) Bi(2)(1 — 2/R)™ + C(2)
i=1
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where 1 = a; < a3 < ... < ap, each of Bj(z) and C(z) is analytic in a neighborhood of

z = R, and B;(R) = R'/? bg”) < 0. It therefore follows directly from Darboux’s method of
asymptotic expansion ([B], Th. 4) that as n — oo

p*"(z) ~ —{B1(R)/T(—0ou)}R™"n "7,

which is equivalent to (4.1) with B, = —bgz).

Now assume that (1.2)-(1.3) hold. By Lemma 1.1, there exists an integer m, such
that for all m > m, and all 1 € A,

p*™(e) > 0 and p*™(2) > 0.

Thus, the result of the preceding paragraph applies to the random walk Z,,, n =

0,1,2,..., where m is any integer > m,. In particular, for each z € G,
on(a) ~ 2R
2\/TR"n3/2
as n — o0, for suitable constants B,, where R is the radius of convergence of Y >,

p*™"(e)z". Now the Markov property implies that, for each £ € {0,1,2,...,m — 1},

p*(mn+l) ~ Zp*l(y)p*mn(xy—l ),
y

where the sum extends over those y € G satisfying |y| < £K. Consequently, for each z € G,

- BY)VR
Y4 (.’L') ~ 2\/7—rR"n3/2

as n — oo, where £ = n (mod m) and R is the radius of convergence of ) p*"(e)z" (to
n=0

wit, R = R/ ™). But the same argument applies with m replaced by m + 1, so in fact
Bg) = B, does not depend on £. O

Darboux’s method also gives

THEOREM 4.2: Assume that p. > 0 and p; > 0 for all i € A. Then there are positive
constants Az, € G, such that for each € G

AR

P{T: =n}~ o e Rni

as n — 00.

This probability is true under the weaker hypotheses (1.2)—(1.3), but we do not yet
have a complete proof.
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5. The Boundary Process

Recall (section 1) that the random walk Z,, is transient, provided the transition prob-
abilities p, satisfy the irreducibility hypothesis (1.2). Consequently, Z, — Z a.s. as
n — oo where Zo, € A4, A4 being the set of ends of the Cayley graph of G (equivalently,
A4 is the set of sequences z1z ... from the alphabet A satisfying zn41 # z;! Vn >1).
Thus, the limit point Z,, may be written

Zoo = A1AxA3 -+

where A;,A;,... € Aand A,y1 # AL, In this section we consider the structure of the
“boundary process” Aj, Az,--- .

Define u, to be the distribution under P = P*¢ of the process Ap, An+1,..., i-e., for
any Borel subset U C Ay,

ﬂn(U) = P{(An,An+1,.. ) € U}

We will prove that there is a shift-invariant probability measure p, on A4 such that

Pn < pe and ynzpv as n — 0o. Moreover, we will show that p, is a Gibbs state in the
sense of [Bo], ch. 1 (see below for the definition) and will identify the potential function ;
it will then follow that the stationary process induced by u,, is Bernoulli ([Bo], Th. 1.25).

The crux of the argument consists of obtaining a manageable asymptotic formula for
certain hitting probabilities. Observe that Zo, = z1z223... iff for each m = 1,2,... the
random walk Z, hits the set 2,25 ...z, B and then at some future time exits z;z3...z,B
a final time without “erasing” any of the letters z1z3...zn,. Therefore, by Proposition
2.3,

(5.1) P{Aj=z; Y1<j<m}=u'H; (1)H,,(1)... Hs,,(1)v
where u,v are |[B| x 1 column vectors with entries

ue =1,uy =0 VyeB\{e}
vy = v, = PY{4, #z;'} VyeB.

Notice that u has nonnegative entries, while v has strictly positive entries. It is evident
from (5.1) that the finite dimensional distributions of the process A, are controlled by
the matrix products H,, H;,...H, . The next order of business, then, is to study the
asymptotic behavior of such products.

Let (X,d) be a compact metric space and let Y be a closed subset of X x X such
that for each z € X the set {y : (z,y) € Y} is nonempty. Let z — M, be a continuous
function from X to the space of N x N matrices with nonnegative entries. Call this
function primitive (relative to Y') if there exists an integer m > 1 such that for every
m-tuple (z1,22,...,Zm) € X™ satisfying (z;,2i41) € Y for all ¢ = 1,2,...,m — 1, the
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matrix product Mz, M, ... M, has all entries strictly positive. (See [Se], Ch. 1, for the
source of the term “primitive”.)

Define ¥ = Yy to be the set of all doubly infinite sequences ¢ = (z,)32__, with
entries z, € X and satisfying (z,,zp41) € Y for all n € Z. Since Y is closed, ¥ is a closed
subset of the sequence space XZ, hence is compact in the product topology. Let d, be the

metric on T (or X?2) defined by

d.(§,¢) = Z d(xmyn)/zlnl;

n=—0o0

the topology induced by d, is the product topology. Let 0: ¥ — ¥ be the forward shift
(thus, the n** entry of ¢ is z,41); note that o is Lipschitz continuous. For any function
f: X — C define

Snf=f+foa+foa2+...+foa"_1,n20.

(In the applications considered in this paper, X = A x F where A is the set of
generators (and their inverses) of the group G and F is a compact subset of C. The
relation R is defined by ((,2),(j,2')) € Riff j #:~!. The mapping * — M, is given by
(1,2) = Hi(2).)

PROPOSITION 5.1: Assume that x — M, is primitive and Holder continuous (for some
ezponent) on X. Then there ezist constants C < 0o and 0 < a < 1 and Holder continuous
functions p,7:Z =R and V,W:EZ - Py ={v €R™v; >0 Vi and 3, v; = 1} such that
Jor every € = (2,)2 €%, and n=1,2,...

(5.2) le™ 5" ¢ OM,, M,, ... My, — A(c"E)V(EW(a"¢)|| < Ca™.
Also,
(5.3) 1(6) = 1/W()'V(8),
(5.4) M, V(o€) = e#OV(¢),
and
(5.5) W(o €)' M,, = (9 (——7(6) ) W)
' (e 1¢) ’
V(&) and p(£) are functions only of the “forward” coordinates z1,z2,...; and W(£) is o
function only of the “backward” coordinates ...,x_1,xy.

NOTE: (1) || - || is the usual matrix norm, i.e., ||M|| = sup,o(|Mv|/|v]|).

(2) If K = 1 (nearest neighbor random walk) then V =W = v = 1 and ¢(¢) = p(z1).
In this case the result (5.2) is trivial.
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(3) Proposition 5.1 is an extension of the classical Perron-Frobenius theorem, which
is the special case where ¢ — M, = M is a constant function. Observe that for each n-
periodic sequence ¢ the vectors V(€) and W(§) are right and left eigenvectors, respectively,
of My, M,, ... M, ;the corresponding eigenvalue is exp{Sr¢(£)}.

PROOF': Without loss of generality, we may assume that for each z € X the entries of
M, are all strictly positive. If £ — M, does not have this property, but is primitive,
then we may replace X by {(z1,...,2m) € X™:(zi,zit1) € Y V i} and z — M, by
(T1y.-+yZTm) = Mz M, ... M,_; it is easy to deduce (5.2) for the old map z — M, from
(5.2) for the new one, and (5.3)-(5.5) follow easily from (5.2).

Assume, then, that each M,,z € X, has positive entries. Define

P:{UERN:U,-ZO V¢ and Xv; = 1},

Py ={veRN:v; >0 Viand Zv; =1},
P.={veRY:v; > ¢ Viand Zv; =1}, > 0,

and for each z € X define functions T;: P — P4 and T;: P — Py by

M,v
1tM,v

Miv
1tMiv

Tx(v) = and T, (v) =

(here 1* = (1,1,...,1) and superscript t denotes transpose). The functions 7'(-) and T*(-)
are both jointly continuous as mappings of X x P into Py; since X x P is compact,the

images are compact subsets of P,. Consequently, there exists ¢ > 0 such that for every
z € X, T,(P) C P and TX(P) C P..

Let d, be the projective metric on Py defined by dp(v,w) = max; j log(viw;/v;w;).
Since P, is a compact subset of P, d, is uniformly Lipschitz equivalent to the usual Eu-
clidean metric dg on P, i.e., there exist positive constants Cy, C such that Cidg < d, <
C2dg on Pe x Pe. It is well known (and easy to prove — see [Se], section 3.1) that, since the
entries of M, are positive, the induced maps T, and T, are contractive on Py relative to
dp. Thus, since £ — M, is continuous and X, compact, there exists a constant 0 < a < 1
such that

(5.6) dp(Tov, Tow) < adp(v, w),
dp(Tyv, Tyw) < adp(v,w)
for all v,w € P, and x € X. Consequently, since z — M, is H6lder continuous (for some

exponent) there exist Holder continuous (for some possibly different exponent) functions
V,W:% — P, such that for every £ = (2,)32_., € Z,

(5.7) lim T, Ty, ... Ty v = V(§),
im T Tr ... T,_,w=W(c"'¢),
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uniformly for v,w € P, and £ € . It is clear that V and W are functions of the forward
and backward coordinates of £, respectively. Note that since dg and d, are uniformly
Lipschitz equivalent on P., the Hélder continuity of V and W is valid in either metric.

We now define p(€) and v(£€) by (5.4) and (5.3), respectively; Holder continuity of ¢
and ~ follows immediately from the Hélder continuity of V, W, and =+ — M,. Note that
(5.5) will follow directly from (5.2). Thus, it remains to prove (5.2).

For ¢ = (z,)32 €Xandn=1,2,... set

n=—oo

B,(6) = Mo, My, ... M,
V) =T;, 0 T;,

*
,0...0T} .

Then
(5.8) e~ 5?03, (O)V (a™€) = V(£),

by (5.4) and by (5.6)—(5.7) there exists a constant C < oo such that for every w € P and
n=12,...,

(5.9) dp(W}(E)w, W(a™8)) < Ca™1.
We will deduce (5.2) from (5.8) and (5.9). First, notice that for every u € P the vector

% (€)u is a scalar multiple of ®,(¢)*u. Consequently, if u(1, u®, ... u(¥) are the standard

unit vectors in RY (i.e., u(® = (1,0,0,...,0)}, etc.) then there exist scalars a'?) and vectors

U,(,i)({f) € RY such that
(5.10) eS¢ 0a, (ul) = D {W (o) + UD(€)}

and, by (5.9),
79 U ()] < Clam

for some constant C' < oo independent of n,7, and £. Next, by (5.8), the :** coordinate of
V(£) is given by

eSOV (™)1, (€) )
= a{W (™)' V(e™¢) + UL )V (a™6)}
= av(e")™ +aP0(a"),

where the O(a™) term is uniform in ¢ and £. It now follows that
ai) = 1(e" V()i + O(a™)

where the bound implicit in the O(a™) term is uniform in 7 and £. It is now evident that
(5.10) is equivalent to (5.2). O

25



Unfortunately, Proposition 5.1 cannot be applied directly to the matrix product in
equation (5.1) because the function ¢ — H;(1), ¢ € A, is not primitive. To see this,
recall (Proposition 2.3) that for any reduced word z = z1z3...2,, from the alphabet
A H; = H;, H,, ... H,,; consequently, for any a,b € B the (a,b)** entry of the product
in (5.1) is

H2 (1) = P*{1(z) < 00; Z(5) = b}

which is zero for certain b, e.g., any b = by by ... bx such that b; # z;! (provided m > 2K )-

Thus, we will need a generalization of Proposition 5.1 for certain smprimitive maps
z — M. We use the same notation and conventions as in Proposition 5.1 and its proof.

PROPOSITION 5.2: Assume that * — M, 1s o Holder continuous mapping of X into
the space of N X N matrices with nonnegative entries. Assume further that there ezist
integers m > 0,7 > 1 and @ function X7 — 212N} toking r-tuples (21,2, ...,2,)
to nonempty subsets B(zy,2,...,2,) of {1,2,..., N} such that for every n > m and all
T1,%2y. .., Zntr € X satisfying (z;,2i41) €Y Vi,

(511) (M-’ElM-’Bz .. 'M$n+r)ij >0 <= ] € B($n+1,$n+2,- . -,:L'n+r)-

Then there exist constants C < oo and 0 < a < 1 and Hélder continuous functions
p,7:3 = RV:E = Py, and W:X — P such that for every £ = (z,)% € X and
n=1,2,..., relations (5.2)-(5.5) are valid. Moreover,

n=—o00
(512) W(f)] >0 < j€ B(:El_r,.’l:g_,-, s ,330).

PROOF: Without loss of generality we may assume that r = 1 and m = 0 (if not,
replace X by the appropriate subset of X™*" and + — M, by (z1,22,. ., Tmtr) —
My M,,...M,,,,.).

Let P,P+,P. be as in the proof of Propositibn 5.1, and for each nonempty subset R
of {1,2,...,N} and € > 0, define

Pi(R)={veEP:v; >0 <= i€ R},
Pe(R) = {v € Py(R):vi >¢ Vi€ R}.

For each z € X define functions T;: Py — P, and TF: P — P (B(z)) by

Mv « Miv
T,v = ltM - and T, v = 1Mo ;

that T, and T, are well-defined and take values in P, and P4(B(z)), respectively, follows
from the hypothesis (5.11), the standing assumption r = 1,m = 0, and the fact that
B(z) # ¢ (to assure that the denominators are nonzero). As in the proof of Proposition
5.1, the compactness of X implies that there exists ¢ > 0 such that T,(Py) C P. and
T (P.(B(2))).
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Each T;:P. — Pe is contractive in the projective metric on P4. Consequently, by
compactness of X and Pe, there exists a Holder continuous V: £ — P, such that for every
E = (mn)iooo € 27

im Tp, Ty, ... T, v =V(§)
n—oo

uniformly for v € P, and £ € X.

For each nonempty R C {1,2,..., N} there is a projective metric on P, (R), which is
uniformly Lipschitz equivalent to the Euclidean metric on P.(R). For any finite sequence
T1,2,...,%n from X such that B(z1) = B(z,), Tz, Ty, . . . Tp,, maps P4(B(z;)) into itself
and is contractive in the projective metric. Note that there are only 2V — 1 possibilities
for B(z;); hence, for any sequence z1z; ...z, there exist 1 <i; <ip < ... < im < n with
m > n/2N such that B(z;,) = B(zi,) = ... = B(z,, ). Consequently, by compactness of
X and P.(R), there exist a Hélder continuous function W:¥ — P and constants C' <
00,0 < @ < 1 such that for every ¢ = (2,)>*,_ € ¥ and w € P,

de(T;, Ty ... T, w,W(c~'¢) < C'a™

To T T

for all n = 1,2,--- . Observe that W(¢) € P.(B(zo)) for every £ € X.

The proof of (5.2)-(5.5) may now be completed by the same argument used in the
proof of Proposition 5.1. O

We turn again to the matrix product in equation (5.1). We will show that, although
the assignment ¢ — H;(1) is imprimitive, nevertheless the hypothesis (5.11) of Proposition
5.2 is satisfied. Take X = A x F, where F is a compact subset of (O,R], and ¥ =
{((5,2),(4,2")) € X?:5 #i7'}; let ¢ —» M, be the assignment (3,z) — H;(z). For each
r>0let G- ={yeG:lyl=r}.

LEMMA 5.3: There ezists an integer r > 1 and a function G, — 28 taking each y =
Y1Y2...Yr € Gr to a nonempty subset B(y) of B, such that the following is true. For any
n20and y=y1y2...Yn+r € Gntr, and any choice of z1,22,...,2n4r € (O, R],

(5.13) (Hy, (21)Hy,(22) ... Hy,y, (204r))** > 0
< b € B(yn+1yn+2 e yn+1")'

PROOF: Recall that H2(2) = E“zr(”)l{ZT(z) = zb;7(z) < 00}. It is clear from this that
either H2%(z) > 0 for all z € (O, R] or H**(z) = 0 for all z € (O, R]. Thus, it suffices to

prove (5.13) for z; = 22 = ... = zp4, = 1. Now by Proposition 23
C (EyOHL) Hy, (10) = H)
= H:’lly(1)

= P{T(a_ly) < 005 Zp(a-1y) = a_lyb}.

This is positive iff there is a positive probability path from e to a~!yb that does not enter
a”lyB until the last step.
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Recall the standing assumption (1.2) that the random walk Z, may visit any z € G
with positive probability. Hence, for each i € A there is a positive probability path from
e to ¢. Since there are only finitely many elements of A it follows that there exists s > 0
such that for every ¢ € A there are positive probability paths from e to ¢ and from : to e
that stay entirely in U,<;Gr. Consequently, for any y € G such that |y| > 2K + s,

H*(1) >0 <= H)(1) > 0= H, > 0.

The last inequality allows us to remove the letters y;,ys2,... from y, one at a time, until

the word size is reduced to 2K + s. Therefore, whether H, ;b(l) >0or H ;"(1) = 0 depends
only on b and the last 2K + s letters in y. The lemma now follows with r = 3K +s. [

Lemma 5.3 implies that the conclusions of Proposition 5.2 are applicable to ¢ — H;(1),
where ¢ € A, and Y = {(3,5) € A X A:j # i"'}. Let A be the set of all doubly infinite
sequences { = ()52 _ ., with entries z,, € A satisfying (zn,Zn+1) € Y foralln € Z. Then
by Proposition 5.2 there exist constants C < oo and 0 < @ < 1 and Hélder continuous
functions ¢,y:A — R,V:A — Py, and W: A — P (where P = {v € RB:v; >0 V b and
> bes¥ =1} and Py = {v € P:vy > 0 V b € B}) such that

lle= 5O H,, () H,, (1) - Hy, (1) = 4(a"E)V(E)W (™€) < Ca”
forall{ € Aandn =0,1,2,.... Applying this to equation (5.1) gives
(5.14) P{A;=z; V1< j<m}=CE)C(c™E)eS* (1 + 0(a™))

for every £ = (z,)>,, € A and m > 1, where the bound implicit in the O(a™) term is
uniform in €. Here

C(€) = u'V(§) = V(£)e >0,
C(&) = 1(EW(&)'v™ >0,
because V' has all entries positive and so does v*° (see (5.1)).

According to [Bo], Th. 1.4, there is a unique shift-invariant probability measure u,,
on A with the following property: there exist constants 0 < C; < C2 < 0o and P(p) € R
such that for every cylinder set

A(z1zg...20) ='{(yn)f’_°°° ENyp=2, V1I<n<m}

we have

‘ N¢(A($1$2 CL'm))
(5.15) O S b (Smp(®) —mP(p)] =

for every £ € A(z123...2m). The measure p, is called the Gibbs state with potential
function ¢, and the constant P(¢) is called the thermodynamic pressure of ¢. It should
be noted that p, is the distribution of a k-step Markov chain if ¢ is a function of the first
k coordinates zy,z5,...,z) of £.
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THEOREM 5.4: For alln > 1 the measure p, is absolutely continuous with respect to p,

and pn3p¢ as n — o0o. Moreover, P(p) =0.

PROOF: For each m > 1 the sum over all reduced words zjz; ...z, of the probabilities
P{A, =z, V1< n<m}is 1. Since C(£),C'(¢) are bounded away from 0 and co and
P is a probability measure, it follows from (5.14) and (5.15) that P(¢) = 0. Moreover,

since (5.14)—(5.15) hold for all cylinder sets and since the cylinder sets generate the Borel
o-algebra, it follows that y; < p, and that the Radon-Nikodym derivative h = (%) is
bounded away from 0 and oo. Now consider the restrictions of ui, p, to the o-algebra F,

generated by the coordinate functions §;,j > n; one has
dpa | Fa
(L) = Ey,, (h|Fn) — Ey, (h|Fo) = 1

because the tail field Foo = I';l Fn is 0-1 under p, (p, is mixing — see [Bo], Ch. 1). It

follows that p, < p, and ,ung,uq,. O

NOTE: When K = 1 (nearest neighbor random walk) ¢(€) = ¢(z¢) and the boundary
process A, is a Markov chain on the state space A = {a;,a7", az, a;l,...,ar, azl }. When
K > 1 it appears that in general the process induced by u,, is non-Markovian.

6. Saddlepoint Approximations

The Local Limit Theorem (section 4) gives asymptotic approximations as n — oo
for the transition probabilities p**(z) for fixed z € G. These do not, however, hold uni-
formly for z € G, and thus give no information about p**(z) as n — oo and |z| — oo
simultaneously.

To derive approximations suitable for this case we will use the saddlepoint method
([dB], Ch. 5). The strategy is the same as in the nearest neighbor case [La], to wit, to
analyze the exact formula

1

2nrn

Gz (re?)e™"0dh

-

(6.1) p(z) =

for an appropriate value of r € (O,R). (Note: (6.1) is a consequence of the Fourier
inversion formula, and is valid for all n > 0,z € G, and 0 < r < R.) But the analysis of
the generating function(s) G(z) is significantly different in the finite range case. Recall
that by (2.1) and (2.6)-(2.7),

(6.2) Gu(2) = Fu(2)G(2),
(63) Fo(2) = v’ H, (2)H,o (2) - . He, (2)4(2),

where £ = 2122 ...z, is the reduced word representation of z,u, =1 and up =0 Vb€
B\{e}, and ¢(z) = (#s(z))ses (and recall that ¢p(z) = Fy-1(2)). In the case of nearest
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neighbor random walk the matrix product in (6.3) can be reduced to a product of scalar-
valued generating functions, but in the finite-range case the matrix product cannot be
avoided.

By Lemma 5.3 the results of Proposition 5.2 are valid for the assignment (3, 2) — H;(2)
where (¢,z) € A X F and F is any compact subset of (O, R]. Thus, there exist Holder
continuous functions ¢,v, V, W on A X F such that for each z € F' the relations (5.2)-(5.5)
are valid for p(§) = ¢(&, 2),v(€) = v(¢, 2), etc., and M; = H;(z). (NOTE: ¢ is different
from ¢.) Our first task will be to show that p(€, 2),v(€, 2), V (€, z), and W (£, 2) are analytic
in z for z in some region containing (O, R) and that (5.2)-(5.5) remain valid for complex
z sufficiently near (O, R).

For each ¢ = (z,)32 €Aandn=1,2,..., define

n=—oo

®n(€, z) = Hzl(z)sz(z) oo Hy (2).

PROPOSITION 6.1: There ezists a connected open neighborhood N of (O, R] in the closed
disk {|z| < R} such that for each £ € A the functions ¢(&,2),v(€,2),V(€,2), and W(E,2)
eztend continuously to z € N and analytically to z € N N {|z| < R}. For each compact
subset K C N there are constants C < oo and 0 < o < 1 such that for all ¢ € A,z € K,
andn=1,2,...,

(64)  [lexp{=Snp(£, 2)}Bal£, 2) — A(0™E, 2V (€, )W (0™, 2)1|| < Ca™
(65)  &1(€,2)V(0k,2) = PEIV(E, 2);
0,—1 pe t 2) = ecp(s,z) 7(6,2) p t,
66)  WeE2) 0 ) (& bwiesr,
and
(6.7) 2(€,2) = - 40

W(E,2)tV (€, 2)

The vectors V,W satisfy 1*V(€,2) = 1'W(€,2) = 1, and V(£,2) has all entries nonzero.
The functions ¢,7v,V, and W are all jointly continuous in £ and z, and for each fized
z are Holder continuous in . The functions V(€) and ¢(£) are functions only of the
“forward” coordinates x1,x2,...; and W(£) is a function only of the “backward” coordinates
cergl—1,Z0-

PROOF: We will show that as n — oo,

®,.(¢,2)1

lt@n(f,z)l - V(f,z)

and

®,(07 "¢, 2)'1
11, (0~ "¢,2)t1

— W(¢,2)
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uniformly for £ € A and z in (sufficiently small) closed disks centered at points on (O, R],
and that the errors are exponentially small in . Since for each n > 1 the functions ®,(¢, )
and ®,(0c™"¢, z)! are jointly continuous in (¢, z) and analytic in z, it will then follow that
V and W are continuous in (£, z) and analytic in z, and consequently, by (6.5) and (6.7),
that ¢ and v are also continuous in (, z) and analytic in z. Hélder continuity will follow
from the exponential rate of convergence.

To establish (6.4) and the convergences indicated in the previous paragraph, we will
transfer certain of the ideas and arguments used in proving Propositions 5.1-5.2 to the
setting of a suitable complez projective space. Let N = |B|; we will identify RN with RB
and CV with C? wherever convenient. (Keep in mind that H,(z) and therefore ®,(¢,z)
are N x N matrices.) Let P,P4, and P, be as in the proof of Prop. 5.1, and for each
nonempty B C B let P (B) and P.(B) be as in the proof of Prop. 5.2. Define analogous
spaces of complex vectors as follows:

={veCM:1v =1},
e={veEP:|vi| >¢ Vi}

(B) = {v € P:v; #0iff i € B};
(B) = {v € P(B):|vi]| >¢ Vie B}

| 9l

e )

Note that P, P, are compact subsets of P, P., respectively, and that P.(B)is a compa,ct
subset of P.(B); also, P4(B) C P(B) but neither is compact.

For £ € A and z such that |z| < R define mappings ¥,(£, z) and ¥%(¢,2) on P by

®,(c7 "¢, 2)t
1t®,(0c—"¢, 2)tv

®,.(& 2)v

\I’n(‘faz)v = lttﬁn(f,z)v

and U, (£, 2)v =

These are the analogues of T, T in the proofs of Propositions 5.1-5.2. But notice that
they are not well-defined for all v € P and |z| < R, because the denominators may be
zero. We will show that they are well-defined for v € P sufficiently close to P, and z near

(O, R).

Fix t € (O, R], and let r be as in the statement of Lemma 5.3. By Lemma 5.3 and
[Se], Lemma 3.1, there exists ¢ > 0 such that for every ¢ € A the function U,(£,t) is
well-defined on P, and maps P, into P.. Moreover, ¥,(£,t) is contractive on P, relative
to the Birkhoff projective metric (see the proof of Prop. 5.1). Since the projective metric
and the Euclidean metric are uniformly Lipschitz equivalent on P., there exists n > 1 such
that ¥,(£,1) is a strict contraction on P, relative to the Euclidean metric. Consequently,
there is an open neighborhood Y of P. in P and an integer m > 1 such that for every
£ € A the function ¥p,(€,t) maps closure (i) into U and acts as a strict contraction on
closure (U). But ¥,(£, z) is jointly continuous in (¢, z), so there exist § > 0and 0 < a < 1
such that for all £ € A and (complex) z satisfying |z —t| < § and |z| < R,

U nr (€, 2)(closure (U)) Cc U
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and

d(Tmr(€, z)u, Uinr(€,2)v) < ad(u, v).
(Note: This also uses the fact that A is compact. Here d is the Euclidean metric on 5)

As in the proof of Proposition 5.1, the last inequality implies the existence of vectors
V(€,2) €U for £ € A and |z —¢| < § such that for suitable constants C < co and 0 < a < 1
(independent of z and ¢)

(6.8) d(Pn(€, 2)v,V(£,2)) < Ca”

for every v € closure () and n =1,2,....

A similar argument shows that the mappings % (¢, ) are well-defined in a neighbor-
hood U* of P in P and map closure (U*) contractively into U* for |z — t| < 6*. It then
follows that there exist vectors W(¢,z) € U* for £ € A and |z — t| < 6* such that

(6.9) d(o (&, 2)v, W (¢, 2)) < C*(a™)"

for all v € closure (U*) and n = 1,2,... . Now ¢ may be defined by (6.5) and v by (6.7).
If 6,6* have been taken sufficiently small then the neighborhoods ¥ and U* can be taken
to be “close” to P. and P, and so W(¢,2)'V(¢,2) will stay bounded away from 0, and
V (€, z) will have nonzero entries.

The inequalities (6.8)~(6.9) may now be used to prove (6.4) by the same argument
used to prove (5.2) from (5.9). The relation (6.6) follows from (6.4) by an easy argument.[]

The convergence (6.4) and the analyticity in z of ¢, V, W, and « will ultimately enable
us to analyze the integrand G,,.(re'o) in (6.1) for @ close to zero. However, Proposition 6.1
gives us no control over G, (re'?) for 6 away from zero. For this we need the following:

PROPOSITION 6.2: For every § > 0 there are constants C < oo and a € (0,1) such that
for allr € [6,R],0 € [—m,7]\[~6,6], and all z € G,

Go(re'?)

< =]
Go() | S Ca

(6.10)

PROOF: Recall that G.(2) = G(2)(u'H.(2)$(2)) and that G(z),s(z), H?b(2) are all
defined by power series with nonnegative coefficients. Consequently, each of these functions
attains its maximum modulus on the circle |z| = r at z = r. Recall also (2.6) that if  has
reduced word representation = z;z5 ...z, then H, = H, H,,...H,_,and that each
entry of H;(z), for any i € A, is either 0, 1, or one of hy(z), ha(2),...,hu(2).

ASSUME now that p, > 0. For each j = 1,2,...,v the function hj(z) is defined
by a power series hj(z) = ) ¢n2z" whose coefficients ¢, are probabilities of the form

n=1
g = PY{1(y) = n;Z.(y) = yb}. Since p. > 0, it follows that Gntm = gnp™ for all

32



m,n > 1, and since h;(z) is not a constant function, at least one coeflicient g, is positive.
Therefore, for all » € (O, R] and 6 € [—x, 7]\{0},

|hj(re®®)| < hy(r).

Now consider H,(z) for |z| at least as large as the integer r in Lemma 5.3. Lemma 5.3
implies that every row of H;(z) has at least one entry that is positive for all 2 € (O, R].
Moreover, if |z]| is sufficiently large, say |z| > k, then any nonzero entry must have at least
one h; as a factor in some term (otherwise the entry would be 1, implying that the random
walk visits B with probability one, which is not the case if |z| > k). Consequently, by
the result of the previous paragraph, for each § > 0 there exists g € (0,1) such that for all
re [6a R]anda € [—-7(',7(]\[-—6, 6]7

||Hz(rew)|| < B||Hz(r)]| VzegGwith|z|=k
=>||Hz(rei0)|| < B™||Hz(r)|] V z € G with |z| = nk.

The inequality (6.10) now follows from (6.2)-(6.3).

It remains to show that the assumption p, > 0 is extraneous. Here we use (1.2)-(1.3)
which guarantee that p*™(e) > 0 for some m > 1. We can express the Green’s functions
G:(z) in terms of the Green’s functions for the “m-step” random walk Z,,, as follows:

(6.11) Ge(2)= Y. Gy(2)Ty-1,(2)

y:ly~lz|<mK

where

éy(z) = Zp*nm(y)znm,
n=0

T'w(z) = Z P (w)z".

Since each I'(2) is a polynomial with nonnegative coefficients, (6.10) for G, follows from

(6.10) for G,. O

Relations (6.2)—(6.4) allow us to approximate G;(z) by (exp{Sm¢(¢,2)})(--+) where
-« - indicates terms that do not change much as m — co. Here z = 2122 ...z, and £ € A is
any sequence whose first m entries are 2z ... 2,. Consequently, to analyze the integral
(6.1) by the saddlepoint method we need some control over the first two derivatives of

Sme(€,2) for z € (O, R].

Let 7 denote the set of ergodic, o-invariant probability measures on A. For each
n-periodic sequence { € A there is a unique ergodic, o-invariant probability measure v
supported by {¢,0€,0%¢,...,0""1¢}: ve attaches mass 1/n to each o#¢. Let Ty = {vs:£ € A
is periodic}; then Z; is weak-* dense in Z.
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For s € (—o0,log R) and £ € A define

$(,9) = ol "),
D) = TH(E9),

. d2
B(E8) = T7b(E,5).

PROPOSITION 6.3: For every p € T the integral N ¢(£,s)du(§) 18 @ continuous, strictly
increasing function of s € (—oo,log R), and

(6.12) [ 96,06 2 5 Vs € (~oo,log ).
Moreover,
(6.13) Jim it [ e, 9ule) =

If pr > 0 for all z € G such that |z| = k, where k < K, then

(6.14) Jim_sup / (e, s)du(e) <

PROOF: The functions 3,7 are jointly continuous in (¢, s), by Proposition 6.1 and the
Cauchy integral formulas for derivatives. Since A is compact, the integrals | 1/)({ , 8)du(€)

and [ ¢(§ ,8)du(€) are well-defined and continuous in s, and the latter is the derivative of

the former. In Proposition 6.4 below we will prove that J ¢(§,s)du(§) > 0; 1t will then
follow that [ B(E, 8)dp(§) is strictly increasing in s.

Since Iy is deuse in 7 in the weak-* topology we may replace T by I, in each of
(6.12)~(6.14). Let ¢ € A be periodic with period m > 1; (6.4) implies that

(6.15) nlirrgo trace (exp{Smn®((,2)}Pmn((,2)) =1

uniformly for 2z in any compact subset of N'. Consequently, by the Cauchy integral formula,
the derivative with respect to z converges to zero. Thus,

(6.16) [#(€2aue€) = tim L trace (=569, ¢, ),
[ = [o(6 e
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where ! indicates Hiz-' Now ®,(¢,2) = H,(z) where ¢ = z122...2, and z1,2,,...,z, are

¢
the first n entries of ¢, so trace ®,(¢, 2) is a sum of terms of the form [] h;;(2). Lemma
i=1
5.3 guarantees that there is at least one such term provided n > r. Moreover, for each
such term £ > (n — 1)/K, because £ = 2123 ...z, cannot be reached from e in less than

£ .
(n — 1)/K steps. The derivative of Hl hi; (z) with respect to z is
J=

R (2) o

(6.17) iﬁh- (2) —i: i (2) H ki, (2)
dZ =1 7 = hij (Z) do=1 ¢
Each hi(z),: = 1,2,-.-,v, is a power series in z with nonnegative coefficients and no

constant term, so for each ¢ and each z € (O, R) we have hl(2)/hi(z) > 1/z. Consequently,
for all z € (O,R),£ € A,and n > 1,

1 trace &,(£,2) S n= 1
n trace ®,(£,2) — nKz'

This together with (6.15)—(6.16) proves (6.1) for u — v,, and therefore for all u € 7.

Assume now that p, > 0 for every y € G satisfying |y| = k. Then for each z € G
there exists a positive probability path from e to z with no more than |z|/k + C steps,
where C' < oo is a constant independent of z. It follows that for each z € G, trace (H(z))
contains a term py, py, . . . py, 2° with py, > 0 for all : and £ < |z|/k + C'. Now each entry
H2%(z) of H,(2) is a power series in z with nonnegative coefficients, all bounded above by
1; thus, we may write trace (H;(z)) = Z;‘;l bfzj where 0 < b7 < |B|. Consequently, the
contribution to trace (H_(z)) from those terms of the series indexed by j > |z|(1/k +¢) is

for 0 < z < 1, bounded above by

N-1 N
5| {N z L }
1-=2 (1—2)2
where N = [|z|(e + 1/k)]([-] indicates greatest integer). But trace (H(z)) has a term
bZzt with £ < |z|/k + C' and bf > pf, where p. = min{ps:b € B and py > 0}. If z is
sufficiently small that pf >> zI*|¢ then this term contributes more to the trace than those
terms indexed by j > N contribute to the derivative. Finally, terms b;?zj withl <3< N

contribute jbf-zj ~1 to the derivative, and j/|z| < 1/k 4+ e. We conclude that for any ¢ > 0
there exists z, > 0 such that for all z € (0, z.),

!
i Z trace H,(z) < 1
z—0+ |z| trace Hy(z) ~ &

+e€

for all z € G satisfying |z| > n., some n. < co. The result (6.14) now follows from
(6.15)~(6.16).
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Finally, consider (6.13). Take p = v, where {( € A is periodic; then fiﬁ(f,s)du(f) is
given by (6.16). Now for any £ € A and 0 < z < R the trace of ®,(¢, z) is a sum of terms

of the form H hi;(z) with £ > (n — 1)/K, and the trace of ®;,({, 2) is a sum of terms of
the form (6. 17) If hu(z) = min(h}(z)/hi(2)) then certainly

I —
1 trace ®,,(£,2) > n-—1 ha(2).
n trace ®,(¢, 2) nK

Assume that p; > 0 for each j € A; then by Propositions 3.3 and 3.6, lim,,r_(h}
(2)/hi(z)) = oo for each 2 = 1,2,...,v, and hence h.(z) — oo as z — R—. Since (6.15)-
(6.16) exhibit [ (€, 8)du(€) as the 11m1t of a ratio of traces, this proves that if p; > 0 for
each j € A then '

lim inf / (€, 8)dve(€) = oo,

z—R— v €Zy
and (6.13) follows.

It remains to show that the assumption p; > 0 V j € A is extraneous. Again we
use the standing hypotheses (1.2)—(1.3). By Lemma 1.1 these guarantee that for some
m > 1,p*™ (i) > 0 for every ¢ € A. Hence (6.13) is true for the random walk with 1-step
transition probabilities p*™(z). Unfortunately, this doesn’t yet prove (6.13) for the original
random walk because the p-functions may be different. To get around this difficulty, we
will express the integral in (6.13) in terms of the Green’s functions and then appeal to

(6.11).

Fix € = (2,)2 _o, € A and for each n > 1 set (™ = 212, ... 2,. If £ is k-periodic
then (6.2)-(6.4) imply that

lim e~ Snr#(6:2) {'————ng(k;)(z)} = (¢, z)

n—oo

where
(€, 2) = u'V (€, 2)W (€, 2)"6(2).

This holds uniformly for z in any compact subset of M, and the limit 5(¢, z) is bounded
away from zero. Consequently, the derivatives also converge, yielding

[ #6e(c) = i - { et

This, together with (6.11), implies that if (6.13) holds for the random walk with transition
probabilities p*™(z) then it must hold for the original random walk as well. |

PROPOSITION 6.4: For every a > —oo

(6.18) inf  inf /d)({,s)d,u(.f) > 0.

a<s<log Rpu€l
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PROOF: Let ¢ € A be m-periodic and z € (O, R) be fixed. For some b € B the b** entries
of the vectors V(¢,2) and W((, z) are both positive (the entries of V(¢, z) are all positive,
the entries of W(¢, z) are nonnegative, and W (¢, 2)'1 = 1). Consequently, by (6.4), as

e V(¢ DWW, 2)s

¥(¢, 2)

and in fact this holds uniformly in a neighborhood of z. Observe that the limit is strictly
positive. Hence, by the Cauchy integral formulas for derivatives (with - indicating d/ds),

. 1 [eR.(¢e
/¢(£1 S)dVC(E) = n1-1—>n<§o mn { Q#ngga es; }

exp{—Smn((, Z)}cpfrl:n(C7 z) —

and

[ 1) = tm,

. bb .
1 q)mn(g’ e")(pzl;n(c, 63) — (I)f'rl:n(c’ 68)2
mn ®2.(C,e%)? '

Recall that ®% ((,z) = HE(z) = E*2"(®)1{r(z) < 00; Zr(z) = xb} where z =

.. bb
T1Z2...Tmn ar.ld ¢ has z1Z3...2m, as its first mn entries. Consequently, {H,
(e*)HI(e*) — HE(e®)?}/HEY(e®) is the variance of 7(z) under a certain probability mea-
sure, and as such is no smaller than the expectation of the conditional variance given

£
Zr(21)s Lr(wy39)1+ -+ » Zr(z)- Now recall that H2®(e?) is a sum of terms of the form Hl hi; (e®)
]:

with £ > (|z] — 1)/ K; conditioning on the values of Z,(,,), Zr(z125)s - - - 15 the same as spec-
ifying one of the terms [] &;; (e®). Consequently, the conditional variance is

[ B (e)hi; (e°) — by (e°)?
Z { hi_,' (63)2

i=1

for some sequence ¢1,13,...,%¢ from {1,2,...,v}.

oo
Assume now that p. > 0. Then each h;(z) is a power series Y g, 2" with gp1m > gnpT

n=1
and some ¢, > 0, and hence {h;(e*)h;(e®) — hi(e®)?} > 0 and is bounded away from 0 for
a < s <logR. It follows that the terms in the last displayed sum are bounded away from
0, say by € > 0, so the conditional variance is at least £e. Since £ > (|z| — 1)/K, it now
follows by the two preceding paragraphs that for all s € [a,log R) and all periodic ¢ € A,

/J@ﬁﬂw@)ZdK-

It remains to prove that the assumption p, > 0 was extraneous. By (1.2) there exists
m 2> 1 such that p*™(e) > 0; hence (6.18) is true for the random walk with 1-step transition
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probabilities p*™(z). By an argument like that used in proving (6.13),if { = (z,)2_., € A
is k-periodic then

. L 1 éz(nk)(es)Gz("k)(es) — G'z(ﬂk)(es)z
/¢(E,s)du<(§) = nh_{r;o nk { G (o) (€°)2 } )

where z(™ = 2,25...z,. Therefore, by (6.11), if (6.18) holds for the random walk with
1-step transition probabilities p*™(z) then it must hold also for the original random walk.[]

Let p € Z and q > 0. Define

Bwe)=__ inf o [ 9(6 5)du(e) -}

—oo<s<log

this is the Legendre transform of s — [ (¢, s)du(¢). Since [ (€, s)du(€) is a strictly con-
vex function of s, by Proposition 6.4, the inf is uniquely attained at some s € [—oo0,log R).
If ¢ = 0 then the inf is attained at s = s(u,0) = log R, and in general the inf is attained
at an interior point

§ = S(/.L,q) € (_OoalogR)

iff qf&(f,s)dp({) = 1. By Proposition 6.3, fzﬁ(ﬁ,s)du(.f) is a positive, strictly increasing
function of s always exceeding 1/K, so we may define

I= lim inf / b(E,s)du(€) > 1/K.

s——oo ucl

By (6.13), if p, > 0 for every « € G satisfying |z| = k then I < 1/k. Since ftp(f,s)d,u(ﬁ) —
0o as s — log R, it now follows that s(u,q) is a well-defined interior point of (—oo,log R)
whenever g € (0,1/I). Moreover, s(y, q) is a strictly decreasing function of gq.

If £ € A is periodic and v is the o-invariant probability measure supported by the
orbit {¢,0¢,0%¢,...} of £, then we will write

3(57 Q) = 3(V57Q),
B, q) = B(ve, ).

For each finite reduced word ¢ = z1z3... 2, € G let £, € A be a periodic sequence of
minimal period containing z;z2 ...z, in its smallest periodic block. (If 2 # 27 ! then
fe =...Z1%2 ... TmT T2 ... T ... . In general £, isn’t uniquely determined, but the choice
of {; doesn’t matter.)

THEOREM 6.5: Let = € G be such that |z| = m. Set r = e*(6=m/n), Then

exp{nB({e, )}

(6.19) p™(z) ~ =
V2rS (e, s(6e, )

{G(r)7(am€$’ 7")‘/6(6-'!1 ’ 'I‘)W(O'm.fz, T)t¢(r)}
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and
(6.20) P{Tz = n} ~ p*"(z)G(r)

as m,n — 0o in such a way that  stays in the interior of the interval (0,1/I). Further-
more, these relations hold uniformly in x for = in any compact subset of (0,1/1).
PROOF: We use the Fourier inversion formula (6.1) with r = exp{s(¢;, 2)}. Relations
(6.2)~(6.4) allow us to re-express the integrand G,(re?) in terms of ¢ for |6] < 6,6 > 0
small. Proposition 6.2 implies that the integral over 8 € [—m, 7]\[—§, §] is of exponentially
smaller magnitude than the integral over [—§, §]. Hence, by (6.2)-(6.4),

é
P (2) ~ (2mr") 7! /_ PSP (6ey s +i6) — in8}C(re®)df

where

C(2) = G(2)y(0™ &z, 2)Ve(€s, 2)W €z, 2)" (2)
and s = 5({;, ) = logr. Now s has been chosen so that § = 0 is a saddlepoint of
the function Sw{(€z,s + i6) — inb; thus, when expanded in a Taylor series, its linear

term vanishes, leaving Sp,¥(€;,s) — S’ml'b'(f,:, 5)0%/2+ ... . Therefore, the integral may be
analyzed by an entirely routine application of Laplace’s method of asymptotic expansion
([dB], Ch. 4), which gives (6.19). A similar analysis gives (6.20). O

It should be observed that this proof only establishes the uniformity of (6.19)—(6.20)
for % bounded away from zero. However, for 2 = 0 the approximation (6.19) agrees
formally with (4.1), so it is likely that (6.19) is uniform for 2 € [0,(1/I) — €], any ¢ > 0.
See [La], Proposition 5 for a more complete discussion of this point in the nearest neighbor

case.

7. Asymptotic Behavior of the Word Length Functional

Guivarch showed [G] that |Z,|, the word length of Z,, obeys a strong law of large
numbers: there is a constant 8 € (0, c0) such that |Z,|/n — 8 a.s. as n — co. His proof
used Kingman'’s subadditive ergodic theorem. Later, Sawyer and Steger [SS] showed that

there is also a central limit theorem: (]Z,| —nfB)/v/n-> Normal (0,0?) as n — oo for some
o? > 0, but did not prove that ¢? is always > 0. In this section we will show how the
results of section 6, in combination with certain results about Ruelle’s Perron-Frobenius
operators ([Bo], Ch. 1) may be used to derive even sharper results about the distribution
of | Zy| for large n, and in particular will show that o > 0 if (1.1)~(1.3) hold.

Recall that A is the set of doubly-infinite sequences ¢ = (2,)S__ with z, € A
and Znp41 # ;' V n. Define Ay to be the set of one-sided sequences £ = (zn)32,
with 2, € A and 2,41 # z;! Vn > 1. As earlier let 0:A — A and oAy — Ay
be the forward shift operator, and for any R- or C-valued function f on A or A4 define
Snf=f+foo+...4+ foo™ L. For any Holder continuous functions f,9: A4 — C define

(Lsg)(&) = > fDg(¢) Veea,.
C:ol=¢
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The operators Ly, called “Ruelle operators”, are bounded linear operators on the space
of Holder continuous functions on A4 with given exponent — see [Bo], Ch. 1 or [Po] for
greater detail. Observe that

(L3O = Y, 7 9g(0).
Comi=¢

For real-valued f, the operator £ enjoys certain spectral properties similar to those of
Perron-Frobenius matrices. In particular, there exist a constant P(f) € R (the “pressure”),
a strictly positive, Holder continuous function hy: Ay — (0,00), and a Borel probability
measure vy on Ay satisfying [hgdvs = 1, such that

Lghg= eP(f)hf and ﬁ;Vf = eP(f)uf

(here £* denotes the adjoint of £). Moreover, the rest of the spectrum of £ f 1s contained in
a disc centered at 0 of radius < e”(f), The measure p f defined by Z—ﬁf = hy is o-invariant
and therefore extends to A; it is the “Gibbs state” associated with f.

Now let {p.(£):2 € N, € Ay} be a family of Holder continuous functions on A
indexed by z € N for some domain A C C such that z € ¢, is analytic with respect to one
of the Holder norms. We have in mind ¢,(£) = (¢, 2) or ¥,(£) = (¢, s) where ¢, ¢ are
as in section 6. Assume that for z € RNA the function ¢, is real-valued. Then the results
concerning the spectrum of £, described above are applicable for each fixed z € RN N.
Furthermore, standard results from regular perturbation theory (cf. [Ka], Ch. IV, sec. 3
and Ch. VII, sec. 1) imply that P(z), h.,v., etc. extend analytically to a neighborhood
of R in N, where the relations £,h, = eP(Z)hz, Liv, = eF(2) vy, and fhzduz = 1 remain
valid. (Notational convention: we will write £,, P(z), etc., instead of Ly, ,P(p;), etc.) In
addition, for each real z, there exists € > 0 such that for all z € N satisfying |z — z.| < ¢,

spectrum (L) — {7} C {w € C: jw| < &%) — ¢},

Denote d/dz by .

LEMMA 7.1: For each z e RN N,
(7.1) P@) = [ oL©dns(e),
(12) P = [0dn©) + i T (5.0 - nP () (o)

PROOF: Differentiate both sides of the equation (e~P (z),Cz)"hz = h, with respect to z,
divide by n, integrate against v, and let n — oo to obtain

tim [ Ly { (22 - o) b} @ane =0
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Now use the equations ((e " F* £,))*v, = v,, (dp,/dv,) = h., and [ h.dv, =1 to rewrite

this as ,
Sn

lim du, = P'(2).

Since p, is o-invariant, this proves (7.1).

To prove (7.2), differentiate both sides of (e "P(*) £,)*h, = h, twice with respect to z,
then divide by n, integrate against v,, and let n — oo to obtain

n—oon

lim = /( —-P(z) p )n{(sn({,z’ — nP"(z) — (Sn‘P’z — nP'(z))z)hz}de =0.

Since (e_P(Z)£Z)"Vz = v, and dy, = h.dv,, this implies (7.2). O

We may apply this result to the assignment s — 1, where 15(§) = ¥(¢,s) is as in
section 6. Together with Proposition 6.3, Lemma 7.1 implies that P(s) > 1/K for all
s € (—oo,log R), that hms_,logRP(s) = oo, and that if p, > 0 for all z € G satisfying
|z| = k then lim,—,_o P(s) < 1/k. (Note: superscript " indicates d/ds, as in section 6.)
Together with Proposition 6.4, Lemma 7.1 implies that P(s) > 0 and P(s) is bounded
away from 0 for s € [a,log R], for any a > —oo; hence P(s) is strictly convex, and P(s) is
strictly increasing, for s € (—o0,log R). Set

IP - —oo<1§l£log R P(S)

Denote by B(q) the Legendre transform of P(s), i.e.,

Blg)=__ inf  {aP(s)=s}.

Since P(s) is strictly convex, the inf is attained uniquely at some s = s(q) € [—oo, log R].
If ¢ = 0 then s(0) = logR; if ¢ € (0,1p) then s(q) € (—oo,log R); and if ¢ > Ip then
s(g) = —oo. Note that s(q) = s € (—o0,log R) iff P(s) = 1/q. Clearly, s(q) is a decreasing
function. By the chain rule

4 — Pls(a)) and Lo _ P(S(q))2
qu(q) P(s(q)) ddqu(q) qP(s(q))

so B(q) is strictly concave on (0, Ip).

According to Theorem 5.4, P(0) = 0. Consequently, B(g) attains its maximum value
uniquely at ¢ = 1/P(0), and this value is 0. Note that P(0) = f¢(§, 0)duo(¢) by Lemma
7.1, and that po coincides with p, in Theorem 5.4.

THEOREM 7.2: There are positive constants C(q),q € (0,Ip), such that as n — oo and

m — o0

exp{nB(%)}

(7.3) P{|Zn| =m} ~ =
2rmP(s(2))

(=)
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uniformly for 7t in any compact subset of (0,Ip). Also,

&> _ CA/P(0)* P(0)
(d92 B(q)) g=1/P(0) - P(O) .

(7.4)

REMARKS: (7.3)~(7.4) imply the central limit theorem for |Z,| first obtained by [SS], and
show that the limiting variance is strictly positive. The result (7.3) shows that in fact a
local central limit theorem is true. Theorem 7.2 also allows us to identify the constant 3
in Guivarch’s strong law |Z,|/n*38:

_ 1 1
P(0)  [4(& 0)duo

where po = p, is the Gibbs state figuring in Theorem 5.4.

B

PROOF of Theorem 7.2: By the Fourier inversion formula,

2rr?

(7.5) P{|Z,| =m} = L /_1r > Ga(re®)emim0dg

z:|z|=m

for any r € (O,R]. We will analyze this integral by choosing r so that the integrand
has a saddlepoint at r, then using Laplace’s method of asymptotic expansion as in the
proof of Theorem 6.5. Proposition 6.2 guarantees that asymptotically (as n,m — o0)
the contribution to the integrand from 6 € [—m,7]\[=6, 8] will be of smaller order of
magnitude than the contribution from 6 € [—§, §]. Hence, we may focus on the behavior of
the integrand in the range 6 € [—§, §] where § > 0 is chosen sufficiently small that rei® € A/
whenever 6| < § and N is as in Proposition 6.1.

So consider -1, 1_,, Gz(2) for z € N. Recall (6.1)-(6.2) that G,(2) = Fp(2)G(2)
and that F;(z) has a representation as a matrix product. The behavior of this product is

governed by (6.4) and, most important, (6.4) holds uniformly for £ € A and z in compact
subsets of M. Thus, if |z| = m,

(7.6) Gu(z) ~ 5 (&, 2)p_ (0™ Es, 2)G(2)
where

77+(§7 Z) = utV(f,z),
n-(§,2) =(§, 2)W (€, 2)" ¢(2),

and ¢, is any sequence in A whose first m entries are z;,z3,..., 2, where z = z1z923. ..
Zm. The approximation is uniformly accurate as m — oo for |z| = m and z in any compact

subset of V.

Recall that ¢(¢, 2) and V/(¢, 2) are functions only of the “forward” coordinates z1, 3,
. of &; hence ¢(¢,2) and n4.({, z) may be considered functions on A. This is not true
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of n—(&, z), however. The presence of n_ in (7.6) complicates the analysis somewhat for
this reason. To keep this added complication from obscuring the main idea behind the
analysis of Ez:l s|=m G(z) we will first show how we would proceed if the factor 7. were

not present in (7.6). Using the notation & = z1z5 ... 2m, let £&, ﬁgi) € A, be defined for
each i € A, # z;! by

65:) =T1T9...Tpill... .

Then by (7.6),

Y Gu(2) ~ 5&%—7 Yoo Y eSee A (60 (0D, 2)G(2).

zi|z|=m i€A zlzz...zm:z,_,,l-,éi

But

() 5 i
Z Z eSme(€s” )U+(f§;),z)
€A zlzz...zm:z,_nl#:i
= (LT (- 2))(ED)
i€A
where £, = L., ,) is the Ruelle operator introduced earlier. For z sufficiently close to the

real axis, the spectrum of £, has an eigenvalue e”(?) near the positive axis, and the rest
of the spectrum is in a smaller disc centered at 0. Hence,

> (LTn4(,2))(ED) ~ em P ZME“’)/A 1+(€, 2)dv:(£).

icA i€A

Consequently, if the factor 7_ were not present in (7.6), we would be justified in substituting

C(2)e™P(® for Y G,(2)in (7.5), where C(2) is a nonzero constant (not depending on
z:lz|]=m

m). Asymptotic analysis of (7.5) based on the Laplace method would then give (7.3) (the

details are very similar to those in the proof of Theorem 6.5).

The function n_(améi),z) depends only in ¢ and z;,Zm—1,... . Since it is Holder
continuous, it can be well-approximated by a function depending only on z.,,Zpm—1,...,
Tm—k+1 and i; the approximation may be made arbitrarily close by letting ¥ — oco. (In

fact the error is O(e~**) for suitable a > 0.) Now if n_(amﬁg), z) were only a function of

Ty Tm—1,---,Lz—k+1 and ¢ then we could write
Yo eSmeetdn (60, (oD, 2)
zlzz...zm.*_k:z;h_k#i
= > LT (%) (o™ M- (™ HFED, 2)

zm+1zm+2...xm+k:z;1+k-¢i
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(the dependence of ¢ and 74 on z is suppressed). The spectral theory of £, could then
be applied as in the previous paragraph. Using these approximations and letting £ — oo
gives, finally,

Z Go(2) ~ e™PA C(2)

z:|g|=m

for a constant C(z) # 0 (different from the C(z) of the previous paragraph). Therefore,
(7.5) may in fact be analyzed by the Laplace method, proving (7.3).

It remains to prove (7.4). In principle, this could be done by keeping careful track of
the constants in the preceding argument, but this would be tedious and possibly difficult.
However, (7.4) must follow from (7.3) and Guivarch’s strong law, because the probabilities
in (7.4) for (m/np) € [—¢, €] must add up to (almost) one. O
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