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Abstract

The problem of selecting a subset containing the best of £(> 2) binomial populations
is studied. The approach is more general than the classical subset selection procedures
studied by Gupta and Sobel (1960) and Gupta and McDonald (1986). In these pre-
ceding papers, the infimum of the probability of a correct selection occurs when all the
parameters are equal (in the limit) to the largest unknown parameter. Thus it is nat-
ural to formulate the problem on the assumption that the largest unknown parameter
follows a prior. Several priors have been considered and the associated procedures have
been evaluated. Performance comparisons are made between the classical and the new
procedures. Applications of this approach to the control problem and Poisson models

are provided.

1 Introduction

In general, in order to solve a ranking and selection problem, we usually need to find the least

favorable configuration (LFC) ( more details can be found in Bechhofer (1954), Gupta (1956)
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and Gupta and Panchapakesan (1979), etc). Fortunately, the LFC is easy to find for many
distributions under some assumptions. Then a lower bound for the probability of a correct
selection can be calculated under the LFC and the preassigned probability P*(1/k < P* < 1)
of a correct selection(CS) is guaranteed by choosing the lower bound under the LFC to be
at least equal the required P* value, where the computation of the lower bound on the
probability of a correct selection under the LFC does not depend on the parameter space.
The location and scale-type parameter models are two well formulated examples.

However, if the LFC does not provide a usable lower bound for the probability of a correct
selection (like the decision problem where we want to pick the population associated with
the largest parameter from several Poisson populations), or if it is very difficult to determine
(like the decision problem of the Binomial populations), then the computation of the lower
bound on the probability of a correct selection turns out to be very difficult, and then the
classical selection approach even can not be applied. The main reason for this difficulty in
the computation of any usable lower bound for the probability of a correct selection is its
dependence on the parameter 8 itself.

In the following, we study the subset selection approach for the problem of selecting the
best population from among k£ binomial populations, where we introduce the prior infor-
mation into the problem. We formulate the problem based on the prior distribution of the

largest unknown parameter 0.

2 Binomial Populations

The classical subset selection procedure for selecting the population associated with the
largest success probability from several binomial populations has been studied by Gupta
and Sobel (1960).

Let my,mq, -, 7 denote k independent binomial populations. For each ¢ = 1,2,---,k,
let X; denote the observed number of successes based on n independent observations from

population 7;. Then X; follows a binomial distribution with probability function f(z|p;),



where
stelp) = ()@ —p0 ", 2 =01 ms 0 < <1, W)
Let pp) < ppgj < -+ < pyyy be the ranked values of the unknown p; values, 1 = 1,2,--- k.
The best population is the one associated with the largest parameter py;. Again, the goal
is to select a nonempty subset of 1,73, -+, 7, which contains the best population with a
minimum guaranteed probability P*(1/k < P* < 1).
In Gupta and Sobel(1960)’s paper, the following selection rule was used

R™* ; Select m;, if and only if: X; > max X; —d,
1<5<k

for some integer d(0 < d < n).
Let X(; be the unknown observation associated with pyj, ¢ =1,2,---,k. Then
P(CS|R™) = P (Xgy 2 X(jy—dy j =1,2,+++,k — 1)

- (Z)Pfk] (1-m)" 11 {f (:)Pfj] (1- Pm)n_t}

z=0 i=1 \t=0
. (n n—-z (2t (n : n—t k-1
2 S0 0-m (w0} e

In order to meet the requirement that P(CS|R™*) > P*, it suffices to find an integer
d(0 £ d < n) such that

ok P(CSlp,d) 2 P,

where

POSInd) = 3 () - {i (2)ra —p)""'}k_l . ®)

z=0 =0
Recently, the so-called Gupta-Sobel rule R™** have been extensively studied by Gupta
and Mcdonald (1986). Many useful values have been tabulated by the authors. Here, we
will show that the classical subset selection procedure is a special procedure resulting from
a new approach described in the paper.
Carefully examining the inequality (2), we can see that the infimum of the probability

of a correct selection occurs when all the parameters are equal (in the limit) to the largest .
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unknown parameter. Therefore, it is natural to formulate the selection problem on the
assumption that the largest unknown parameter follows a prior.
Let G(-) be the prior distribution on the space of the largest parameter pyy. The P(CS),

using the natural subset selection rule R™**, has the following lower bound

P(CS|d, G, R™)

1
= /0 P (X > X —d, j=1,2,---,k ~ 1|pp) dG(pp)

= /0 ' (znj (Z)pfkl (1—pw)"" kI:Il {xf (:) ply (1 - PU])H} |p[’°1) dG(pw)

=0 j=1 \t=0
—z z4d n net k-1
> / Mot (=) I ) ot (1 - P dG(ppy)- (4)
z=0 \T =0 \t

Note that this inequality is similar to that of (2).

In the following, we classify the prior information about the largest (unknown) parameter
P into three categories

(a) the prior distribution of py is completely known,

(b) the prior distribution of py is totally unknown,

(c) the prior distribution of pp is partly known.

Where, the assumption (a) is though unrealistic, can still be used to obtain results for

the case (b) and (c).

3 Results for the Prior Distribution G(-)

From (4), we see that the prior distribution of py determines a lower bound on the P(CS).
We will consider the problem, when G(-) falls into three categories.

(a) The distribution function G(-) is completely known.

For any given P*(1/k < P* < 1), if G(-) is a proper distribution, then we can find the
smallest integer d(0 < d < n) satisfying

P(CS|d, G, R™*=) > P*,



Actually, we need only to find the smallest integer d(0 < d < n) satisfying

P(n,k,d,G) > P*,

where
P(n,k,d,G) = / ;_%( )p 1-p)" {li: (?)pt(l —1!7)"‘t}k_1 dG(p). (5)

For a specific choice of G(-), we give the following proposition.

Proposition 3.1 Let

(a=1)(1 — p)(B-1)
oo fst =B ),

where B(a, f) = [[(a)T'(B)]/T(a+pB)] is the beta function. Then, for any beta distribution

ba,g € Be, we have

n n (k—1)(z+d)
P(n, k,d,bg) = E() S H(hYRag(h,o),
h=0

=0 z
where
Sitiz+etik—1=h n
HE) = ] ()
j11j2""7jk—1<h ]l
and

B(h+z+a,nk—h—z+p)
B(a, §) '

(b) The distribution function G(-) is totally unknown.
When G is unknown, then

Rap(h,z) =

mlnP(n k,d,G) = Imn P(CS|p,d),

where G is the class of all distributions on the interval (0,1). Then it is exactly the lower
bound used in Gupta and Sobel (1960). Or one may use the “non-informative” priors, one
of them is
G(p) = Lo<p<1)s
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which is a member of B, if @ = 8 = 1. Then, we have

o (nk+1)(z+.71+ “+ik~ 1) -

Another “noninformative” prior is the so-called Jeffreys prior with the following density

function

[p(1 —p)]‘%
B(zv 2

= Zpa-pIt

Gi(p)

Using the uniform prior and Jeffreys prior, we have computed the values of P(n,k,d,G),
for n = 2(1)10, k¥ = 2(1)5, d = 0,1,---,n — 1 in Table 1. From the tables, we notice that
the bounds are much larger than that of the classical procedure provided, for instance, when
n=2>5, k=3, d =1, the lower bound of the guarantee P(CS) will increase from 0.7265 for
the classical procedure to 0.8188 for G = U(uniform), and to 0.8675 for G = G j(Jeffreys)(see
the column of d = 1 in Table 2). For other choices of n, k, d, the values of P(n,k,d,G),
when G = U(Gy), can also be easily calculated from formula (5).

(c) The distribution function G(-) is partly known.

(i) The support (say A C [0,1]) of the distribution G(-) is known, but the exact form of
the distribution function G(-) is unknown.

Then, either the infimum of P(CS|d,p) on A, or a uniform prior on A can be used.
Actually, it is reasonable for the experimenter to know that the support of G is not the
whole parameter space. For instance, we may know that all the populations have their
success rate very high, say at least larger than 2 ¢, so the support of the largest (unknown)
P& is not the whole interval [0,1], but a subset of it (i.e. [2,1]).

(ii) G(-) is in a e-contamination class of a known distribution Gy, say, G belongs to the

class I', where
'={G: G=(1-¢)Go+¢Q, Q € Q}. (6)

The distribution G can be any known proper function. For the choosing of Q, one may

consider the case (b) and case (c)(i) of above.
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(iii) Another interesting choice of the G(-) is: G € Q,, 5,, Where

an,bo =

{@: @ is uniform on (maz{0,a0 — €},min{l,bo+€}), 0 < ag < by < 1,6 > 0}.

It can be used in situations when the practitioner can specify an interval (or a point),
say [ao, bo], within which one is confident that the parameter py; most likely falls in.

Figure 1 and Figure 2 show some behaviors of P(n,k,d,Q; ) against ¢, when ao = 0(1)
and ao = 1(2), where Q¢ is the uniform distribution function on the interval (maz{0, ao —
e}, min{l, a0+ €}).

Table 2 shows how different procedures (for different priors) perform. Where we can
see that if the largest (unknown) parameter py; is believed to be larger than .75, the lower
bounds of P(CS) provided by the classical procedure will definitely need to be replaced by
.75i£1pf<1 P(CS|p,d), which is much better than the one the classical procedure provided.

The above approach can be easily applied to the following problems.

4 Selecting Populations Better than A Control

Let po € (0,1) denote the unknown probability of a unit being defective in the control pop-
ulation . Population 7; is said to be good if p; < po, and bad if p; > po, 1 =1,2,---,k (see
Gupta and Sobel (1958)). Here, we assume that my, 75, -, 7 are k independent binomial
populations, and for each z, ¢ = 1,2,--., k, we have a random observation X;, which is the
number of defectives observed in the sample of n independent observations arising from the
population ;.

For the parameter py associated with the control population 7y, we assume that there
is a proper prior distribution G(-) for py, In general, if G(-) is not degenerated, then we
have to assume that there is a sample X, from population 7y which follows a distribution
F(-), where F(-) may not be a binomial distribution, but must be characterized only by the
control parameter po (i.e. po is the only parameter of F). And py can be estimated by X,

for example, Xy is the unbiased estimate of py. Here, we only concern the case-where F,
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again, is binomial with parameter n and p,.

Then, using the natural subset selection rule R™*® defined as follows:
R™% : Retain m;, if and only if: X; < Xp + d, for some d.

Like in Gupta and Sobel(1958)’s paper, we define a correct selection(CS) to be that all
ki (< k) good populations are selected in the selected subset. So, the event CS will be that
all k; good populations have their X; values less than X, + d, therefore

P(CS|R™*,G, F,d)
= /}; [X P{X, <Xo+d, i=1,2,'-',k1| po,mo}dF(iL'o)dG(po)
0 0

:L‘Q-I—d —
= LIS ()= e
Po J X0 j—1

t=0

dF(xo)dG(Po)

-kl

L), 3 (?)”3 (1= po)"™"|  dF(0)dG(po)

| t=0

v

1k

> /P ! /xo r’*‘i‘i (?)Pﬁ (1 —Po)n—t- dF(z0)dG(po), (7)

| t=0

where k = ky + k2, with k; being the number of the populations that is better than the
standard. Py and Aj are supports of py and z¢, respectively.
To meet the so-called P*-requirement, one need only to find the smallest integer d(0 <

d < n) satisfying

/PO /Xo ["’0+d( )Pfy(l —po)™™"

t=0

k

Clearly, d exists, when both G and F are proper distributions.

In our case, since F' is also a binomial distribution (B(n, po)), so (7) becomes

P(CSIR"““”, G, F,d)

Furthermore, if the prior G is chosen to minimize the probability function on the right

hand side of (8), then the whole selection process coincides with that of. the classical subset
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selection approach (Gupta and Sobel (1958)). That is: the desired value of d is the smallest
integer for which
n ztd (1 k

For other situations, the following remark applies.

Remark 4.1 For choosing the prior distribution G, one can proceed as in Section 3.

5 Poisson Populations

It has been shown that the usual type of the selection procedures for selecting the largest
parameter from among k Poisson populations do not exist for some values of the probability
P*(1/k < P* < 1) of a correct selection (Goel (1972)). Moreover, Leong and Wong (1977)
showed that the infimum of the probability of a correct selection, using the classical type of
selection procedure, is 1/k (see also Gupta, Leong and Wong (1979)).

Since then, some different approaches and techniques have been proposed by Gupta and
Huang (1975), Goel (1975) and Gupta and Wong (1977) etc. In particular, in the paper of
Gupta and Huang (1975), they successfully avoided the difficulty of finding

P(CS|R™") > 0<1§1£°° P(CS|A,d),

where
00 e-—)\)\z z+d e-—)\/\t k-1
P(CSI’\7d):Z ] {Z ] } ’
z=0 ° t=0 °

by using the scale-type subset selection rule and the following inequality

z k-1 241 k-1
o e—,\/\z [-cﬂ] e—,\)‘t o e_’\Xc ["'CL] e_)‘/\t
srin el lgaryerd

| |
z=0 z: t=0 z=0 z: t=0

In the following, we use the same technique which had been used in the previous section to
handle the Poisson model by considering the prior information about the largest (unknown)

parameter.



5.1 Formulation of the Problem

Let my,mg, -, 7 be k Poisson populations with parameter Aj, Az, - - -, Ax respectively. For
each m;, let X; denote a random observation arising from the i¢th population. It is assumed

that X; follows a Poisson distribution with probability mass function f(z|);), where

=Xi).%
Flzh) = & xf . z=0,1,2,---; X\ >0.

Let Ay < A < -+ < A denote the ordered values of the unknown parameter \;’s,
i =1,2,--,k. We assume that the largest (unknown) parameter A has a proper prior
distribution G(-). Our goal is to select a nonempty subset which contains the population
associated with the largest parameter Aj;; with at least a guaranteed probability P*(1/k <
P*<1).

For the natural subset selection rule R™2*:

R™ . Select m;, if and only if: X;> Bax X; X; —d, for some d (> 0).
<7

Let X(; be the random variable associated with the unknown parameter \j), where
Anp < A £ -+ < A is the ordered values of \’s, i = 1,2,-- -, k, then
P(CS|d,G, R™)
= /(; P (X(k) >X5—d, Vj# kl)\[k]) dG(Aw)

= [ o~ €M T {M ey
0

2 11 2 }I)‘[kl] dG(Aw)

z=0
—,\Aa: st+d oAyt -1
> [PEEEES } 4G,

z=0 t=0

z!

where the last inequality follows from property (i) of the following lemma:

Lemma 5.1 Let

0 e—)\[k]/\a;c k=1 (z+d =) ’\ti
P(CS|Ad) =Y — ] {Z —

!
=0 * i=1 {t=0 t!

then the function P(CS|A,d) is
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(i) non-increasing in Aj;), keeping other components of A fized, fori =1,2,--- k—1; and
(i) non-decreasing in A, keeping other components of A fized.

Proof: We have

z+d —,\Az e—)\/\a:+d
a,\(,; T = o <

therefore
P(CS|A,d) > P(CS|Ail,d), forall A€ (0, oo)k.

Hence property (i) follows.
For property (i), consider

k-1 —A[.])\[Z]
a(z+d) = H E 5 (’

=1 { t=0 :
which is increasing in ¢ + d. Now

S e““/‘[k}
P(CS|A,d) =) a(z +d), for fized Iy, i=1,2,---,k—1. So

z=0

00 "‘>‘[k] A.’L‘
dP(C5|A, d) Z _e [K] [a(z+1+d) —a(z+d)] >0,
a/\[k] z=0

hence the result. O

Proposition 5.1 : The conjugate priors for the problem is the gamma family, and for any

gamma distribution gop € Lo, o, >0, i.e.

Gap(N) = f ; (> 0),

we have

oo z+d z4d Ha,ﬂ(l',k, h)

P(CS|d, oy ™) 2 33" -+ 3 m

2070 jyazo Tl ke
where h = 71 + j2 + -+« + jr—1, and

I'(z+h+a)p®
L(a)(B + k)ethte’

Hop(z, h k) =
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Remark 5.1 One disadvantage in this approach is that there does not exist any proper

noninformative prior for Poisson distribution. The only possible choice we can think of is:

1/2
112000 = Fr A e (4> 0), (10)

where TI(A) o< A™Y/2 is Jeffreys noninformative prior. The value B has to be determined

in advance. Note that

g1/2,8(A) x A2 g B — 0.
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Table 1: P(n,k,d,G) Values for G=U(Gy) and n=2(1)10, k=2(1)5, 0 < d < n.

k

5

0.7667
0.9667

(0.8203)
(0.9766)

0.6571
0.9429

(0.7355)
(0.9600)

0.5929
0.9246

(0.6839)
(0.9471)

0.5504
0.9100

(0.6486)
(0.9368)

0.7286
0.9357
0.9929

(0.7871)
(0.9541)
(0.9951)

0.6060
0.8929
0.9869

(0.6898)
(0.9236)
(0.9911)

0.5350
0.8613
0.9818

(0.6320)
(0.9010)
(0.9876)

0.4884
0.8367
0.9773

(0.5929)
(0.8832)
(0.9846)

0.7032
0.9095
0.9825
0.9984

(0.7640)
(0.9346)
(0.9879)
(0.9989)

0.5726
0.8522
0.9687
0.9970

(0.6586)
(0.8931)
(0.9785)
(0.9980)

0.4979
0.8111
0.9573
0.9957

(0.5968)
(0.8632)
(0.9706)
(0.9971)

0.4491
0.7798
0.9476
0.9945

(0.5554)
(0.8401)
(0.9639)
(0.9963)

0.6847
0.8875
0.9711
0.9953
0.9996

(0.7465)
(0.9178)
(0.9799)
(0.9968)
(0.9998)

0.5488
0.8188
0.9493
0.9912
0.9993

(0.6357)
(0.8675)
(0.9647)
(0.9941)
(0.9995)

0.4716
0.7708
0.9317
0.9876
0.9990

(0.5708)
(0.8320)
(0.9525)
(0.9916)
(0.9993)

0.4214
0.7346
0.9170
0.9844
0.9987

(0.5278)
(0.8049)
(0.9422)
(0.9894)
(0.9991)

0.6705
0.8686
0.9596
0.9911
0.9988
0.9999

(0.7327)
(0.9032)
(0.9717)
(0.9939)
(0.9991)
(0.9999)

0.5307
0.7910
0.9301
0.9836
0.9976
0.9998

(0.6172)
(0.8456)
(0.9510)
(0.9888)
(0.9984)
(0.9999)

0.4518
0.7376
0.9069
0.9771
0.9965
0.9998

(0.5505)
(0.8057)
(0.9346)
(0.9844)
(0.9977)
(0.9998)

0.4007
0.6979
0.8878
0.9714
0.9956
0.9997

(0.5064)
(0.7757)
(0.9211)
(0.9805)
(0.9970)
(0.9998)

D O R W N - OOt W O WN R OIWN E OIN - O~ Ol

0.6591
0.8524
0.9484
0.9861
0.9973
0.9997
1.0000

(0.7213)
(0.8904)
(0.9636)
(0.9905)
(0.9982)
(0.9998)
(1.0000)

0.5163
0.7674
0.9119
0.9748
0.9949
0.9994
1.0000

(0.6023)
(0.8268)
(0.9377)
(0.9827)
(0.9966)
(0.9996)
(1.0000)

0.4362
0.7098
0.8836
0.9652
0.9927
0.9991
0.9999

(0.5341)
(0.7832)
(0.9176)
(0.9761)
(0.9951)
(0.9994)
(1.0000)

0.3845
0.6674
0.8607
0.9568
0.9907
0.9988
0.9999

(0.4892)
(0.7508)
(0.9013)
(0.9704)
(0.9937)
(0.9992)
(1.0000)
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Table 1 continued.

n

d

2

3

5

0.6498
0.8382
0.9377
0.9807
0.9954
0.9992
0.9999
1.0000

(0.7118)
(0.8791)
(0.9558)
(0.9867)
(0.9969)
(0.9995)
(0.9999)
(1.0000)

0.5046
0.7470
0.8947
0.9654
0.9919
0.9985
0.9998
1.0000

(0.5899)
(0.8102)
(0.9251)
(0.9761)
(0.9942)
(0.9990)
(0.9999)
(1.0000)

0.4236
0.6861
0.8620
0.9525
0.9878
0.9978
0.9998
1.0000

(0.5204)
(0.7637)
(0.9017)
(0.9673)
(0.9917)
(0.9985)
(0.9998)
(1.0000)

0.3715
0.6416
0.8358
0.9415
0.9845
0.9971
0.9997
1.0000

(0.4748)
(0.7293)
(0.8828)
(0.9596
(0.9895
(0.9981
(0.9998
(1.0000)

)
)
)
)

0.6419
0.8257
0.9276
0.9750
0.9931
0.9985
0.9998
1.0000
1.0000

(0.7035)
(0.8689)
(0.9483)
(0.9827)
(0.9953)
(0.9990)
(0.9999)
(1.0000)
(1.0000)

0.4948
0.7293
0.8787
0.9556
0.9871
0.9972
0.9996
1.0000
1.0000

(0.5793)
(0.7956)
(0.9132)
(0.9692)
(0.9913)
(0.9981)
(0.9997)
(1.0000)
(1.0000)

0.4131
0.6656
0.8421
0.9396
0.9819
0.9959
0.9994
0.9999
1.0000

(0.5087)
(0.7465)
(0.8868)
(0.9582)
(0.9877)
(0.9973)
(0.9996)
(0.9999)
(1.0000)

0.3606
0.6194
0.8131
0.9260
0.9771
0.9947
0.9991
0.9999
1.0000

(0.4626)
(0.7105)
(0.8657)
(0.9487)
(0.9845)
(0.9965)
(0.9994)
(0.9999)
(1.0000)
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0.6351
0.8145
0.9181
0.9692
0.9904
0.9976
0.9995
0.9999
1.0000

(0.6964)
(0.8597)
(0.9412)
(0.9786)
(0.9935)
(0.9984)
(0.9997)
(0.9999)
(1.0000)

0.4865
0.7137
0.8639
0.9458
0.9823
0.9954
0.9991
0.9999
1.0000

(0.5701)
(0.7825)
(0.9020)
(0.9623)
(0.9880)
(0.9969)
(0.9994)
(0.9999)
(1.0000)

0.4042
0.6476
0.8238
0.9268
0.9753
0.9934
0.9987
0.9998
1.0000

(0.4989)
(0.7313)
(0.8729)
(0.9490)
(0.9832)
(0.9956)
(0.9991)
(0.9999)
(1.0000)

0.3515
0.6000
0.7923
0.9108
0.9690
0.9916
0.9983
0.9998
1.0000

(0.4522)
(0.6939)
(0.8498)
(0.9378)
(0.9789)
(0.9943)
(0.9988)
(0.9998)
(1.0000)
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Table 2: Values of P(-), for various procedures, for n = 5, k = 3.

Procedures

ot P(CS|p,d)

0.4673

0.7265

0.9040

0.9797

0.9981

1.0000

.75i21¥<1 P(CS|p, d)

0.5039

0.8045

0.9528

0.9937

0.9997

1.0000

g Pl @)

0.4676

0.7269

0.9041

0.9798

0.9981

1.0000

tlgI)l(f;P(n, k, Q%)

0.4844

0.7718

0.9378

0.9888

0.9991

1.0000

int P(n, k. @)

0.5039

0.7975

0.9396

0.9890

0.9991

1.0000

inf P(n, k, Q5.

0.5143

0.7901

0.9378

0.9888

0.9991

1.0000

}__25 P(n7 ka Qio)

0.5300

0.7975

0.9396

0.9890

0.9991

1.0000

P(n, k,d,U)

0.5488

0.8188

0.9493

0.9912

0.9993

1.0000

P(na ka d7 GJ)

0.6357

0.8675

0.9647

0.9941

0.9995

1.0000
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0.90
|

0.89
]

0.88
]

P(7’ 4, 27 Qe%)

P()

0.87
|

0.86
|

0.85
|

0.0 0.2 0.4 0.6

Figure 1: P(7,4,2,Q%,), for ao = 3(2).
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1.00

0.98

0.96

0.94

0.92

0.20

P(9,5,3,Q5,0)

P(9, 5, 3a Qio)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: P(9,5,3,Q;, ), for ap = 0.0(1.0).
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