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Abstract

Assuming that {(Xp,Ypn)} is a sequence of cadlag processes converging in distribution to
(X,Y) in the Skorohod topology, conditions are given under which the sequence {[XpdYyp}
converges in distribution to [XdY. Examples of applications are given drawn from statistics
and filtering theory. In particular, assuming that (Up,Yp) = (U,Y) and that Fp — F in
an appropriate sense, conditions are given under which solutions of a sequence of stochastic
differential equations dXp = dUp + Fp(Xp)dY, converge to a solution of dX = dU +
F(X)dY where F, and F may depend on the past of the solution. As is well-known from
work of Wong and Zakai, this last conclusion fails if Y is Brownian motion and the Y are .
obtained by linear interpolation; however, the present theorem may be used to derive a
generalization of the results of Wong and Zakai and their successors.
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1. Introduction. For n = 1,2,... let {Yﬁzk >0} be a Markov chain. The classical
assumptions leading to a diffusion approximation for such a sequence are that the increments

of the chain satisfy

(1.1) E[YR,; — YRIFE = b(YD)} + o)
and
(12) E(YE 1 — YD2USE] = a(YD)L + o)

Using these assumptions we can write

. k=1
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=Y3+ iZob(\f;‘),l1 + .ZO\Ia(Y{‘)Z?.,.H—l—,; + error
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(1.4) z§+1 =

are martingale differences with conditional variance 1. If we define Xy(t) = anﬂ and

nt
(1.5) Wh(t) = Tl—ﬁ Szt
i=1

then

nt]

(1.6) Xn(t) = Xp(0) + J::n— b(Xp(s)) ds + J:mclwn(s) + error

(Note that Xj is constant on intervals of length }, so the first sum in (1.3) equals the first
integral in (1.6).) Under mild additional assumptions, the martingale central limit theorem
implies Wp = W, (throughout => will denote convergence in distribution) where W is a
standard Brownian motion. This convergence suggests that X, should converge to a solution
of the obvious limiting stochastic differential equation. This approach to deriving diffusion
approximations has been taken by many authors (see, for example, Skorohod (1965), Chapter
6, Kushner (1974), and Strasser (1986)) althdugh in recent years it has been largely replaced
by methods which exploit the characterization of a Markov process as a solution of a

martingale problem.

A key step in the application of the stochastic differential eqﬁation approach is to show that
the sequence of stochastic integrals in the approximating equation converges to the
corresponding stochastic integral in the limit. That there is a difficulty to be overcome is well-

known from the work of Wong and Zakai (1965). See also Protter (1985).

| Grovﬁng interest in stochastic differential equations driven by martingales (and more generally
semimartingales) other than Brownian motion has led to renewed interest in this approach to
the derivation of approximating processes. In addition, functionals of stochastic processes
which can be represented by stochastic integrals arise in many areas of application including

filtering and statistics. Limit theorems in these settings require conditions under which



convergence of the integrand and integrator in a stochastic integral implies convergence of the

integral.

Throughout, we will be considering cadlag processes (that is, processes X whose sample paths
are right continuous and for which the left limit X(t-) exists at each t > 0). This restriction
to cadlag processes allows us to define stochastic integrals as limits of Riemann-Stieltjes-like

sums, that is,

(1.7) J:)X(s-)dY(s) = lim ) X(t;) (Y(t; +1) = Y()

where {t;} is a partition of [0,t] and the limit is taken as the maximum of i1 — t; tends
to zero. The integral exists if the limit exists in probability. Recall that the choice of the left
end-point of [ti,ti +1) as the argument of X is critical even when Y is a Brownian motion.
Indeed in the Brownian differential case, if we take the argument of X to be the midpoint, we
obtain the Stratonovich integr_a.l. (We will, of course, assume that X is adapted (and hence
the left continuous process X(-) is predictable) and that Y is a semimartingale for the
same filtration, but the uninitiated reader can follow much of what is going on without a
thorough knowledge of these matters.) Throughout, we will use Protter (1990) as our basic
reference for material on semimartingales and stochastic integration. See this volume for

details and further references.
The following two examples will help motivate the assumptions of the main theorem.

L1 Example Let X =Y =X, = X[1,00) and Y, = x Then for t > 143,

[1+%n°°)'
t
(1.8) J Xp(s-)dYp(s) = 1
0
but the limiting integral gives
t
(1.9) J X(s-)dY(s) = 0
0

1.2 Example Let W be standard Brownian motion, and define W5 so that

(1.10) Lwy(t) = n(WiH) — W), t e [k



Then
t
(1.11) J Wp(s-) dWn(s)
0 .
¢ [ns] ¢ [ns]
= [ WalEhawa(e) + [ (Wate) - wadlih)awats
0 0
1
= W WD WD) + 3 [} (W) - W) (WCR) - Wk as
t
. JOW(s) dW(s) + 1t

Example 1.1 is indicative of problems that will arise whenever the integrand and the integrator
have discontinuities which “coalesce” in the wrong way. We will avoid these difficulties by
requiring that the pair of processes (Xy,Yp) converge in the Skorohod topology on
DR2[0,oo) which is stronger than assuming convergence of each component in DR[O,oo). For
future reference, let A denote the collection of continuous, strictly increasing functions
mapping [0,00) onto [0,00). Recall that for any metric space E a sequence of cadlag, E-
valued functions {xp} converges in the Skorohod topology to x, if there exists a sequence
{An} € A such that xpoAp(t) — x(t) and Ap(t) — t uniformly for t in bounded
intervals. Note that in Example 1.1, Y, converges in the Skorohod topology with E = R,
but the pair (Xp,Yp) does not converge in the Skorohod topology with E = R2, and in
general, convergence in the Skorohod topology with E = R2 excludes the possibility of the
type of coalescence of jumps that causes the problem in that example. In particular, for each
n, let yy be piecewise constant, and suppose the number of discontinuities of y, in a
bounded time interval is uniformly bounded in n. Then if (xp,yn) — (x,y) in the Skorohod

topology on DR2[O,oo),

(1.12) j;xn(s-)dyn(s) - j(')x(s-)dy(s)
and

1.13 .ns-dxns—» . s-) dx(s
(113) [RECLICRS RICED

in the Skorohod topology on Dp[0,00). (Actually, the quadruple consisting of xp, yy, and
the two integrals converges in DR4[0,oo) )-



Example 1.2 points to more subtle problems, and we will come back to it when we discuss the

hypotheses of the main theorem.

We will formulate the main theorem, Theorem 2.2, in Section 2. This theorem is essentially
the same as that given by Jakubowski, Mémin, and Pages (1988), but we believe that our
formulation and proof are more readily accessible to researchers without extensive expertise in
the theory of semimartingales and stochastic integration. Section 3 will be devoted to further
examples and applications. Section 4 contains some relative compactness results for stochastic
integrals and some variations on the main theorem. Applications to stochastic differential
equations will be discussed in Section 5. In particular, we generalize results of Slominski

(1989). Some technical results will be given in Section 6.



2. Weak convergence of stochastic integrals. Throughout we will be making various
transformations of the processes involved. We will need to have information about the
continuity properties of these transformations, and the following lemma will be useful in

obtaining this information.

21 Lemma Let E; and Eg be metric spaces, and let F: DE [0,00) — DE [0,00). Suppose
F(xol) = F(x)o) forall x € DE [0,00) and-all X € A. Suppose xp(t) — x(t) uniformly
for t in bounded intervals implies F(xp) — F(x) in the Skorohod topology. Then xj — x
in the Skorohod topology implies that F(x,) — F(x) in the Skorohod topology. If Xp(t) —
x(t) uniformly on bounded intervals implies F(xp)(t) — F(x)(t) uniformly on bounded
intervals, then xp — x in the Skorohod topology implies (%n,F(xp)) = (x,F(x)) in the
Skorohod topology on DElez[O,oo). '

Proof Suppose xp — x in the Skorohod topology. Then there exist An € A such that
xpoAp(t) — x(t) and Ap(t) — t uniformly on bounded intervals. It follows that F(xpolp)
— F(x) in the Skorohod topology, so there exist 7, € A such that m(t) — t and
F(xpodp)onpy(t) — F(x)(t) uniformly on bounded intervals. Since Anonn(t) — t and
F(xp)oAponn(t) = F(xpoAp)ony(t) — F(x)(t) uniformly on bounded intervals, it follows
that F(xp) — F(x) in the Skorohod topology. The last statement is immediate from the
definition of the Skorohod topology. O

The following functional gives a good example of an application of the lemma. Fix m, and
define hg:[0,00) — [0,00) by he(r) = (1 - 6/r)+. Define Jé:DRm[O,oo) — DRm[O,oo) by

2.1) I509() = 32 bylx®) = x(Dx() = ()
s—

Lemma 2.1 shows that x — Js(x) and x — x — Js(x) are continuous. Consequently, by
(1.12), if (xnsyn) — (x,y), then

(22) J 724350000 = [ x 01,6200

Let {%;} be a filtration. A cadlag, {%,}-adapted process Y isa semimartingale if it can be
decomposed as Y =M + A where M is an {%;}-local martingale and the sample paths of

A have finite variation on bounded time intervals, that is, there exists a sequence of {F,}-



stopping times, Ty such that 7, — oo a.s and for each k, M* = M(-Ark) is a uniformly
integrable martingale, and for every t > 0, T;(A) = sup E|A(ti+1) — A(t;)] < co a.s (where
the supremum is over partitions of [0,t]).

An R™.valued process is an {%}-semimartingale, if each component is a semimartingale. Let

MK™ denote the real-valued, kxm matrices. Throughout, JXdY will denote [X(s-)dY(s).

2.2 Theorem For each n, let (Xp,Y,) be an {‘.F?}-a.da.pted process with sample paths in
DMkmem[O,oo), and let Y, be an {‘.F?}-semimartingale. Fix 6 > 0 (allowing § = o), and
define Yg = Yn — J4(Yn). (Note that Yg will also be a semimartingale.) Let Yg = ﬁ
+ Ag be a decomposition of Yg into an {‘.Ff}-local martingale and a process with finite

variation. Suppose

C2.2(1) For each o > 0, there exist stopping times {8} such that P{r§ < a} < % and
supp E[[Mg]tATg + TtATg(Ag)] < co.

If (Xp,Yn) = (X,Y) in the Skorohod topology on DMkmem[O,oo), then Y is a
semimartingale with respect to a filtration to which X and Y are adapted, and
(Xn,Yn,JXndYy) = (X,Y,[XdY) in the Skorohod topology on D Mkmemek[O,oo). If
(Xn,Yn) — (X,Y) in probability, then the triple converges in probability.

2.3 Bemark If there exist decompositions of {Yg} such that C2.2(i) holds, we will simply say
that {Yp} satisfies C2.2(i) for 6. For c > 0, define 7§ = inf{t:|Mg(t)|V|Mg(t-)| 2c or
Tt(Ag) > c}. Suppose the following conditions hold.

C2.2(ii) {T4(A)} is stochastically bounded for each t > 0.

<(Ad)] < 0

C2.2(iii) For each ¢ > 0, supp E[MS(tA7E)2 + T, rs
n

Since convergence in distribution of {Yp} in the Skorohod topology implies stochastic
boundedness for  {sup;.,Yn(t)}, sup;., |Mg(t)| = supt<a|Y161(t) - Ag(t)l <
BUPt< o [Yn(t)] + Ta(Ag) is stochastically bo;nded in n for each —a, and hence there exists
cq 8o that P{rg® < o} < 1. In addition E[[Mg]t/\rga ] = E[(Mg(t/\rﬁ")z], and C2.2(i) is

satisfied with 7§ = rg°.



For 6 < oo, C2.2(iii) will usually be immediate since the discontinuities of Yg are bounded
in magnitude by § (making Yg a special semimartingale) and there will exist a
decomposition with the discontinuities of each term bounded by 26 (see Jacod and Shiryaev

(1987), Lemma 1.4.24).

2.4 Bemark To see that Y is a semimartingale it is enough to show that Y0 is a
semimartingale. Without loss of generality, we can assume that for o« = 1,2,..., 8 < 7,‘,'+1.
Let Yﬁ“ = Yg(oA'rf{). Then {(Xn,Yn,Yg,Ygl,Yi?,...,1'111,1',21,...)} is relatively compact in
DMkmemem[O,oo)xDRm[O,oo)°°x[0,oo]°°.' "Let (X,Y,Y6,Y61,Y'sz,...,'rl,‘r2...) be some
limit point, and let {‘Eft} be the filtration generated by the limiting processes and random

times. For each T > 0, let

(2:3) V(YR = supE[TIEIYA% (8 y) — Y8 (519N
where the supremum is over all partitions of [0,T]. Then

(2.4) supn Vp(Y3®) < supn E[Tp) a(AD)] < oo

and hence VT(Y&') < 00 (Vg defined using {%;}). (See for example Meyer and Zheng
(1984) Theorem 4 or Kurtz (1990) Theorem 5.8) It follows that Y% i a local {%.}-quasi-
martingale and hence an {¥,}-semimartingale. But

(2.5) Yo(sAT®) = Y8 (1) + (Y8(r%) = YOo(roy)x (o<t}

so Y is alocal {%.}-semimartingale and hence an {%,}-semimartingale.

2.5 Remark If Yp =Y for each n, then {Yp} satisfies C2.2(i) for all finite 8. If {Yy,} is
relatively compact in the Skorohod topology and satisfies C2.2(i) for some & € (0,00}, then
{Yn} satisfies C2.2(i) for all finite 6. If {(Xp,Yp)} is relatively compact in the Skorohod
topology and {Yp} satisfies C2.2(i) for some 6 € (0,00], then {fXndYp} satisfies C2.2(i)
for all finite 6.



2.6 Bemark With reference to Example 1.2, note that T((Wy) = O(4T).

Proof Let Zp = (Xn,Yn,Ja(Yn),Yg). Zy has sample paths in Dg[0,00) for E =
MEM LRI RMARM The limit in (1.13) suggests attempting to approximate X, by a
piecewise constant process. The problem is to find such an approximation that converges in
distribution along with Xp (in fact, along with Zj). Furthermore, the approximation must
be adapted to a filtration with respect to which Yy, is a semimartingale. By Lemma 6.1,
there exists a (random) mapping I¢:DR[0,00) — Dgl0,00) such that |z(t) — Ig(z)(t)] < ¢
for all z € Dg[0,00) and t > 0, I¢(z) is a step function, and the mapping z — (z,I¢(z)) is
continuous at z a.s for each z € DE[O,oo). Furthermore, I¢(Z,;) is adapted to a filtration
g{‘ = ‘.F?VJB, where ¥ is independent of {‘:T?} (and hence Y, will be a {g}}}-
semimartingale). Let X§ denote the first, ME™_yalued component of I¢(Zy). Then

|xn—xf1| S €, and (Xn’Yn’J6(Yn),Y161’x§) = (X’YvJé(Y)’Ya’xe)'

Define Uy = [XpdYy and Up = [X§ dYg + [Xpdd 5(Yn) with similar definitions for U
and U®. Then it follows as in (1.12) and (1.13) that (Xp,Yp,U§) = (X,Y,U€) in
DMkmemek[O,oo). Observing that

(26) Rf = Up — Ufi = [(Xp — X§)dY] = [(Xn — X§)dME + [(Xn — X§)dAS

we see that for any stopping time =

i
(2.7) Efsupg ¢t a7 [REE)] < ¢(2EIMEl 0,12 + EIT; 5, (AD)])

with similar estimates holding for U — U€. Applying C2.2(i), it follows that (Xp,Yp,Uyp) =
X,Y,U).

A review of the proof shows that if convergence in distribution is replaced by convergence in

probability in the hypotheses, then convergence in probability will hold in the conclusion. 0

The transformation J s Provides a convenient, continuous way to eliminate the large jumps
from Yy in Theorem 2.2. Occasionally, however, it may be useful to apply some other
truncation of the large jumps. For example, if Y, is a martingale it may be possible to

truncate the large jumps in such a way that the truncated process is still a martingale,
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simplifying the verification of the hypotheses of the theorem. With these possibilities in mind,

we state a slightly more general version of the theorem.

2.7 Theorem For each n, let (Xph,Yp) be an {‘I?}-adapted process with sample paths in
DMlkmem[O’oo)’ and let Y, be an {‘.'T?}-semima.rtingale. Suppose that Y, = Mp + Ap +
Zy, where My is a local {?F?}-martingale, Ap is an {??}-adapted, finite variation process,
and Zp is constant except for finitely many discontinuities in any finite time interval. Let
Np(t) denote the number of discontinuities of Z, in.the interval [0,t]. Suppose {Np(t)} is
stochastically bounded for each t > 0, and

C2.7 For each a > 0, there exist stopping times {r§} such that P{r& < a} <% and
supp E[[Mn]tArﬁ + Tt/\‘rﬁ(An)] < oo.

I (XpsYn,Zp) = (X,Y,Z) in the Skorohod topology on DMkmem
semimartingale - with respect to a filtration to which X and Y are adapted, and
(XnsYn,fXpndYp) = (X,Y,fXdY) in the Skorohod topology on D
(Xn,Yn,Zp) — (X,Y,Z)) in probability, then convergence in probability holds in the

><Rm[0,o<:~), then Y isa

Mkmemeklo’oo)' It

conclusion.
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3. Examples and applications
3.1 Example As a simple first example, we consider limit theorems for sums of products of

independent random variables which arise in the study of U-statistics. Let {fi} be i.i.d. real-

valued random variables with mean zero and variance 0‘2. Define

(k) y _ 1
(3.1) W '(t) = % lei1<-"iks[nt]£i1m£ik
and Zp = (ng),...,ng) . Note that ng) = oW, where W is standard Brownian
motion, and observe that we can write

k b (k1 1

(32) Wil = [ Wi D awDee
It follows (by induction) that Zp = Z = (W(l),...,W(m)), where W(l) = cW and W(k)
is the corresponding interated integral. (Note that X = X in DE[O,oo) implies that
(Xn,Xn) = (X,X) in DEXE[O,OO)).
3.2 Example (Bobkoski (1983)) Let {¢;} be as above. For a constant ¢, let {Y,} satisfy

Given Y{s.4Ym, the least squares estimate ¢ for an unknown ¢ is the value of ¢

minimizing 3°(Y) +1 ™ ¢Yk)2, that is, the solution of

(3.4) DY (Y 41— #Y) =0
given by
Y, Y
(3.5) ' ¢ = E_k_%_—l—l
DYy

Now consider a sequence of such processes {Yﬁ} in which the true ¢, = (1 — g) If we

define Xp(t) = {.Lﬁ Y?nt]
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(3.6) Xa(t) = ¢%,00) + jt sl o)

]
where Wp = ng), and if Xp(0) — X(0), it follows that X, => X given by

(3.7) X(t) = ¢ Ptx(0) + Jt P8 aw(s)
0

Note that X is an Ornstein-Uhlenbeck process satisfying dX = —gXdt + ¢dW. For the

least squares estimate of ¢, at time t, we have

[nt]—1 )
(3.8) kZO Yi((#n — )Y} + &41) =0

which implies

[nt]

- T 2 t
(3.9) n(én = #u) | " Xa(®)?ds = | Xn(s)dWa(s)
0 0
and it follows that .
J oX(8)dW(s)
(3.10) n(¢n — én) = L5

JO X(s)2 ds

More general results along these lines have been given by Llatas (1987), Chan and Wei (1988),
and Cox and Llatas (1989).

2.3 Example Work on approximation of nonlinear filters, DiMasi and Rungaldier (1981, 1982),
Johnson (1983), Goggin (1988), involves studying the limiting behavior of a sequence of
Girsanov-type densities, each of which typically includes the exponential of a stochastic
integral. For example, let {Xp} be a sequence of processes with sample paths in DE[O,oo),

such that X; = X. Let N be a unit Poisson process independent of the Xy, let the

observation process Y, be given by

(3.11) Ya(t) = N(nJ; (A + n-%h(xn(s)))ds)

and define
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1
(3.12) Un(t) = n 2(Yp(t) — Ant)

Note that ‘.FtY" = ‘J’P" and observe that (Xp,Up) = (X,U) where for a standard Brownian
motion W independent of X

(3.13) U(t) = AW(E) + j:) h(X(s)) ds

Suppose that (Xp,Upn) is defined on a probability space (Q,%,Py). Then there exists a
probability measure Qp on the same measurable space, (Q,%), under which Xn has the
same distribution as under Py, Y, is independent of X; and is a Poisson process with

parameter nl, and Pp € Qp on g? = 0(Xp(s),Un(s):s<t) with

(3.14)  Lp(t) = g_&‘Jgn
t
¢ 1 ¢ 1
- exp{Joln(1+n 23 Ih(Xn(s-)) ) d¥a(s) - J 0n2h(xn(s))ds}

= exp{ J :) n%ln(l +n'%x1h(xn(s-))) dUp(s)

t .1 1
+ J (nnn(1+n 2A'1h(xn(s-))) - n2h(xn(s)))ds}
0 .

Similarly, if (X,U) is defined on a probability space (Q,%,P), there exists a measure Q on
(2,%) such that, under Q, X has the same distribution as under P, U is independent of X
with the same distribution as YAW, and P < Q on G, = o{X(s),U(s):s<t} with

(3.15) L(t) = g—gg

I = exp{J;,\'lh(X(s))dU(s) - J:) %,\'lh2(X(s))ds}
t

Expanding the logarithm in (3.14) in a Taylor series and applying Theorem 2.2, we see that
Lp = L under {Py}, P and under {Q;}, Q.
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Results of Goggin (1988) can then be applied to show that the conditional distribution up(t)
of Xp(t) given ‘EFtY" converges in distribution to the conditional distribution u(t) of X(t)
given 'EFP as a process in D@(E)[O,oo).

34 Example (Meyer (1989), Emery (1989)) Next we consider the problem of showing
existence of solutions of the structure equation arising in the study of chaotic representations
formulated by Meyer. Given F € C(R), the problem is to show existence of a martingale X
satisfying '

(3.16) d[X], = dt + F(X(t-))dX(t)

or, equivalently,
t t

(8.17) X(t)2 — X(0)% - 2] X(s-)dX(s) = t + j F(X(s-)) dX(s)
0 0

Of course, if X is standard Brownian motion, then (3.16) is satisfied for F(x) = 0. If X is
a martingale with [X(t)| = {t, then, obviously from (3.17), (3.16) holds with F(x) = —2x.
See Protter and Sharpe (1979) and Emery (1989) for a construction of such a martingale.
For Azema’s martingale (Protter (1990) §IV.6), F(x) = —x.

Following Meyer (1989), we define a sequence of discrete time martingales and show that the
sequence is relatively compact and that the limit satisfies (3.16). Setting AYp(k) = Yp(k+1)
— Yp(k) and assuming for simplicity that Yp(0) = 0, the discrete time analogue of (3.16)

becomes

(3.18) AYp(k)? = § + F(Yn(k)) AYn(k)
Consequently,

(319) AYy (k) = FCa) \;*(Yn(k)ﬁ Lk SO

and since we want Yp to be a martingale, we must have

An(k)
An(k) — Aj(k)

(3.20) P{AYp(k) = Af(k)} = 1 — P{AYy(k)= Aj(k)} =
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Define Xp(t) = Yp([nt]). Note that E[Xn(t)2] = E:,H and more generally

(321) E[(Xa(t+h) — Xa(0)%grn] = G _ 1Y

The relative compactness of {X;} (and hence for {(Xp,FoXy)}) follows easily. (See, for
example, Ethier and Kurtz (1986), Remark 3.8.7.) Since X satisfies

(322) X2 - Xg(0)2 - 2 j Xa(e)aXa(s) = L]

t

+ | F(Xa(s) aXa(s)
0

we see that any limit point of the sequence {Xp} satisfies (3.17).

More generally, the above construction will give solutions of

(3.23) d[X], = dt + F(X,t-)dX(t)

for any F:Dg[0,00) — Dpl0,00) satisfying C5.4(ii) and C5.4(iii) below and F(x,t) = F(xt,t)
for all x € Dg[0,00) and t > 0 where xt = x(+At).

3.5 Example (Neuhaus (1977)) Let £;,65,... be i.i.d. uniform-[0,1] random variables, and let

b be a measurable, symmetric function defined on [0,1}x[0,1] satisfying

1,1 9
(3.24) J I h*(x,y)dxdy < oo
0’0
and
1 1
(3.25) [ Beryyax = [(Bewray =0
0 0
Define
— 1
(3.26) =4 Z h(€i,€j)
1<i<ign
Then {Zlﬁ} is asymptotically Gaussian. To see that this is the case and to identify the limit,

we follow a suggestion of Lajos Horvath and represent (3.26) in terms of the empirical

distribution function Fp

n
(3.27) Fa(t) = %i; X[¢, 00)(®
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In terms of Fp, ZB can be written

(3.28) 7h = nJ J h(s,t) dFp(s) dFp(t)
s<t

and defining Bp(t) = Y (Fp(t) — t), the symmetry of h and (3.25) give

(3.29) zh = J J h(s,t) dBp(s) dBy(t)
s<t

If g satisfies the same conditions as h, then

(3:30) mizh - 2867 = 2200 () - ) ?axey
: 2n 0’0 '

Since any h € L2([0,1]x[0,1]) can be approximated by smooth g, we may as well assume

that h is continuously differentiable. Under this assumption we can write
t t

(3.31) Xn(t) = J h(s,t)dBp(s) = h(t,t) By(t) — I hg(s,t)Bp(s)ds
0 0

and, since By = B, the Brownian bridge, (see, for example, Billingsley (1968), §13 and §19, or
Protter (1990) §V.6), the continuous mapping theorem implies that Xn = X given by

t

(3.32) X(t) =I h(s,t) dB(s)
0

More precisely, (Xp,Bp) = (X,B) in Dpyrl0:%0).

The process By is a semimartingale with decomposition

t t
(333)  Bn(t) = VB (Fa(t) — t) = v&(Fa(t) - IO%_"}“MB) — & jo__Fnl(S_);sds

t
= My(t) — Jorl—an(“) ds

Note that E[Mn(t)z] = E[[Mp];] = t. In fact, [Mp]; — t, implying, by the martingale
central theorem, that My, = W and yielding, in the limit, the classical stochastic differential

equation for B. For this decomposition we have
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(3.34) E[Tt( L')lis ):I = E{ J:)l—i—s] Bn(s)lds:l

< [ s {emaiee = [
0 0
h

for t < 1. Consequently, the conditions of Theorem 2.2 are satisfied, and Zy converges in

f_sds < o0

distribution to
b
(3.35) z7h = [ J h(s,t) dB(s) dB(t)
olo -

For related results see Hall (1979). Rubin and Vitale (1980) and Dynkin and Mandelbaum
(1983) consider more general symmetric statistics. Rubin and Vitale represent the limiting
random variables as series of products of Hermite polynomials of Gaussian random variables.
Dynkin and Mandelbaum représent the limits as multiple Wiener integrals. These higher order
limit theorems can also be obtained by the techniques used above with the limiting random
variables represented as multiple integrals of B. Filippova (1961) obtained limits represented

as multiple integrals of Brownian bridge in special cases. o

3.6 Example (Duffie and Protter (1989)) Theorem 2.2 is useful in the derivation and
justification of models in continuous time finance theory as limiting cases of discrete time
models. For example, let the sequence of random variables 6111,6121,... denote the periodic rate

of return on a security with initial price SO' After k periods the price of the security will be
k
(3.36) H 1+ ¢h
Let Yp(t) = 21<[nt]€ and Sp(t) = S[ e Noting that Sk+1 Sk = Sk £g» We can write
t
(3.37) ‘ Sn(t) = Sp(0) + '[0 Sn(s-)dYn(s)

If ﬂﬂ units of the security are held during the (k+1)th period, the financial gain for the
period is Ok(Sk +1™ Sﬂ) » and the cumulative gain up to time t can be written

t
(3.38) Ga(t) = | a(s)dSa(e)
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where Oy(t) = 0Fnt]' Suppose that {Y;} satisfies C2.2(i) for some & and that
(Yn,0n,50(0)) = (Y,0,5(0)) (in DRQ[O,oo)xR). Then the limiting equation

(3.39) S(t) = S(0) + J; S(s-) dY(s)

has a (locally) unique global solution, so by Theorem 5.4 below (see also Avram (1988)), Sp =
S. (More precisely (Yp,0n,Sn) = (Y,6,S).) It follows that {S,} also satisfies C2.2(i), so
that Gy = G given by

t
(3.40) G(t) = J LOLD

The solution of (3.39) with S(0) = 1 is called the stochastic or Doléans-Dade exponential and
is denoted &(X). The general solution is then given by § = S(0)8(X). (Protter (1990) §I1.8.0

3.7 Example For each n,let Y, be an {“.F{l}-semimartingale, and let {rﬂ} be a sequence of

{’:'F?}-stopping times with 1'8 =0 and limt—»oorﬂ = 00. Define

(8.41) Yu(t) = Yn(r]), RSt < rﬁ_H

Suppose that Yp = Y and that {Yp} satisfies C2.2(i) for some 6 € (0,0¢]. (In particular
this last statement holds if Yp = Y for all n.) Then {¥p} is relatively compact in the
Skorohod topology and satisfies C2.2(i). If sup rﬂ +1 ~ rﬁ —= 0, Y, = Y. Since the
increments of Yy, can be estimated in terms of the increments of Yn, the relative
compactness of {¥,} follows easily (see Theorem 3.7.2 of Ethier and Kurtz (1986)). The
convergence assertion follows from Proposition 3.6.5 of Ethier and Kurtz (1986). To see that
C2.2(i) is satisfied, define

(3.42) ALt) = Af(rD), Wity = ME(eD), p<t<ti

If 6§ = oo, then ?n = Mgo + Agoi E[[Mgolt/\-rg] < E[[Mgolt/\rﬁ] and E[TtATﬂ(Ago)] <
E[TtATg(Ag")] so C2.2(i) holds. If § < oo, then

(3.43) Yo = 35(¥n) + M + A + (35(Yn) — 35(¥n))
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where 36(Yn) = J6(Yn)(rﬁ) for TE <t< TE_H. As before, E[[Mﬁ]tmg] < E[[Mg]tATg],
and we claim that there exist stopping times #J satisfying P{#§<a} < 1 and
supp E[TtAi_ﬁ(Ag + jé(Yn) - J6(\7n))] < oo. The relative compactness of {Yp} and
{Yyn} implies that {Tt(j6(Yn) - J6(‘~[n))} is stochastically bounded for each t. For each
a > 0, select ¢4 such that P{Ta(jé(Yn) - Ja(?n)) > cat < 51;, and define p§ =
inf{t:Tt(ja(Yn) - J6(?n)) > cq} and 7§ = r%aAng. Then, noting that the magnitude of
the discontinuities of Mﬁ + Aﬁ + (jé(Yn) - Ja(?n)) is at most §,

(3.44) E[T, pza(Af + 35(Yn) — J5(Yn))]
S BT, 2.(AD) + ca

+ E[l(J5(Yn) — 35(¥n))(tATE) — (35(Yn) ~ Js(¥Yn))(tAFE)]

IA

é
E[T A + + 46
( Arga( n)] Ca

t

+ E[|M(tA7S) — MY(tATE-)] + AS(EAFE) — AS(tA7E)]]

5 ’ 5
< 2E[TtAT%a(An)] + ca + & + [E[[Mp], Mgal

and C2.2(i) follows. . o



20

4, Relative compactness and additional convergence results The conditional variation on [0,t]
of a process X  with respect to a filtration {%;} is defined by V(X) =
sup E[EilE[X(tH_l)—X(ti)lﬁti]l] where the supremum is over all partitions of [0,t]. (For
vector-valued X we take |x| = 3 |x;|.) For a stopping time r, XT will denote the stopped
process given by X7(t) = X(tA7).

4.1 Lemma For n = 12,..,let X; and Yp be {‘.F?}-ada.pted, Xp in DMkm[O,oo) and

Yy in DRm[O,oo). Assume the following condition

C4.1 For each o« > 0, there exist stopping times {75} with P{r§ < a} < 1 such that
a a
for each t > 0, suan[|Y;"(t)|] < oo and suant(Y;") < oo (where the

conditional variation for Y, is with respect to {‘.F?})

Let Hp(t) = supy¢|Xn(s)l, and suppose that {Hp(t)} is stochastically bounded for each t.
Define

t
(4.1) Zn(t) = Joxn(s-)dvn(s)

Then {Zp} satisfies C4.1, and there exist strictly increasing, {‘:TE}-a.da.pted processes Cp,
with Cp(0) = 0, Cp(t+h) — Cu(t) > h and {Cp(t)} stochastically bounded for all t, h >
0, such that, deﬁnipg Tn = Cixl, ?n(t) = Yn(7n(t)) and Zn(t) = Zn(7n(t)), {(YnZn,7n)}
is relatively compact in DRmeka[O,oo).

4.2 Remark a) Note that Zu(t) = Zn('y}ll(t)).

b) Theorem 3.5 of Kurtz (1990) gives conditions on the sequence {Cp} which imply relative
compactness for {(Yn,Zp)}. This theorem is an extension of Theorem 2.3 of Jacod, Mémin,

and Métivier (1983).

c) The result will also hold under the assumption that X, is predictable and Hy is a right
continuous, adapted, increasing process satisfying |Xj(s)] < Hy(t) for s < t, with the usual

extension of the stochastic integral to predictable integrands. '
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d) Let

_ ol oy
(4.2) Yn _1;::0 2n X[1+k/n2,1+(k+1)/n2)

and Xp = — sign(Yp). Then the conditions of the lemma are satisfied and

n-1
(4.3) Z

ﬁlt—'

X[14k/n2,00) 2nx[1+1/n,°°)

The 7p can be selected so that 4, = Ill on the interval [1,2) and 4 = 1 otherwise. The
sequence {Zp} then converges in DRk[O,oo) to a continuous, piecewise linear function. Note
that {Zp} does not converge in the Skorohod topology. (We thank J. Mémin and L.
Slominski for bringing this example to our attention and pointing out a serious error in an

earlier version of this paper.)

Proof Each Yy has a unique decomposition Y, = Mp + Bp, where Mp is a local
martlngale and Bp is a predictable finite variation process satisfying E[Tt ATE a(Bp)] <
Vt(Yn") (See Kurtz (1990), Proposition 5.1.) If we write

t t
(44 Za(t) = [ Xa(e)aMa@ + [ Xa(s)aBa(e

the first term is a local martingale and the total variation of the second term up to time t is
bounded by Hpy(t- -)T{(Bp). Consequently, if op is a stopping time so tha,t the first term
stopped is a martingale, Hy(op-) < ¢, and op < 7§, then Vt(Zn") < th(Yn") But for any
B > 0,c a, and on can be selected so that P{op < A} < 1 p’ and it follows that {Zj}
satisfies C4.1. Thls in turn implies that {(Yy,Zp)} satisfies C4.1. Corollary 1.3 of Kurtz
(1990) then gives the other conclusions. o

4.3 Proposition Let {(Up,Yy)} be relatively compact (in the sense of convergence in
distribution) in D RK Rm[0 c0) with (Up,Yq) adapted to {97}, and {Y,)} satisfying
C2.2(i) for some § > 0. Suppose that X; has sample paths in D km[o o0) and is adapted
to {':'Ft} Define

t
(45) Za(t) = Un(®) + [ Xa(s)d¥a(e)
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Suppose there exist strictly increasing, {9?}-a.da.pted processes Cp, with Cp(t+h) — Cy(t) >
h and {Cp(t)} stochastically bounded for all t, h > 0 such that, defining g = Cill,
Un(t) = Up(yn(t)) etc., {(Un,Xn,Yn,7n)} is relatively compact in DkaMkmeme[O,oo).
Then {(Zp,Up,Ypn,)} is relatively compact in DkakaRm[O,oo).

Proof For technical reasons, we extend the definition of the processes to the time interval
[-1,00) by setting Up(t) = Uy(0), Xp(t) = Xp(0), Yn(t) = Yn(0), and Cp(t) =t for —1
< t < 0. These definitions ensure that {(ﬁn,xn,\?n,’)’n)} is relatively compact in
D -1,00).
RKxM<™xRmxRl 1)

The fact that {Yp} satisfies C2.2(i) implies that {Yp,} satisfies C2.2(i). Consequently,
selecting a convergent subsequence from {(ﬁn,Xn,Yn,7n)} with limit (0,X,Y,7), by
Theorem 2.2, {(Z5,Un,Xn,¥Yn,7n)} converges to (2,0,X,Y,y) where

t
(4.6) Z(t) = U(t) + J

t
X(s-)d¥Y(s) = U(t) + I X (s-)d¥ (s)
1 0

We may assume that (Up,Yp) converges along the same subsequence, and the limit must be
(U,Y) = (ﬁoy'l,?oy'l) where 7'1(t) = inf{u:y(u) > t}. (Note that 7'1 is defined so that
it is right continuous, and that the conditions on Cp imply 7'1(1;) =t for t < 0.) Lemma
2.3 of Kurtz (1990) (with the obvious modification for the time interval [—1,00)) implies that
(UnsYn) = (U,Y) in the Skorohod topology if and only if on any interval on which v is
constant, (fI,Y) is constant except for at most one jump. But on any interval on which
(f],?) is constant, Z is constant, and Z jumps only when U or Y jumps. Consequently,
on any interval on which v is constant, (Z,f],?) is constant except for at most one jump.
Applying the cited lemma again, we have that, along the subsequencé, (Zn,Un,Yn) = (Z,U,Y)

in the Skorohod topology on D R[—l,oo). But (Z,U,Y) must be continuous at

RKxMKMy RM
0, so the convergence holds in D
’ & RKxMXMxRM xR

[0,00) as well, and the proposition follows. O
44 Corollary Let {(Up,Xp,Yn)} have sample path in DkaMkmem[O,oo) and be
adapted to {‘:'F?}, and let Zp be given by (4.5). Suppose that {(Up,Yp)} is relatively
compact in DkaRm[O,oo), that {Yn} satisfies C2.2(i) for some & > 0, and that {Xj}

satisfies C4.1. Then {(Zj,Up,Yp)} is relatively compact in Dka R¥ Rm[O,oo).
X
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Proof The relative compactness of {(Uy,Yy,[XydJ §(Yn))} is immediate. Since the
stochastic integral on the right of (4.5) has a discontinuity only when Yy has a discontinuity,
and {(Up,Ypn)} is relatively compact, the proposition will follow if we show that { JXn dYg}

is relatively compact. (See, for example, Kurtz (1990), Lemma 2.2).

C2.2(i) implies C4.1 for {Yg}. Consequently, Corollary 1.3 of Kurtz (1990) implies the
existence of strictly increasing, {‘.F?}-adapted processes Cp, with Cpy(0) = 0, Cy(t+h) —
Cn(t) 2 h and {Cp(t)} stochastically bounded for all t, h > 0, such that, defining v, =
C},l, Yg(t) = Yg(-yn(t)) and Xyp(t) = Xp(ya(t)), {(Yg,f(n,'yn)} is relatively compact in

DRmeka[O,oo). Defining
¢ 5
(47) Va(®) = | Xa(e)avie
Proposition 4.3 implies {(Yg,Vn)} is relatively compact in DRmx IRk[o,oo). o

4.5 Corollary Suppose {(Up,Yn,Xn)} is relatively compact in DkaRm[O,oo)xDMkm[O,oo),
{Yn} satisfies C2.2(i) for some 6 > 0, and Z, is given by (4.5). Then {(Up,Yn,Zn)} is
relatively compact in DkaRmek[O,oo).

Proof Let Wp = (Up,Yn,Xp). The idea of the proof is to define a positive function h(r,s)

which is nondecreasing in r and nonincreasing in s such that

(4.8) ' Cn(t) = t + ) h(|Wn(s) — Wy(s-)|,6)
s<t

satisfies the hypotheses of Proposition 4.3. Note that Cp is designed so that the successive
discontinuities of Wy oC}ll are separated by a deterministic function of the size of the first
discontinuity. Lemma 2.2 of Kurtz (1990) then gives the relative compactness. The difficulty
arises in ensuring that {Cp(t)} is stochastically bounded for each t. For k = 1,2,..., let
Nlé(t) be the number of discontinuities of W;, before time +t satisfying 'll( <
[Wq(s8) — Wy(s-)] < -]:—1 The relative compactness of {Wy} in DkaRm[O,oo)xDMkm[O
ensures that {Nlﬁ(t)} is stochastically bounded for each t and that

,00)

lim _, gsupp P{Nlﬁ(s) >0} = 0. Consequently, there exist ap(t) >0 independent of n such
that
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4.9 P{a, (t)NK(t) > L} < L
(4.9) sup n P{a} (t) n()>2k}_
Without loss of generality, we can take ap(t) to be nonincreasing in t and k. Define

(4.10) Cn(t) =t + f 5._0_: a) (m+1) (NE((m+1)At) — NE(mAt))
m=0k=1

Note that the first sum in (4.10) is in fact finite and that (4.9) implies by Borel- Cantelli that

only finitely many terms in the second sum exceed —IE To check the stochastic boundedness

of {Cp(t)} it is enough to check the stochastic boundedness of

(4.11) KD = f: a) (m) NK(m)

for each m. We have

[4
(4.12) P{KI' > a+1} < Z P{ak(m)Nlé(m) > %} + P{ io: ak(m)Nlﬁ(m) > le}
k=1 k=¢+1 2

{4
< kglp{ak(m)N%&(m) > 5+ 2

and the stochastic boundedness of {KJ'} follows easily from the stochastic boundedness of
the NX(m). ' o

ES
These relative compactness results lead to the problem of identifying the limit under more

general assumptions on the limiting behavior of {Xp} than in Theorem 2.2. First assume
that (Xp,Yp) = (X,Y) in DMkm[O,oo)xDRm[O,oo) (rather than in DMkm Rm[0,00)) and
that {Yp} satisfies C2.2(i). For all but countably many ¢ > 0, (Xn(-—e€),Yp) =
(X(+=¢€),Y) in DMkmem[O,oo)). Consequently, for each such e,

£ t
(4.13) J Kale=e)aa() = Jox(s—c-)dY(s)

and hence there exists a sequence e — 0 slowly enough such that
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t t
(4.14) ‘[0 Xn(s—ep-)dYy(s) = '[0 X(s-)dY(s)

Noting that {[XpdYp} is relatively compact by Corollary 4.5, assume that [XpdYy, = Z.

Consequently,
(415) [ Kae) = Xae—ea)a¥n() = 20) - [ X()av(e)
0 0

Note that the sequence on the left in (4.15) is relatively compact by an argument similar to

that used in the proof of Corollary 4.5.

Let J 6(Xn) denote the MK™_valued process whose ijth component is J 6(XH) where Xiﬁi is
the ijth component of Xy, and let xf, = Xp = Js(Xn). Let Vg(t) =
sup8<tlxg(s)—xg(s—cn)l. Then Vg = V6 given by V‘s(t) = sups<t|X6(s) - Xa(s-)l <
ﬂx_ﬁé- By the same type of estimate as in (2.7), to identify the right side_ of (4.15) it is enough
to identify the limit of

t
(4.16) vl(e) = jo (35(Xa)(e-) = 35(Xn)(s—en-))d¥n(s)

(along a subsequence if necessary) and then to let § — 0. Let {Tfn} denote the times of
discontinuity of J¢(Xp) with Tgn = 0. Note that {'r;sn} are just the times when at least

one component of X, has a discontinuity larger than 6. Then Ug can be written

(4.17) S (Y +en) = Ya(rf )T 5(Xn)(7E) — I5(Xa)(rE )

)
Tin<t

and any limit point Ul of {Ug} satisfies

(4.18) vdt) = ; (35)(8%) — 35X)(B8-NY(8E) — Y(85-))
By <t

‘where {[3;s } is some gubset of the times at which some component of X has a discontinuity

larger that 6. Letting 6§ — 0, we see that

t |
(419)  U() = 2(t) - jOX(_s-)dY(s) = ¥ (Y(8) = YK - X6
pY<t
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where {ﬂi} is some subset of the times at which both Y and X have discontinuities. From
(4.17) it is clear that {f;} is empty unless some discontinuities of Yp “coalesce” with
discontinuities of X; from above. The following theorem gives conditions under which no

such coalescence occurs.

4.6 Theorem For each n, let (Xp,Y,) be an {‘J?}-adapted process with sample paths in
DMkmem[O,oo), and let Y, be an {‘J?}-semimartingale. SupPose that for some 0 < § <
oo, C2.2(i) holds and that for all T > 0 and 5 > 0 there exist random variables {73‘(17)}
such that

(4.20) E[1A|Yn(t+u) — Ya(t)[FD] < E[rd (n)IFP],  0<u<p, 0<t<T
and 1imn_,omn_,ooE[7',¥(q)] = 0.

If (Xp,Yp) = (X,Y) in DMkm[O,oo)xDRm[O,oo), then Y is a semimartingale with respect
to a filtration to which X and Y are adapted, and (Xy,Yp,[XpdYy,) = (X,Y,[XdY) in

DMkmemx

Rk[O,oo). I (Xp,Yn) — (X,Y) in probability, then the triple converges in
probability. ‘

4.7 Remark See Ethier and Kurtz (1986) Theorem 3.8.6 and Remark 3.8.7 for the connection
of (4.20) to conditions for the relative compactness of {Yp}. These conditions imply a type of

uniform quasi-left continuity on the sequence {Yp}. Consequently, this theorem is related to
Theorem 5.1 of Jakubowski, Mémin, and Pages (1989).

Proof We need only show that U = 0 in (4.19). The inequality in (4.20) holds with t
replaced by a stopping time. Consequently we have (with reference to (4.17)) for ¢ < g

(4.21) E[f:l 1A[(Ya(rf AT +en) - Ya(rf AT)|1A|05(Xa) (78, AT) — 3 6(xn)(’fn"T'))l:|
1=

< Elii ‘YT(’l)l/\I(J Xn)(rd AT) — 3 (X )r$ AT_))I]
R = s\ nATin s\ 0 lTip

< mE{va (n)]
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Since the number of discontinuities of J §(Xn) in any finite time interval is stochastically
bounded in n, it follows that U‘s(t) = 0 for each t > 0. Consequently, U = 0 and the

theorem follows.

Noting that if a sequence {Up} is defined on a single sample space and Up = 0, then Uy
— 0 in probability, we see that convergence in distribution can be replaced by convergence in

probability in the statement of the theorem. . a

In the next theorem we weaken the assumption that the integrands converge in the Skorohod
topology at the cost of adding the requirement that the limiting integrator be continuous.
ME[O,oo) denotes the space of (equivalence classes of) measurable E-valued functions

topologized by convergence in measure.

4.7 Theorem For each n, let (Xp,Yp) be an {?F?}-a.da.pted process with sample paths in
DMkmem[O,oo). Suppose that {Yp} satisfies C2.2(i) for some 0 < § < oo, and that {Xg}
satisfies C4.1. If (Xp,Yy) = (X,Y) in MMkm[O,oo)xDRm[O,oo) and Y is continuous, then
X has a version with sample paths in DMkm[O,oo), Y is a semimartingale with respect to a
filtration to which X and Y are adapted, and (Xp,Yp,[XpdYy) = (X,Y,[XdY) in
MMkm[O’w)XDRmek[o’oo)' If (Xn,Yn) - (X,Y) in MMkm[o,w)xDRm[o,m) in
probability, then the triple converges in probability.

Proof Let Cp, 7n, Xn, and Y, be as in Corollary 4.4 and Proposition 4.3, and set Zp =
[XndYp and Zp = Zpoyy = [X,dV¥y. Then {(Xn:sYn,Zn,Xn,¥Yn,Zn,vn)} is relatively
Mk M R RKXR [0,00). I (X,Y,2,X,¥,2,7) isa
limit point, then X = Xoy~ 1 , Y = Yoy 1, and Z = Zo'y 1. Since Y is continuous and

compact in M [0, oo)xDRm Rk[O,oo)xD

{Yn} converges in the Skorohod topology, ¥ must be constant on any interval on which ¥

is constant, which implies
5 o1 b o l(eyd on-l ¢
(4.22) 2(t) = Zoyl(t) ='j Koy 1(s-)d¥ oy 1(s) =J X(s-)dY(s)
0 0

and the theorem follows. O
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The above theorem still is not optimal even in the case of continuous integrands. For
example, if each Y, 1is a standard Brownian motion and (Xp,Yn) = (X,Y) in
L“%[O,oo)xDR[O,oo), then [XjpdYy = [XdY. The following theorem comes close to covering
this situation at the cost of placing strong conditions on the relationship between X; and

Yn. Of course, other approximations of X, could be used in place of xﬁ defined below.

4.8 Theorem Let Yp = Mp + Ap + Zy, where {(Mp,Ap,Zn)} satisfies the conditions of
Theorem 2.7. Let Hp(t) = 8UP g <¢|Xn(s)l, and suppose that {Hp(t)} is stochastically
bounded for each t. Define X,l} by

(4.23) | xbee) = h-lj: Xa(s)as

Suppose that foreach t > 0 and ¢ > 0

t t
(424) lim Ty p{] lelﬁ(s-)-xn(s->|2d[Mn]s+jolx‘ﬁ(s-)—xn(s-nd(Ts<An)+Ts(zn» > ¢}
=0
If (Xn,Yn,Zp) = (X,Y,Z) in MMkm[O,oo)xDRmem[O,oo), then
t
= I h
(4.25) u(t) =h'1’-.“o.[ xhay

0

CXiStS, and (Xn,Yn,J'Xn dYn) = (X,Y,U) in MMkm[O’m)XDRmek[o’w)' If (Xn,Yn,Zn)
- (X,Y,Z) in MMkm[O,oo)xDRmem[O,oo) in probability, then (X;,Yy,[XpdYy) —
(X,Y,U) converges in probability.

Proof Since Xlﬁ is locally Lipschitz, the conditions on H, ensure that (Xg,Yn,Zn) =
(Xh,Y,Z) in DMkmemem[O,oo) and hence that _[X%dYn = j'thY. Consequently,
estimating as in (2.7), (4.24) implies the result. a}
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5. Stochastic differential :;qn_a&mns, In this section we generalize results of Slominski (1989)
concermng convergence of sequences of solutions of stochastic differential equations. (See also
Hoffman (1989) for results assuming the limiting semimartingale is continuous.) Note that
Slominski also considers Stratonovich equations. Avram (1988) considered the special case of

stochastic exponentials, that is solutions of equations of the form (k = m = 1)
t

(5.1) X(t) =1+ J X(s-)dY(s)
0

For n = 1,2,... let Fn:DRk[O,oo) - DMkm[O,oo), le¢ Uy and Yy be processes with sample

paths in D_,[0,00) and D_m[0,00) respectively, adapted to a filtration {FDP}. Suppose Yp
Rk R t

is a semimartingale and that F, is nonanticipating in the sense that Fn(x,t) = Fn(xt,t) for

all t >0 and x € DRk[O,oo), where xt(-) = x(+ At). Let X, be adapted to {‘.F?} and

satisfy

t
(5.2) Xn(t) = Up(t) + '[0 Fn(Xn,s-)dYp(s)

In order to apply Theorem 2.2 to the study of the weak convergence of solutions of this

sequence of equations to the solution of a limiting equation
t

(5.3) X(t) = U(t) + J F(X,s-)dY(s)
0

we need conditions under which weak convergence of the pair (Xp,Yy) = (X,Y) implies
(Yn,Fn(Xpn)) = (Y,F(X)). We could, of course, simply assume that (Xpsyn) — (x,y) in
DkaRm[O,oo) implies (xp,yn,Fn(xp)) — (xy,F(x)) in DkaRmekm[O,oo), and under

that assumption we have the following proposition.

2.1 Proposition Suppose that (Up,Xp,Yy) satisfies (5.2), that {(Up,Xp,Yn)} is relatively
Rkakam[O,oo), that (Up,Yn) = (U,Y), and that {Y,} satisfies C2.2(i) for
some 0 < § < oo. Assume that {Fp} and F satisfy

compact in D

C5.1 If (Xp,yn) — (x,¥) in the Skorohod topology, then (%nsyn>Fn(xn)) = (x,y,F(x)) in
the Skorohod topology.

Then any limit point of the sequence {Xp} satisfies (5.3).
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Proof First note that if a subsequence of {Xy} converges in distribution, then along a
further subsequence the triple will converge in distribution to a process (U,X,Y). Theorem

2.2 then implies that (5.3) is satisfied. 0

The following lemma, a generalization of Lemma 2.1, shows that the assumption on the
sequence {Fp} is valid for many interesting examples. Let Al be the subset of absolutely

continuous functions in A for which y(}) = lln;\loo is finite.
2.2 Lemma Suppose that {Fy} and F satisfy the following conditions:

C5.2(1) For each compact subset % C DRk[O,oo) and t > 0, supxe%supsStan(x,S)_
F(x,s)| — 0.

C5.2(ii) For {xp} and x in DRk[O,oo) and each t > 0, supgc(|xn(s) — x(s)] — 0
implies supg4|F(xp,8) — F(x,8)] — 0.

C5.2(iii) For each compact subset % C DRk[O,oo) and t > 0, there exists a continuous
function  w:[0,00) — [0,00) with w(0) = 0 such that for all X € Al,

SUP, cqc supsSt|F(xo/\,s) - F(x,A(s))|. < w(y(A)).

Then (xp,yn) — (x,y) in the Skorohod topology implies (xp,yn,Fn(xpn)) — (x,y,F(x)) in
the Skorohod topology. '

Proof If (xp,yn) — (%,y) in the Skorohod topology, then there exist A, € Al such that

7(An) — 0 and  (xpoAp,ypodp) — (X,y) uniformly on bounded time intervals.

Consequently,
(5.4) Fp(xp,An(s)) — F(x,s) =
Fn(xnsAn(s)) — F(xn,An(s)) + F(xq »An(s)) — F(xpoAn,s) + F(xpoAp,s) — F(x,s)

goes to zero uniformly in s on bounded intervals. o
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5.3 Examples Let g:ka[O,oo) — Mkm ang h:[0,00) — [0,00) be continuous. The following
functions satisfy C5.2(ii) and C5.2(iii).

a)  F(x,t) = g(x(t),t)
b) F(xt) = r h(t—8)g(x(s),s) ds
0

For k=m=1
§)  F(xt) = sup, ¢ h(t—s)g(x(s).0)

d) F(xt) = suPSSth(t_s)g(x(s)_x(s')’s)

One shortcoming of Proposition 5.1 is the apriori assumption that the sequence of solutions is
relatively compact. (See Theorem 2.3 of Jacod, Mémin, and Métivier (1983) for general
conditions on  {Yp} under which the desired relative compactness will hold.) We can avoid
this assumption by localizing the result and appi_ying Proposition 4.3. We say that (X,7) isa
local solution of (5.3) if there exists a filtration {F:} to which X, U, and Y are adapted, Y is

an {¥,}-semimartingale, 7 is an {%,}-stopping time, and
tAT

(5.5) X(tAT) = U(tAT) + J F(X,s-)dY(s)
0

We say that gtrong local uniqueness holds for (5.3) if any two local solutions (Xl,'rl), (X2,‘r2)
satisfy X;(t) = Xo(t), t <7;A7y, a.s. To define a notion of weak local uniqueness (that is,
uniqueness of distributions), we need to require that the stopping time associated with the
solution be a measurable function of the solution. We say that (fJ,Y,f(,i') is a weak local
solution of (5.3) if (U,Y) is a version of (U,Y) and (5.5) holds with (U,Y,X,r) replaced by
(ﬁ,?,X,i‘). We say that weak local uniqueness holds for (5.3) if for any two weak local
solutions (U;,Y{,X;,7{) and (UgyY9,Xg,79) with 71 = bi(Xy) and 79 = ho(Xy) for
measurable functions h,, hy on DRk[O,oo), (X1,h1Abo(X;)) and (Xg,h; Ahy(Xy)) have

the same distribution. See Protter (1990), Chapter V, for sufficient conditions for uniqueness.

In order to apply Proposition 4.3, we need assumptions on the properties of Fp(x) and F(x)
under transformations of the time scale. Let T1[0,oo) denote the collection of nondecreasing
mappings A of [0,00) onto [0,00) (in particular A(0) = 0) such that A(t+h) — A(t) < h
for all t,h > 0. Let ¢ denote the identity map i(s) = s. We will assume that there exist
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mappings Gp, G:DRK[O,oo)xTi[O,oo) - DMkm[O,oo) such that Fp(x)od = Gp(x0,)) and
F(x)oAd = G(x0A,A) for (x,)) € DRk[O,oo)le[O,oo). We need the following strengthening of
C5.2

C5.4(i) For each compact subset ¥ c DRK[O,oo)le[O,oo) and t > 0,
sup(x,/\)e%supsSthn(x,/\,s) — G(x,A8)| — 0.

C5.4(ii) For  {(xp,Mn)} € DRk[O,oo)le[O,oo), supo¢lxn(s) — =x(s)) — 0 and
sup [An(s) —A(s)] — O for each t > 0 implies sup |G(xp,An,8) — G(x,A,8
s<t s<t

— 0.

We note that each of the examples in 5.3 has a representation in terms of a G satisfying
C5.4(ii) and that C5.4 implies C5.2.

2.4 Theorem Suppose that (Up,Xp,Yn) satisfies (5.2), (Up,Yn) = (U,Y) in the Skorohod
topology and that {Yp} satisfies C2.2(i) for some 0 < § < co. Assume that {Fp} and F
have representations in terms of {Gp} and G satisfying C5.4. For b > 0, define r)b =
inf{t:|Fp(Xp,t)|V|Fp(Xn,t-)| > b} and let x}{ denote the solution of

(5.6) XR(t) = Un(t) + jtx by(5)Fn(XRs-) d¥p

0 [0
that agrees with X, on [O,ng). Then {(Un,XB,Yn)} is relatively compact and any limit
point, (U,Xb,Y), gives a local solution (Xb,'r) of (5.3) with T = ¢ =
inf{t:IF(Xb,t)|VIF(Xb,t-)I 2 c} for any c < b. If there exists a global solution X of (5.3)
and weak local uniqueness holds, then (Up,Xp,Yn) = (U,X,Y). '

Proof By Lemma 4.1, there exist v, such that {(Uno-yn,XBo-yn,Yno'yn)} is relatively

Rﬁkame[O,oo). C5.4 then implies that {x’I[E,qg)lo-yn Fn(XB)o-yn} =
{x 078 Gn(XnoTnsyn)} is relatively compact in DRk[O,oo). e relative compactness of
{(&;Rn,Yn)} then follows by Corollary 4.5 and Proposition 4.3. The sequence
R xR gml0:00)x[0,00]. Let (U.XP,,qB)
denote a weak limit point. To simplify notation, assume that the original sequence converges

compact in D

{(Un,Xg,Yn,r)B)} will be relatively compact in D

and (with reference to the Skorohod representation theorem) assume that the convergence is

almost sure rather than in distribution. Note that qb < 178.
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It follows that Up + j'Fn(XB) dY, = U + j'F(Xb) dY and since

t ‘
(5.7) XB(t) = Un(t) + jOFn(XB,s-)dYn(s>
for t < 7%,
(5.8) xbt) = u@) + r F(XP,5-)dY(s)

0

for t < 178. Let ¢ <b. If 3¢ < 5P, then (5.8) holds for t < 5% If 7 = pP, then F(xP)

has a discontinuity at 5 with IF(Xb,nc-)l < c and IF(Xb,nc)l 2 b. It follows that for ¢ -
< d < b, (Un(E)XR(rE)Ya(nd), Yu(ni-),Fu(XBond), Fu(XB,nd-)nd)  converges to
WX, ¥(n%), (14, F(XP 8, P(xP,0%),99) and

d
n
(5.9) x*(r) = U(rd) + | " ) ave)
so that (5.8) holds for t < 7€ (= r)d). Consequently, (Xb,nc) is a local solution of (5.3).

Note that 5 is a measurable function of xb (say hc(Xb)). Consequently, if weak local
uniqueness holds for (5.3) and there exists a global weak solution X, then (Xb,r)c) must have
the same distribution as (X,h¢(X)) for all ¢ and b with ¢ < b. Since X is a global

solution, h¢(X) — 0o as ¢ — oo. Convergence in distribution of (Up,Xp,Yn) follows. o

Unlike Theorem 2.2, Theorem 5.4 does not immediately hold with convergence in distribution
replaced by convergence in probability. In particular, we must assume a strong uniqueness for
the limiting equation (5.3) or convergence in probability could fail fo hold even with (Up,Yy)
= (U,Y). (If X and X are solutions of (5.3) which are not almost surely equal and {¢,}
are ii.d. with P{¢n = 1} = P{éy = 0} = 1, then take X; = £nX + (1—£€5)X.) We need

the following lemma.

2.5 Lemma Assume that F has a representation in terms of a G satisfying C5.4(ii).
Suppose that there exists a global (weak) solution of (5.3) and that strong local uniqueness
holds for (5.3) for any version of (U,Y). Then any solution of (5.3) is a measurable function
of (U)Y) (that is, if X satisfies (5.3), then there exists a measurable mapping

g:DkaRm[O,oo) — DRk[O,oo) such that X = g(U,Y)) a.s.).
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Proof Define (Up,Yn) by (Un(t)Ya(t) = (U ¥() and let X satisfy (5.2).
Then Xj is a measurable function of (Uyp,Yp) and hence of (U,Y). Let n — oo and my
— oo. Then by Theorem 5.4, (Unk,Umk,Xnk,ka,Ynk,Ymk) converges in distribution to
(U,U,X,X,Y,Y) where X and X satisfy (5.3). But, strong local uniqueness implies X = X
a.s. Consequently, if d is a metric for DRk[O,oo), then

(5.10) limy _, o E[1Ad(Xn, ,Xm,)] = E[1Ad(X,X)] = 0

and hence {Xp} is a Cauchy sequence for convergence in probability. Since Xp is a

measurable function of (U,Y), the lemma follows. o

2.6 Corollary If in Theorem 5.4, we assume that (Up,Y;) converges in probability to (U,Y),
that there exists a global solution of (5.3), and that strong local uniqueness holds for (5.3) for

any version of (U,Y), then X converges in probability.

Proof Let f be a bounded, continuous function on DRk[O,oo) and g be a bounded

continuous function on D ><Rm[0,<>o). Then since (Up,Xp,Yn) = (U,X,Y)

Rk
(6.11) - lim p — 00 E[f(X1n)g(Un,Yn)] = E[f(X)g(U,Y)]

The convergence in probability of (Uyp,Yy) then implies

(5.12) lim p — 00 E[f(Xn)g(U,Y)] = E[f(X)g(U,Y)]

and Ll-approximation of measurable functions by continuous functions implies that (5.12)

holds for all bounded, measurable g. Lemma 5.5 ensures the existence of a bounded

measurable g such that f(X) = g(U,Y) a.s. Consequently,
(5.13) im0 E[(f(Xn) — £(X))?] = lim n— o0 (Elf(Xn)?] — 2E[(Xn)£(X)] + E[EX)2]) = 0

and convergence in probability for {X;} follows. ]
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Theorem 5.4 perhaps makes the theory look more simple and benign than it really is. Example
1.2 of the introduction reveals a pathology originally discovered by Wong and Zakai (1965):
that certain naive approximations of semimartingale differentials lead to a lack of continuity of
the corresponding solutions of stochastic differential equations. Indeed, it was this pathology
that led E. J. McShane to develop his integral and to his proposal of a “canonical form”
(McShane (1975)), though these can now be recognized as special cases of the semimartingale
integral. The Wong-Zakai pathology has also led people to pay increased attention to
Stratonovich and more generally symmetrized integrals and their differential equations (e.g.,
Mackevicius (1987)).

Examples 5.7, 5.8, and 5.9, that follow, motivate Theorem 5.10, which extends thé results of
Wong and Zakai. This extension is by no means the first; however, almost all the previous
ones (e.g., Nakao and Yamato (1976), Doss (1977), Sussman (1978), Krener (1979), Ikeda and
Watanabe (1981), Marcus (1981), Konecny (1983), Protter (1985), Mackevicius (1987), Picard
(1989), Bally (1989)) are concerned with Lp, almost sure, or in probability convergence,
always on only one probability space. The one exception is Slomifski (1989), who deals with
weak convergence. Moreover, the level of generality in previous work is only that of
Proposition 5.12 (albeit for more general approximation schemes; we have not bothered with
the obvious modifications needed to include all of the previous results), and hence Theorem

5.10 is new even on the level of convergence in probability.
5.7 Example Let W, be as in Example 1.2. Then clearly {Wp} does not satisfy C2.2(i)
(otherwise [W;dW; would converge to [WdW); however, if we define Ya(t) = W(mt,],il)
and Zy = Wp — Yy, then {Yp} satisfies C2.2(i) (Yy is a martingale with respect to the
filtration defined by 5)‘? = o{W(s):8< I"—t!,'*'—l}) and Zp = 0. Furthermore, we observe that’

t
(5.14) I ZpdZy — — 4t

0

9 t

(5.15) [Zo), = — [Yn.Za] = Z2(t) — 2JO ZndZy — t

and (noting that Zp(t-) = 0 at each discontinuity of Zy)

t
(5.16) Ty([Zn dZp) = jolzn(s)l [W(s)] ds — Ct
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where C = E[|[W(1)| [§|W(1) — W(s)|ds]. Setting Hp = [ZydZy and Iy = [Zy), it follows
that {Hp} and {Ip} satisfiy C2.2(i). O

5.8 Example Let V be the Ornstein-Uhlenbeck process satisfiying
(6.17) dV = dW ~ Vdt
where W is a standard Brownian motion. Let

p (tn® b2
(5.18) Wa(t) = 1 J V(s)ds = J nV(n2s)ds

0 0

It follows that
(5.19) Wn(t) = 1W(n2t) — 1v(n?t)

and defining Yp(t) = ,l,W(n2t) and Zp(t) = — %V(n2t) we see that, as in Example 5.7,
{Yn} satisfies C2.2(i) (each Yp is a standard Brownian motion) and Zp = 0. Again,
setting Hp = [ZdZp, Ky = (Yn,Zy], and I = [Zy], we see that

2

n2t n“t
= l 8 8) — _1" 8 2 8
(5.20) Hn(t)_nzjo V(s)dW(s) H,_JO V(s)2d

The first term on the right of (5.20) is a martingale with quadratic variation

2

tV(s)2 ds
n

(5.21) L J :

while the second term obviously has finite variation. It follows that {Hp} satisfies C2.2(i),
and Hy(t) — —3t. Note, in addition, that Iy(t) = — Kp(t) = t. o

5.9 Example Let {Uk,kZO} be a finite, irreducible Markov chain with transition matrix P
= ((pij)’). Let = = (1r1,...,7'rM) give the stationary distribution, and let f be a function
satisfying

(5.22) ;f(m)wm =0
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Define
1 [nt]
(5.23) Wa(t) = Tlezl f(Uy)

Letting Pg(i) = Ejg(j)pij, by (5.22) there exists a function h such that Ph — h = f.
Substituting in (5.23), we obtain

[nt

]
(5.24) Wh(t)= ‘%T‘k l(Ph(Uk) — h(U}))

[nt]

%—nkgl(r’h(uk_l) — b(U) + (PR, - Ph(Up))

= Yn(t) + Zn(t)

As in Examples 5.7 and 5.8, {Y,} is a sequence of martingales satisfying C2.2(i) which, by
the martingale central limit theorem (see, for example, Ethier and Kurtz (1986), Theorem

7.1.4), converges in distribution to ¢ W where

[nt]
(5.25) o? = limn—roo%kzl(Ph(Uk-l) ~ B(U))? = 3 mp;(Ph(i) — h(3))>?
= 1,)

Again Zy = 0, [Zp] = Ct, [2pdZy = — 1Ct, and [Yy,Zp) = Dt where

[nt]
(5.26) C = limn_.oo%kzl(Ph(Uk) - Ph(U, )% = 3 Py (Ph(3) — Ph(i))>
= l,J

[nt)
(5.27) D= um,,_,oo,-l]kEl(Ph(Uk_l) - h(U)(Ph(Uy) — Ph(Uy ,))
= 3 7Py (Ph() — h(i))(Ph(j) — Ph(i))?
i
and {[ZydZp} and {{Zp]} satisfy C2.2(i). n]

Clearly Theorem 5.4 does not apply directly to

t
(5.28) Xn(t) = Un(t) + Jo F(Xp.s-) AWy (s)
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for {Wp} asin any of the above examples; however, if we specialize to
t
(5.29) Xn(t) = Xn(0) + jo F(Xn(s-)) dWn(s)

t t
= Xa(0) + | FXa(+) 42 + || FXa(s))dzae)

we can apply Theorem 5.4 to obtain the following extension of the classical results of Wong
and Zakai (1965).

2.10 Theorem Let Y, and Zp be {‘:'F?}-semimartingales, and let Xp(0) be ‘:'Fg-measura.ble.
Let F:RK — MKM i (5.28) be bounded and have bounded first and second order derivatives.
Define Hy = ((HS")) and Ky = ((K27)) by

t
(5.30) 27 = J ) z2(s-)az)(s)
and
(5.31) KA7(t) = [v2,2]),

Suppose that {Yp} and {Hp} satisfy C2.2(i) and that (Xp(0),Yn,Zn,Hp,Kn) =
(X(0),Y,0,H,K). Then {(Xp(0),Yn,Zn,Hp,Kn,Xn)} is relatively compact, and any limit point
(X(0),Y,0,H,K,X) satisfies

(5.32)

t t
X() = XO + | FxGpave) + > [ ) 2F SN Fary (XN ) - k7))
a, 3,y

where 0y denotes the partial derivative with respect to the ath variable and F F; denotes the

Bth column of F.

5.11 Remark a) The boundedness assumptions on F and its derivatives may be dropped to

obtain a localized result with a statement analogous to that of Theorem 5.4.
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b) The theorem can be extended to equations of the form
' t t
(5:33) Xa(®) = Un(®) + [ FOa(6)4%a® + [ FOXae) 2200
by writing Up = ¥y + Zp and forming the system
Ua®) _ (UYL [ 1 0 %@\, (T 1 0 T Za(®
(5:34) (Xn(t)) - (Un(O)) * JO[ 0 F(Xn(s‘]d( Yn(s)) * JO[ 0 F(Xn(s‘}d( Zn(s))

b) Note that since Zp => 0, supgy|Zp(s)—Zp(s-)] = 0 and H and K must be

continuous. We are not, however, assuming that Y is continuous.
c) Let 157(1',) = [Zg,Zg]. Since
t t
(5.35) 122,28, = 2z - 2Oz© - [ Aerale - [ 2l

it follows that 157 = — (Hﬂ7 + H7ﬁ). Since Igﬂ is nondecreasing and converges in

distribution to a continuous process, it follows that {Igﬂ } satisfies C2.2(i) (at least for any

g BB

finite §) and, by estimating the increments of In7 by the increments of I” and IZ”, that
{157} satisfies C2.2(i).

d) Since
(5.36) KB (6+h) — KE(0)] < J(1vBlyyy + 12204y — IYE), - (20,
it follows that {Kp} satisfies C2.2(i).

Proof The result is obtained by integrating the second term on the right of (5.28) by parts.
Note that by Ito’s formula

t .
(5.37) F5(Xa(t) = F;5(Xn(0)) + ;jo daF;(Xn(s-)) dXE(s) + Rif (1)

ig

where the increments of Ry are dominated by a linear combination of the increments of

[YR] and [Z§] (which implies that {R,} satisfies C2.2(i)). Integrating by parts we obtain
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t
639 [ Figaeazie)

t
= Fip(Xa() 25 (1) — F4(Xn(0))Z5(0) - 5 ], aFip(Xa(e2h ) axE )

[+3

t _ .
- jozn(s-)dR © = 3] saFipCa(e-narxg 2l + 2 20

: b g 7
= ma(t) — az;jo 0F; 5(Xn(s-))Fary(Xn(s-) Zh () 423 (s)

) 7] 8aF;(Xn(s))Fary(Xn(s)) (YD, 28] + [24,28)5)

= mt) - E] 8aF;p(Xn(s-)Fay(Xa(s-) d(HR "(6) + KLP(5) + 11 (s))

a,7

where np = 0. Substituting (5.38) into (5.29), the theorem follows from Theorem 5.4. o

Much of the work on approximation of solutions of stochastic differential equations has been
concerned with linear interpolations of the integrator. The next result shows that Theorem

5.10 applies to these approximations.

5.12 Proposition For each n,let V, be an {‘:'Ff}-semima,rtinga.le and {rﬂ} be a sequence of
{‘.F?}-stopping times with 1'3 = 0 and limy _, oorﬁ = oo. Suppose that

limp—co8up) T} 41— 7k = 0. Define the linear interpolation

n
kil ny, _t—-T n n n
(5.39) Va(t) = = Vn("'k) + TII:+1""2vn(Tk+1)’ Tk St <Thy
and define
(5.40) Yn(t) = Vn(‘rﬁ_*_l) = VD(TE+1)’ Tﬁ S t < TE+1

and
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¢ 7'a+1_t n n n n
(5.41) Zn(t) = Vn(t) bl Yn(t) = m(vn(‘rk) —_ Vn(rk+1)), Tk S t < Tk+1

Define Hp and Kj asin Theorem 5.10. Suppose that Vy, = Y where Y is continuous,
and that {Vp} satisfies C2.2(i) for some & € (0,00). (In particular, this last statement holds
if Vn-= Y forall n.) Then Yy = Y and Z, = 0, {Yp} and {Hp} satisfy C2.2(i) for

some § € (0,00],

(5.42) Hy = - 3(1YP,¥")
and
(5.43) Ko > —(((Y’,Y")

Proof Let 74(t) = min {Tﬁ:‘rﬁ > t}. Then 7p(t) is an {‘.F?}-stopping time for each t and
Vo, Yp and Zp are adapted to the filtration {g?} given by g{‘ = ‘.Fﬂn(t). The proof that
{Yn} satisfies C2.2(i) is essentially the same as the proof that {Y,} satisfies C2.2(i) in
Example 3.7. The fact that Y, = Y follows from the convergence of V, and Proposition
3.6.5 of Ethier and Kurtz (1986). The convergence of Z; follows from the continuity of Y

and the continuous mapping theorem.

Note that

- — AN a2
(5.40) 87ty = - 33°¢ “(j:,“ ::)’;t) (VB — VEEIIVEGE, p - VIED)
k+1 = 'k

2

-3 ¥ Aty - VAEDVECE, ) - VIED)
Tk41St

= - iV,
t t
= - %(Yff (6) Ya(t) — JOYE(s-)dYZ(S) = JOYZ(S-)dYE ®)

and (5.42) follows by Theorem 2.2. A similar calculation gives (5.43). The fact that {Hp}
BB

satisfies C2.2(i) follows from the monotonicity and convergence of Hp" and the fact that the

By BB

total variation of Hp ' can be estimated in terms of the total variation of H," and HZ". a]
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6. Technical results

Uniform approximation by step functions Let E be a metric space with metric r. Let {Bk}
be a sequence of independent random variables, uniformly distributed on the interval [%,1].
Fix ¢ > 0, and for z € Dg[0,00) define 743(z) = 0 and rk+1(z) = inf{t > 7,(2):
r(z(t),z(r (2)))Vr(z(t-),2(7) (2))) 2 €0} and set 7, (z) = z(1)(2)). Finally, define I¢(z) by
Ie(z)(t) = 7 (z) for 7). (2) <t < ‘rk+1(z). Note that r(z(t),le(z)(t)) < ¢ for all t. Let U,
= {umm = r(z(t),z(0)) or r(z(t-),2(0)) for some t such that z(t) # z(t-)}, and defining m(t)
= supsstr(z(s),z(O)), let Uy = {m(t):m is not strictly increasing at t}. U; and U, are
countable, so with probability one, €fg € UjUUy. Let zy — z, and assume that by ¢
U UU,y. Either m is strictly increasing at 7,(z) or 1r(z(r(2)-)2(0)) < €fy <
1(2(71(2)),2(0)), and it follows that 7,(zn) — 7(2). Either z is continuous at 7,(z) or
r(z(71(2)-),2(0)) < €8y < r(z(r(2)),2(0)), and it follows that v;(zn) — 71(2). In general, if
zn — 2z in the Skorohod topology, t, — t and zn(tp) — z(t), then zp(tp+:) — 2z(t+:) in
the Skorohod topology. Consequently, zy — z implies zp(7{(zn)+-) — z(r1(2)+-) a.s. An
induction argument then shows that z, — z implies 7} (zn) — 7, (z) and 7p(zn) — 7, (2)

a.s for all k. With these observations, we can prove the following lemma.

6.1 Lemma Let I be defined as above. If z; — z in the Skorohod topology on DE[O,oo),
then (2p,l¢(2n)) — (2,I¢(z)) a.s. in the Skorohgd topology on Dgyg[0,00).

To carry out the proof, we need the following. (See Proposition 3.6.5 of Ethier and Kurtz
(1986). Note that the third condition in that proposition is implied by the other two.)

6.2 Lemma For an arbitrary metric space (E',r'), vp — v in the Skorohod topology on
DE,[O,oo) if and only if the following conditions hold:

C6.2(1) If ty — t, then limp—, oor'(vn(tn),v(t))Ar'(vp(tn),v(t-)) = 0
C6.2(ii) If s > tp, sp,tp — t,and vp(ty) — v(t), then vp(sy) — v(t).
Proof of Lemma 6.1 Suppose zp — z in Dp[0,00) and ty — t. If (@) <t < 'rk+1(z),

then I¢(z) is continuous at t, I¢(zn)(tn) — 7)(2) = I¢(2)(t), and C6.2(i) and (ii) follow for

{(zn,Ie(zn))} by the analogous conditions for {zp}. If t = T (2), we can assume that either
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z is continuous at 7, (z) or r(z(r)(2)-),2()_1(2))) < €6} ; < r(z(7)(2)),2(1)_1(2))). The
convergence of Tk_l(zn), Tk (zn), 7k-1(%n), and 7x(zn) implies C6.2(i) and (ii) for {I¢(zp)},
and if 2z is continuous at 7 (2), C6.2(1) and (ii) follow for {(zpn,le(zn))}. If
(z(r) (2)-),2(1)_1(2))) < €b) ; < r(2(r)(2)),2(7}_1(2))), then, with probability one, for n
sufficiently large the same inequality holds with z replaced by z,. Consequently, if t, >
7y (zn) and tp — 7 (2), then zp(tp) and Ie(zn)(tn) both converge to 7K (2), and if ty <
'rk(zn) and tp — t, then zj(ty) converges to z(rk(z)-) and I¢(zp)(tp) converges to
7k-1(2) = Ie(2)() (2)-). C6.2(i) and (ii) follow for {(zn,le(zn))}. =}

Uniform tightness Jakubowski, Mémin, and Pages (1989) and Slominski (1989) develop their
results under a “uniform tightness” condition. We discuss this condition for a sequence of one-
dimensional semimartingales {Yp} satisfying Yp,(0) = 0. The results below are essentially

contained in Lemma 3.1 of Jakubowski, Mémin, and Pages (1989).

Let 36, denote the collection of cadlag {‘.F{’}-adapted, R-valued processes satisfying |Hp(t)]
<1 forall ¢ > 0. Then {Yp} is uniformly tiglit if for each t > 0

t

(6.1) {I Hy(s-)dYn(s): Hy € %n, 0 = 1,2,...}
0

is stochastically bounded.

Assume that {Yp} is uniformly tight. Let 9, denote the collection of {'if?}-stopping times.
For r€ 9, and ¢ > 0,let Hy = x[O,r)’ Then the integral in (6.1) gives Yp,(tAT), and we
see that for each t > 0, {Yu(tAr):7 € Ty, n = 1,2,...} is stochastically bounded.
Considering the collection of stopping times of the form 7 = inf{s:[Yp(s)] > c}, it follows

that {supg<;[Yn(s)l:n = 1,2,...} is stochastically bounded. Recalling that
9 t
(6.2) Yaly = Ya®? = [ 2¥a(e)a¥a(0)

and using the stochastic boundedness of the suprema, we see that {[Yn)yin = 1,2,...} is

stochastically bounded.

The stochastic boundedness of the quadratic variations ensures that the uniform tightness of

{Yn} implies uniform tightness of {Yg} foreach 0 < 6§ < c0. Fix 0 < § < 00 and let Yg
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= Mg + Ag be the canonical decomposition of Yg (Protter (1990) $III.5). Then the
discontinuities of Mg and Ag are bounded by 26, and E[[Yg]r] = E[[Mg]-,-] + E[[Ag]r]
for any stopping time r (with the possibility of co = o) (Protter (1990) §IV.2.) Let 9§ =
inf{s:[Yg]s 2 c}. Fix t and for k = 1,2,..,, let {tl{} be a partition of [0,t] with
limk—»ooma‘xi(ti+1_ti) = 0. Define

(6.3) Hn = ESIgD(E[An(tH_lA'YD) - An(tk/\‘)’n)l‘fF ]) [tk/\‘)‘ A7)
n»t l+1 n

The first term on the right of

bk § " § Yok 5 k k
(6.4) JO Hp(s-)dYp(s) = '[0 Hp(s-)dMp(s) + JO Hp(s-)dAp(s) = Un(u) + Vn(u)
satisfies
(6.5) Elsup, <y US(s)?] < 4EMS(tA18)Y] < 4(c+(26)2)

80 {Ulﬁ(t):k,n = 1,2,...} is stochastically bounded which, by the stochastic boundedness of
(6.1) (with Yy replaced by Yg), implies the stochastic boundedness of {Vlé(t):k,m =
1,2,...}. But the predictability of Ag implies

(66) T, c(Ad)
= limy oo 3 sign(EIAR (1 A78) — ARG AEITRT) (St Av8) - ASGEATS))
= lim vE(t)

k—oo 'R0

(see Dellacherie and Meyer (1982), page 423) so {T 7c(An)} is stochastically bounded for
each c. But the stochastic boundedness of {[Yn]t} for each t implies that for each ¢ > 0,
there exists a ¢ such that P{‘yn <t} € ¢ and hence there exists an a > 0 such that
P{Tt(An) >a} < P{T (An) >a} + P{v§ < t} < 2¢, verifying the stochastic boundedness
of {Tt(An)} and C2. 2(11) C2.2(iii) is immediate, so C2.2(i) holds.

If there exists a § for which {J s(Yn)} is stocha.stlca.lly bounded and C2.2(i) holds, then
{Yn} satisfies C4.1 and Lemma 4.1 implies {Yy} is uniformly tight.
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