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Abstract

In a sample X3,...,Xx, independently and identically distributed with distribution
F| a linear statistic T = %Zf\; T; can be defined, where T; = ¢(X;), and ¢(.) is some
function. For this statistic, a ‘natural’ nonparametric variance estimator is the sample
variance # Y (T — T)?, the denominator N — 1 often being used instead of N.

However, if the sample is stationary but weakly dependent, the same estimator would
not work, since it fails to take into account the covariances among the Ti’s. Moreover, in
many time series problems, the objective is to estimate a parameter of the Mth dimensional

marginal, and not just of the first-dimensional marginal distribution. Thus, the linear

statistic in this case must be of the form T'(X3,...,Xy) = m Ef;l T;, where T; =
ém(X;, ..., Xiym—1), and ¢nm(.) is now a function of a whole block of observations.

In the present report, we formulate the nonparametric variance estimator corresponding
to a sample variance of the linear statistic T'(Xy, ..., Xn). The proposed estimator depends
on a design parameter b that tends to infinity as the sample size N increases. The optimal
rate at which b should tend to infinity is found that minimizes the asymptotic order of the
Mean Squared Error in estimation. Special emphasis is given to the case where M tends to
infinity as well as IV, in which case a general version of the linear statistic is introduced that
estimates a parameter of the whole (infinite-dimensional) joint distribution of the sequence

{Xn,n€Z}.

Keywords. Mixing sequences, linear statistics, nonparametric variance estimation.



1.Introduction

Let {X,,n € Z} be a strictly stationary and weakly dependent multivariate time series,
where X, takes values in R?. The degree of dependence is quantified by the various mixing
coefficients (cf. Roussas and Ioannides(1987)). We will particularly make use of Rosenblatt’s

o-mixing or strong-mixing coefficient which is defined as follows:
ax (k) = sup|P(AN B) — P(A)P(B)| (1)

where A € FO_ , B € Ff° are events in the o-algebras generated by {X,,n < 0} and {X,,n >
k} respectively.

Suppose p € RP is a parameter of the whole (infinite-dimensional) joint distribution of
sequence {X,,n € Z}. As a matter of course, parameters of a finite-dimensional marginal
are also covered in this general framework. We will now describe a way to obtain consistent
estimators of p in the form of an average of functions defined on the observations, i.e. in the
form of a general linear statistic.

For each N =1,2,...let B;ps,r be the block of M consecutive observations starting from
(¢ — 1)L + 1, i.e. the subseries X(i=1)L+1>- - -» X(i-1)L+M> Where M, L are integer functions of
N. Note that B;a,r for i =...,—1,0,+1,... can be gotten from {X,,n € Z} by a ‘window’
of width M which is ‘moving’ at lags L at a time.

Now define T; a1, = ¢am(Bim,L), where ¢y : RM _, RD is some function. So for fixed N,
the T; a1 for ¢ € Z constitute a strictly stationary sequence. In practice we would observe a
segment Xq,..., Xy from the time series {X,}, which would permit us to compute T; a1 for
t=1,...,Q only, where Q = [N—_LM] + 1 and [.] is the integer part function. We can think of
the T; pm,1’s as a triangular array whose Nth row consists of T; prr,2 = 1,...,Q.

Finally we are in a position to define the general linear statistic:
18
Tn = —ETi,M,L (2)
Qi |

Under broad regularity conditions Ty is a consistent estimator of y. Loosely stated, these

regularity conditions consist of a weak dependence structure (allowing the variance of Ty to



tend to zero as N — c0), and a condition of unbiasedness or asymptotic unbiasedness of T sz,
i.e. ETy pmp = p, or ETy a1, — p as M — oo. We will mention here some examples of time
series statistics that can fit in this framework. For the examples assume X, is univariate, i.e.
d=1.

(I) The sample mean : X = -]%,-Ef\_r__l X;. Just take M = L = 1 and ¢)s to be the identity

function.

(II) The (unbiased) sample autocovariance at lag s : 7= SN 1* X;X;4,. Take L = 1,
M =s+1and ¢pm(z1,...,20M) = T12M1.

(III) The lag-window spectral density estimator, where we take

1 L(i-1)+M M ]
¢M(Bi,M,L) = Wl Z Wt( )Xte—JtUIlZ (3)
t=L(i—-1)+1

i.e. T;m,0(w) is the periodogram of block B; ar,r, of data ‘tapered’ by the function Wt(M), and
evaluated at the point w € [0,27]. (Note that the symbol j denotes the unit of imaginary
numbers 4/—1, in order to avoid confusion with %, the block count.)

For multivariate time series we can similarly use our formulation of the general linear
statistic to define the sample cross-covariance and cross-spectrum estimators.

In this paper we address the question of the nonparametric estimation of the asymptotic
variance-covariance matrix of v/Q7Tn, as N — oo. Having such a variance estimate is required
in order to get confidence regions for u via the Central Limit Theorem.

To fix ideas, let us momentarily go back to the sample mean case, as in example (I).
Let Xji,...,Xn be observations from the univariate stationary sequence {X,}, with mean

p = EXq. Then

N . B
ok = Var(VNXy) = Var(X1) +23 (1 - %)C’ov(Xl,XH_,-) (4)

i=1
Assuming a sufficiently weak dependence structure such that 332, |Cov(X1, X14:)| < o0,

(namely that the variance of X}y is of order 1/N, as it is under independence), it is seen that

2
o0

0o, exists. The question then is how to estimate 0% or o2,..
One way is to estimate the covariances Cov(Xy, X14:) and to plug them in the formula

above. However, this simple procedure is not consistent. The problem that arises is that for



lags close to IV, the covariance estimates are unreliable because they are based on a progressively
smaller sample size. This is a common problem in the literature concerning spectral estimation
(cf. Grenander and Rosenblatt(1957), Hannan(1970), Brillinger(1975), Priestley(1981)), where
‘tapering’ the estimated covariances is proposed, before plugging into the summation formula.
Since estimating the variance of the sample mean is essentially esﬁmating the spectral density
at frequency zero, this proposal would work here as well.

The problem itself however seems to suggest another way to look at this situation. From
the sample of size N we can only hope to estimate well Cov(Xy,X144) for i = 1,...,b, where
b << N. It follows that we can only hope to estimate well o2, and not o%. But there is
a natural way to estimate of from Xi,...,Xn, namely to look at the sample variability of

t=2

% Sitt-1 X, fori=1,...,N — b+ 1. This idea leads to the natural estimate

1 N-b+1 i4+b-1

= T SRS ®

which can be viewed as a ‘sample variance’ in this case.

It is easy to see that if b is fixed, then 6!?/N — o = Var(% b_, Xy), as N — oo, with
probability one. Similarly, if b — oo as well but at a smaller rate than IV, (allowing N —b — 00),
it is seen that 6'3/N — 02, as N — oo, with probability one.

The question remains: why use &I?/N as an estimate of the variance of v/ NXn? The justi-
fication is that o7 is a closer approximation to 0% than o? = Var(X;) is. The approximation

2 2

becomes better and better as b and N tend to infinity, because from 67 — 02 2

and 0% — 02,
it is seen that |o% — of| — 0.

The same idea extends immediately to the context of a general linear statistic. As before,
from the sample of the T;ar’s, for 4 = 1,...,Q, we can only hope to estimate well the
variance of \%Zﬁ}?‘l T; m,L, instead of the variance of %Z?___l T;m,r- This leads to the
natural nonparametric estimate

Q-b+1 i4+b-1

Vv = b+1 Z (\/— Z T,ML—\/_TN)2 (6)

which can be termed a blocked sample variance and will be the subject of our subsequent

investigation.



In the two papers by Carlstein(1986), a quite similar variance estimator was introduced
for a general (not necessarily linear) statistic based on subseries values, and consistency and
asymptotic normality were proved. By taking advantage of the special structure associated
with a general linear statistic, we are able to further obtain results on the bias and the variance
of the variance estimator as well. An additional feature of the present paper is to allow for
overlapping subseries used in the variance estimator. Using overlapping instead of adjacent
nonoverlapping subseries does not reduce the order of magnitude of the variance of V, /N> but
it typically reduces it by a constant factor which in the sample mean example is 33%.

It is important to also note that the sample variance estimate &¢ coincides with the ‘sta-
tionary’ or ‘moving blocks’ jackknife estimate of variance introduced in Kiinsch(1989) and Liu
and Singh(1988). Analogously, the variance estimate 1 /N coincides with the ‘blocks of blocks’
jackknife estimate that was studied in Politis and Romano(1989,1990).

The blocked sample variance will be formally defined in the next section, and conditions
under which it is a consistent estimator of the asymptotic variance of +/QTn will be given. In
section 3, the asymptotic order of the Mean Squared Error of the blocked sample variance will
be calculated, and the optimal (from the point of view of Mean Squared Error) rate at which
the design parameter b should tend to infinity will be identified.



2. Consistency of the Sample Variance Estimator

Let us now introduce some basic assumptions in connection with the set-up of linear statis-
tics defined in the introduction. These assumptions will be used in showing consistency of the

sample variance estimator.

(Ao) {Xn,n € Z} is strictly stationary and a-mizing, i.e. ax(k) — 0 as k — oo, where
ax(k)=supy g|P(AN B)— P(A)P(B)|, and A € F°,, B € F° are events in the o-algebras
generated by {Xp,n < 0}and {X,,n > k} respectively.

(4;) E|T1(7;‘),I,L|2p+5 <C, foralln=1,...,D, for all M, where p is an integer with p > 2,
and 0 < § <2,C > 0 are some constants. (Note that the law of Ty pr,1, does not depend on L

since it is obtained from the first block of observations.)

(A2) ETiprr = pu+ O(Q~Y2), where p is a parameter of the infinite-dimensional joint
distribution of the X, ’s.

(4s) VQ(Tn — ETnN) £ N(0,Z), the multivariate normal distribution with a positive

definite covariance matriz Yo, = (0;,j,00), where Oige0 > 0,0=1,...,D.

In stating the assumptions we have denoted TZ(’X{),, 1, to be the nth coordinate of T; as,,, (recall
that the parameter u takes values in RP, and thus so does its estimator ).

The asymptotic normal distribution of assumption (A43) can be used to yield approximate
confidence regions for ETp, which would be asymptotically valid confidence regions for u as
well, provided a stronger form of assumption (Az) holds, namely that ETy arz, = pu+ o(Q~1/2).
Alternatively, by using an asymptotic expansion for the bias of the form ETyprn=p+p +
o(Q‘l/ %), we can get confidence regions for # based on the asymptotic normal distribution,
provided now that we can estimate ;.

However, the asymptotic variance matrix must also be estimated in order for the Central



Limit Theorem to be used. To this effect we introduce the blocked sample variance matrix

plna)

1A /N> Whose entry at Tow ny and column n; estimates the covariance between \/— ZJ =11
and %ZFI J-,M?L, and is given by:
Qb“l’”’l() (m) () (n2)
2, , n n n2 i \n2
VN = 5T ,,H X (7 Z Tinir, — VOIN 1)(\, ZT]ML VEIN)  (7)
The following Theorem gives COIld.lthIlS ensuring the cons1stency of the blocked sample

variance.

Theorem 1 Under assumptions Ao, A1, Aa, A3 and if
(i) M = o(N) and L ~ aM, for some a € (0,1];

(ii) b — o0 and b = o(Q);

(iii) $520 k= (ex (k)77 < oo;

then, for any ny,ng € {1,..., D}, we have:

rnime P 3
V’b/N N—oo 0-71.1.,’[1.2,00 (8)

The proof of Theorem 1 amounts to controlling the order of magnitude of the Mean Squared
Error of Vb’;}\’rm. It will not be given in detail here, since in the next section the problem of
calculating the asymptotic order of the Mean Squared Error and the optimal rate at which &
should tend to infinity will be explicitly addressed. As it turns out, EV’}}\’,n2 = Vyn + O(%)
and Var(V, nl’”z) = O(Q), where Vy/y = Var(\/-zz_ Ti ML) = Onymg,00 3 b — 00, by the
Central Limit Theorem of assumption (As).

It is important to observe that if i is a parameter of a finite-dimensional distribution, say the
autocovariance at lag s, then both M and L can be taken to be fixed numbers, say M = s+1 and
L = 1. For a parameter of the infinite-dimensional joint distribution however, M should tend
to infinity with the sample size N. It turns out that in this case, due to the high dependence
of the summands T; a1, the variance of the general linear statistic T is of order O(M/N),
regardless of whether L = o(M), or L ~ aM. Nevertheless, the variance estimate V;}}\’,nz is
consistent only if the variance of T is of order O(1/Q). Condition L ~ aM of Theorem 1 is
there to ensure that this is true, since then ¢ would be asymptotically proportional to N/M.

It should also be noted that condition (%) is not hard to fulfill; in particular, it is satisfied

if the following holds:



(iv) ax(k) = O(k™), where A > 22218
Note that (iv) is one of the most relaxed conditions on the mixing rate for the Central Limit
Theorem of assumption (As) to hold in the first place. So, by assuming (iv) for some sufficiently
large A, we can omit (A3) from the assumptions of Theorem 1, since then (A3) follows from
a theorem of Tikhomirov(1980). However we need the existence of a common asymptotic
variance. So if we formulate the weaker assumption

(A%) For ny,n, taking values in {1,...,D}, and for @ — o0 as N — oo,

im0 C’ov(% EiQ=1 Tz(f]t})L, —\/% Zinl Tz(’ﬁfL)L) exists and equals o, ny co-

the following Corollary of Theorem 1 is immediate.

Corollary 1 Under assumptions A, A1, Az, A5 and conditions (i), (ii), and (iv), we have

Vb?}\’fnz — Oy ,nz 00 (9)



3. Mean Squared Error of Variance Estimation

In this section, the asymptotic order of the Mean Squared Error of the blocked sample
variance will be calculated, and the optimal (from the point of view of Mean Squared Error)
rate at which b should tend to infinity will be found.

We will concentrate on p and Ty being univariate,i.e. D = 1, in order to avoid cumbersome
notations. The same arguments and results apply to the general case as well, if we focus on
any single element of the blocked sample variance matrix. We will investigate the asymptotic
second order properties of the blocked sample variance estimator

Q-b+1 i+b—1

Viyn = b+1 Z (\/— Z T m.z — VOIN)? (10)

which, under the hypotheses of Theorem 1, is a consistent estimator of 02, (01,100 in the
notation of the previous section).

In starting, let us define some quantities that are closely related to Vb/N; albeit easier to
work with. So for I = 1,2,...,h, where h is an integer that depends on the sample size N, let

1 q 1 (z 1)h+b+l -1 B
;Z 7 > Timp— VIn)? (11)

j=(i=1)h+l

pri/h
Vin

where q; = [9%] + 1. The lag factor ~ in the computation of Vb //N is introduced in order
to have the summands for i = 1,..., ¢ to be weakly dependent, so that a law of large numbers
applies.

It is easy to see that Vb/N = 'Q‘#—H Zf;l q;Vbl//_,}\L,, and because all the ¢’s are asymptotic to
q= [%:—b] + 1 = ¢, it is immediate that Vb/N ~ Zz =1 b/N

We will examine the statistical properties of Vb/N through the properties of the VI//]}\L,’

i.e. through the statistical properties of V, /fv’ since the Vb //N’s are identically distributed for

Il=1,2,...,h — 1. The following Theorem is a step in this direction.

Theorem 2 Under the assumptions and conditions of Theorem 1, and the additional require-

ment h ~ apb, for some ap, € (0,1], we have:

b
EVy/y = Vyn + o(g) (12)



. b
Var(Vy) = 0(3) (13)
where Vb/N = Va'r(% Z?:l Tim,L).

The following Lemma establishes the asymptotic normality of the variance estimator Vbl/é\};

Lemma 1 Under the assumptions and conditions of Theorem 2 the estimator Vbl/é\? 8 asymp-

totically normal, namely

~,

c
Q/6 (Vi — Voyw) = N(0,v7) (14)
where v is some constant.

From equation (12) it is seen that the bias of expression Ay determines for the most part

the bias of Vbl/é\}; , which is defined as:

. . b
Bms(Vb%’;) = EVbl/J(,L —Vo/n = (Voyyn — Vo) + 0('@‘) (15)

where Vo/n = Var(ﬁ Z?:I T;m,p).- In this notation, we have imy_.o Vo/v = o2, as in

assumption (A35). Since Vyy = Var(% e, T m,L), it remains to estimate Vy/x — Vg n. This

will be the subject of the following Lemma.
Lemma 2 Under the assumptions and conditions of Corollary 1, Vo/n — Vyn = O(1/)).

Using the estimate from Lemma 2 and Theorem 2, and bearing in mind that Bias(Vb /N) =

E%/N - Vo/n = Bias(Vbl/xL), Corollary 2 is offered.
Corollary 2 Under the assumptions and conditions of Lemma 2 we have:

o . 1 b
Bias(Vyw) = Bias(V,y) = 0(3)+0(3)

It is interesting that if A is of the same order of magnitude as b, the bias and variance of

Vb%l; are of the same asumptotic order as the bias and variance of V; /N> due to the very strong
dependence among the Yh/'bl//]@’s.

10



Lemma 3 Under the assumptions and conditions of Lemma 1,

Qb+l ;| (im)+b

Var(Vb/N)EVar( 51 Z ( Z T,ML—\/_TN)) =0(b/Q)

The estimate offered in Lemma 3 can not generally be improved. This can be verified by a
theorem of Kiinsch(1989) stating that in the sample mean example (where M = L =1,Q ~ N,
and ¢pr(.) is the identity function) we have Va'r(Vb/N) ~ %ago

As a Corollary of Lemma 3 and Corollary 2, the choice of the block size b is suggested

in order to minimize the Mean Squared Error of variance estimation. If we define the Mean

Squared Error to be M.S.E.(Vb/N) = E(VI,/N — V/n)?, then we have

Corollary 3 Under the assumptions and conditions of Lemma 2, the choice b ~ a,Q/3, for
some constant ap > 0, minimizes the asymptotic order of the Mean Squared Error, yielding

M.S.E.(Vyn) = 0(Q™%/3).

Some comments are in order here. For concreteness let us once again go back to the sample
mean example of the Introduction. Recall that in the case of an independent sample we would
take b = 1 in the definition of the blocked sample variance and we would recover the ordinary
sample variance which has a Mean Squared Error of order O(IV 1) associated with it. However,
in the presence of weak dependence quantified by a mixing condition, the Mean Squared Error
of the blocked sample variance jumps to being of order O(N~2/3), a very abrupt change if we
consider that the covariance terms in equation (4) could be arbitrarily close to zero.

It is interesting to consider the case of m-dependence, i.e. the case where o x(k) =
for all £ > m, which is a situation intermediate between independence (which is the same as
0-dependence) and strong mixing. Looking at the proof of Lemma 2 it is seen that Vo/n —
Viyn would still be of order O(1/b), thus yielding a minimum Mean Squared Error again of
order O(N~%/3). Thus, in this particular situation, it seems preferable to use formula (4)
directly, replacing the unknown covariances with sample estimates, and taking advantage of
the knowledge that Cov(Xy, Xk41) = 0, for all & > m.

To conclude, observe that in the sample mean case the blocked sample variance estimate

is identical to a spectral estimate of the lag-window type with Wt(M) = 1 (cf. formula (3))

11



evaluated at frequency zero (cf. Kiinsch(1989)). In this respect, the choice b ~ ap N/3 and
the resulting Mean Squared Error of order O(/N~2/3) are well known to be optimal. To further
reduce the Mean Squared Error, (by means of reducing the bias), the use of a tapering win-
dow Wt(b) is suggested in the spectral estimation literature. In Priestley(1981) many different
tapering windows are presented that lead to the bias of the spectral estimate being of O(1/5?),
resulting to an optimal choice b ~ a3 N1/ and a Mean Squared Error of order O(N~%/%). The
prototype of such a window is Wt(b) = w(=22), where w : (0,1) — (0,1) is a function symmet-
ric about 1/2 and nondecreasing on (0,1/2). Taking w(t) = 2¢ for ¢t < 1/2 corresponds to a
spectral estimate that is equivalent to a periodogram smoothed using Parzen’s kernel.

By analogy to the extensively studied sample mean case, we can define the tapered blocked
sample variance Vb(/%) which, in the setting of the general linear statistic Ty, is an estimator
of the variance of /QTy.

—b+1 i+b-1
Vo = ﬁog (\/LE jZ:: WO T a1 — VoTw)* (16)
It is plausible that with proper choice of the tapering window the estimator Vb(/%) will achieve

a smaller Mean Squared Error than V; /N> by possessing a bias of smaller order.

12



4. Technical Proofs

Proor oF THEOREM 2. First note that conditions (%), (%) imply ¢ — oo and h —
oo, as well as @ — oo. In addition, they imply that K]\/;‘ ~ a@. Let us denote B; =
i~1)h+b
%E(z ) + Tj,M,L- Then,

J:(z-—l)h-l-l
1/h b3 (i~1)h+b L1 g .,
Yok =2 3 Tamp—Tw)= ;35— Vit
=1 ° j=(i-1)h+1 i=1
lzq: — V(T —iEB-)V—A -2CN 4D
q - N \/5 % = AN N N

where

1, 5 -
Ay = =) (Bi— EB)®
q i=1

v = %Zq: Vo(Ty — —\}—_I;_EBZ-)(E - EB)
i=1

1, 1 -
Dy = => b(Ty — —=EB;)?
N7y ; (T Vb )
Now from assumptions (A2),(As) we have Ty = p + 0,(Q~1/2), and since
D b{(T 2v(p- —EB 2T —EB;
N= qg{(N W4 (= 2= BB)" + 2(Tn — )~ \/— )}
by invoking condition (i) we get b(Tn — )% = 0,(b/Q).
From (A2) and (ii) we get:

b( T — 1) (st — 71-5%) = 0,(b/Q)

as well as

b(p — EBz—ObQ

( 7 ) (6/Q)

Gathering these three results yields Dy = O,(b/Q).

Now the X,’s are ax mixing and the B; are functions of finite blocks of them. Hence the

B; are o 31, Mixing with
agpr(n) < ax([(n—1Dh - (b-1)]L - M) (17)

13



for n > ng = [# + %1] + 1. From conditions M = O(L) and b = O(h) it is ensured that
there will be a smallest ng such that (17) will hold regardless of the value of N. Hence, for all
practical purposes, all rows of the triangular array of the T; as,1’s, i.e. for each N the sequence
Tim,L,% € Z, can be treated as governed by the same mixing coefficient, namely the right hand
side of formula (17).

To analyze Ay,

1 - ~ 9 -1 o ~ - ~
VarAy = EVar(B1 — EB)’ + p > (q—i)Cov{(By — EB,)?,(Biy1 — EBiy1)’}  (18)
i=1
But a well-known theorem of Ibragimov (cf. Roussas and Ioannides(1987)) gives
Cov{(B1 — EB1)?,(Biy1 — EBiy1)’} < 10(E|B; — EBl|2”)2/”(0‘1_@,1\4,];(i))%2 (19)

Also, from a theorem of Yokoyama(1980) and conditions (%) and (A;),the following moment
inequality holds:
E|B1 - BB < Kx(E|Tmul?r+)5% (20)

where Kx depends only on ax and p. Combining the above with assumption (4;) yields:
1,208 (B2
VarAy = 0(3 + Y (a=)agp()7) (21)
i=1

Now, from condition (%) it also follows that } 32, (o X(k))%2 < o0, since in assumption (4;)
it is assumed that p > 3. Thus, by the discussion relating QB ML with ayx, it follows that
VarAy = O(1/q) = O(b/Q), since ¢ ~ Q/h, and h is of the same order of magnitude as b.
Also, note that EAy = VarBy = Var(vb} S0, Tjm,L) = Viyn-

Now look at Cn. By the o-mixing property of the B;, and by the same argument that
showed VarAy = O(b/Q), it can be shown that Va,r{%z,g:l(l;’i — EB;)} = 0(1/¢),and hence,
LYE(Bi - EBi) = 0,(y/1). Also, VEH(Ty - J-EBi) = VE0,(Q "/?). Therefore, Ciy =
0p(VBQ™Y/2)0,( /1) = 0,(5/Q).

To conclude, it is not hard to see that EDy = O(%), ED% = O(%z}' , ECn = O(\/% -
O(%), and BEC% = O(q%) = 0(5—22), in which case the Theorem is immediately proved.

Let us focus on Dy, since Cy can be handled in a similar way.

We have
Dy == Xq:b(TN - LEE-)Z

q =1 ﬁ

14



= o(Ty — p)* + b(p ~ \/—EBl)z +2b(Tw — p)(p — \/—EBI)

Since assumption A, implies y — \/_E’Bl 0(Q~Y?), and ETy — p = O(Q~1/2) as well, we
gather that EDy = bE(Ty—p)?+0(%). Finally, E(Ty—p)? = Var(Tn)+(ETy—p)? = 0(%)s
and the result EDy = O(%) is obtained.

Similarly, look at

D2
T, 14 (4= —EB)* + 6(T: _ L EBy

52 = (v =) + (p 7 0* + 6(Tw — 1)*(n 7P

+4(Tn ~ p)(p - \/—E31)3 +4(Tw — p)’(p - \/—EBI)

Again by using Yokoyama’s theorem and assumption A, we have E(Ty — u)* = 0(Q~?) and

E(Tn — p)® = 0(Q~3/?), from which the result ED%, = O(@) is proved.O

ProoF oF LEMMA 1. To prove the asymptotic normality, consider again the decomposition

Vbl/x” = AN — 2Cn + Dy, which is used in the proof of Theorem 2. From condition (¢v) and

Tikhomirov’s theorem it follows that

£
VQ/b(AN — Vin) => N(0,1?)
because EAy = Vyy = Va'r(ﬁ S 1 Tiarp)- Looking again at the proof of Theorem 2, it is

easy to see that /Q/bCxn 2,0 and V@ /bDy -2, 0. Hence the proof is complete.O

ProoF oF LEMMA 2. From Ibragimov’s theorem and assumption (4,) it follows that:

2(p—1)+4
|Cov(To,m,L, Tk, m,1)l = Oazy, , (k)™ 2+e

As in the proof of Theorem 2, it is seen that, viewed as a sequence in ¢ = 1,2,... for any N,

the T} apr,1’s are arTy, , mixing with
aTM,L(k) <oax(kL - M)

for k > m + 1, where m = [1].
Also, from condition (iv), ax(k) = O(k~*); therefore, ary (k) = O(kL — M)™ =
O(M~*(ak — 1)), for k > m + 1.
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Hence

ICOU(T(),M,L,T]C,M1L)| =O0(M™"(ak - 1)_") (22)

for k > m+ 1, where v = )\2%—;71_)5"'—5. Since by condition (iv) we have v > £(2p—2+46) > 9, it

is immediately seen that

o0
> k|Cov(Tom,L, Trem,L)| < 00 (23)
k=0
Now
1 b 1 1 Q k
~(Von — Viyn) = D_ k(5 = =)Cov(Timr, Togkmr) + », (1= =)Cov(Tum,L, Trk, ML)
2 k=1 b Q k=b+1 Q
o101
=Y k(3 — =)Cov(Ty,m,L, Tr4kM,L)
k=1 b Q
b 1 1 @ k
+ Y. k(z— 5)Cov(Timr, Toresr) + Y, (1= =)Cov(Ty L, Tivk,m,L)
k=m+1 b Q k=b4-1 Q

Since m is a fixed constant, the first term in the above expression is O(1/b).
Thus
1
5(Vo/v = Viyw) = O(1/8) + Gy — Cq

where
b g Q
C, = E ZCov(TLM,L,THk,M,L)‘F E Cov(T1,m,L, Ti+k,M,L)
k=m+1 k=b-+1
&
Cq = Z —Cov(T1,m,1, T1+k,M,L)
k=m+1 Q

Finally, since | 22, 1 Cov(Tumr, Trrrmnr)l € fgin E1Co0(T1 a0, Tik,n)ls and using
(23), we have that Cy = O(1/b), and Cg = O(1/Q) = o(1/b). O

Proor oF LEMMA 3. As mentioned in section 3, we have that V[,/N ~ %ngl Vbl//]}\t,

Now if we let & = Vb%’; we have

Vot Say=1(v 231 - Sy 3] = Loy — 0w
ar(h;&c)—h aréy +2) ( — 3)C0v(&1; 6144) =% (6)_ (b/Q)

i=1
where it was used that by Lemma 1 and the Cauchy-Schwarz inequality both Varé, and
Cov(&1,&1+i) are of order O(b/Q). Hence the Lemma is proved.<&
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