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ABSTRACT

Density estimation is considered using a kernel derived from the L; projection onto
certain spline spaces. The projection can be written as fp(z) = [ K(z,y)f(y)dy. An
estimate based on a sample X,...,X, from f is given by fp(w) = n"13;K(z,X;). The
asymptotic bias and variance at a point are derived. It is found the quadratic spline
projection kernel estimator has the same asymptotic bias as histosplines and has improved
asymptotic variance.
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1. Introduction

The main purpose of this paper is to study the asymptotic behavior of the kernel
involved in the Ly(u) spline projection of functions onto certain linear spaces of splines on
the real line. This Ly(u) projection of f, for Lebesgue measure, can generally be written

fo@) = [ Kz, 0)fw)dy. (L1)

If N'(z) = (...,N_1(z), No(z), N1(z),...) forms a basis for the linear space then K(z,y)
can usually be written as

K(z,y) = N'(2)M~"N(y) (1.2)

where M;; = [ Ni(z)N;(z)dz. We will be studying here spaces of linear, quadratic or cubic
splines with a knot sequence becoming dense over the interval of interest. In such cases it
is clear that for fixed z, K(z,y) integrates to one since the function f =1 is in the linear
space, and K(z,y) should approach a “delta function” at z as the knot sequence becomes
dense. The kernel K(z,y) here is possible negative. If X;,X5,..., Xy is a random sample

from a density f, it might not be unreasonable to estimate f by
o 1 =
fp(:t) = ;I.- i§1 K(:L‘, X,'). (1.3)

Our study is motivated mainly from two sources. These are the papers by Boneva, Kendall
and Stefanov (1971) (BKS) and Silverman (1985). In the first paper histosplines were
introduced. These were quadratic splines which smoothed histograms and matched areas
over each bin. To be somewhat more precise, they solved the following minimization
problem: let Wi(—o0,00) = {f : f,f € Lz(—00,00)} and minimize [(f'(z))’dz for
f € Wj(—00,00) subject to fj(,fﬂ)h f(z)dz = hj,—00 < j < oo , where h; is the fraction
of observations falling in [jh,(j + 1)h). The resulting histospline fpxs(z) can be shown

to be approximately

fBks(z) = %é}l %K (m _’lX‘) : (1.4)

The kernel K in (1.4) is the delta spline obtained by solving the above minimization
problem with bin size h = 1 and hg = 1,h; = 0 for j # 0. We will show that the estimate

fp in (1.3) behaves very much like fB ks- The kernel K(z,y) from (1.3) is not however of
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a translation type as in (1.4). For the spline of order d (degree d — 1) the kernel behaves,
for fixed z, like a convex combination of d translation kernels. The weights depend on z
and are certain nonnegative splines adding to one.

The paper by Silverman (1985) is concerned mainly with the regression smoothing

spline. The smoothing spline estimates f from data Y; = f(z;) + €; by minimizing
S() = B~ 1) +a [()2es (15)

The function minimizing (1.5) is a natural cubic spline f, with knots at each observation

point z;. In Silverman (1985) it is shown that

fuz) = '11{,-21 G(z, z:)Yi | (1.6)

where G(z,y) = P(ly) h(ly)K (’,";(_yg) The function p is the local density of the z;, h(z) =
o /*n=1/4p(z)~1/* and K is a certain kernel. In the discussion to the paper Drs. R.L.
Parker and J.A. Rice inquire and comment on their use of a regression spline and a pe-
nalized version of it. Such splines would use knots other than the n data points z; and
usually many fewer knots. The regression spline involves the usual regression of the data

onto a set of splines and can be written as a projection
a 1 n
fen(z) = = B N'(e)M~(m)N(z:)¥; (L.7)

Here N'(z) = (...,N_1(z), No(z), N1(z),...) denote a basis for the splines and M(n)

depends on the data points z; i.e.

Mij(n) = = B Ni(wr)N;(o) (1.8)
If the points z; for larger n again have limiting density p(z) then

Miy(n) > [ NN (@)p(e)ds (19)
which would give (1.2) if p(z) = 1. Parker and Rice comment that the kernel

Kn(z,y) = N'(z)M ™' (n)N(y)
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as a function of y has more pronounced “side lobes” than the corresponding kernel for the
smoothing spline.

In this paper we will concentrate on the problem of L, (Lebesgue) spline projection
and apply it to density estimation. However, the spline projection can extend to La(u)
case for fairly general y and can apply to the regression problem where the design points
are assumed to have a limiting distribution y. This paper is organized as follows. In
Section 2 we formulate the linear, quadratic and cubic spline projection kernels with equi-
spaced knots. Some properties of the sbline prd jection kernels are also stated in Section
2. In Section 3 we give the asymptotic behavior for the estimator in (1.3). In Section
4 we compare the asymptotic behavior of the quadratic estimator in (1.3) with the BKS
histospline. It is found that both estimators have the same asymptotic bias in estimating
f(z) and f'(z). However, the quadratic estimator in (1.3) has smaller variance. In Section

5 we briefly describe the utilization of variable knots. Proofs are in an appendix.

2. The spline projection kernels

For simplicity of notations and formulas we may choose the knot sequence £ = {1}2_
for even order splines, or £ = {1 — % 2 _oo for odd order splines. Given the order d and

knot sequence £, let N'(z) = (..., N_1(z), No(z), N1(z),...) be the normalized B-spline

basis indexed in such a way that each N;(z) is centered at . Let
S3¢ = {s(z) : s(z) = N'(z)6 with 6 € £,}.
The kernels associated with the L, projection onto ‘5’3,6 are given below. For the space of
linear, quadratic or cubic splines (d = 2,3 or 4), the (i, )-th entry of M~ is given by
(M) = E Cevy ™,
where Cp’s and ~,’s depend on the order d. For d = 2,

71=—2+\/§and01=\/§.

For d = 3,7 and 7, are roots, with magnitude less than one, of v*+26+% 466> +26y+1 =

0. The constants C; and C3 can be solved from the system of equations.

C1S(71) + CaS(12) =0
CiT(m) + CoT (1) = 120,
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where S(7) = 7+ 26 + 66y + 2692 + 42 and T(v) = 4% + 26 + 66 + 26y + v2. The results

are

~ —.4305 75344

7N

_ =13+ /105 + /270 — 261/105
B 2

13— VA
yy = 218 V105 ;/270 +26v105 | _ 04330 96288

Ci ~ 3.0949 86517

Csy ~ —.2528 15597.
For d = 4, 11,72 and 43 are roots, with magnitude less than one, for 4% +1207° +11914% +
2416+% +11919%2 + 120y + 1 = 0; and where Cy, C; and C3 can be solved from the following

systems of equations

C15(m) + C2S8(72) + C38(7v3) =0
C1T(m) + C2T(72) + C3T(73) =0
01Z(")’1) + CzZ(’Yg) + C3Z(’)’3) = 5040

where
S(7) = v+ 120 + 1191y + 241642 + 11917® + 1204* 4 4°

T(y) = 42 + 1207 + 1191 + 2416y + 119197 + 120> + +*

Z(7) = 4% + 12042 + 1191y + 2416 + 11915 + 12042 + 2.

The results are
v ~ —.5352 80431

vz & —.1225 54615
s ~ —.0091 48695

and
C ~ 6.0162 84002

C2 ~ —1.0558 20294
C3 ~ 0.0042 69179.

From the above discussion, the kernel can be written as

K(a,y) = 5 8@Niw) (5 0nl ).

Define
d—1 .
1) = (=) (U5, o)
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It is straightforward to check that

Ko = B NwH(—i-0),

Cy

ify € [€;,&i+1) and w = y—¢&;. Note that [33_1 N¢(w) = 1. The spline projection kernel,
for fixed y, can be written as a convex czo_ml[)i:xa]tion of d translations of H. The weights
depend on the distance between y and the nearest knot and are certain nonnegative splines
adding to one. There are certain similarities between H(z) and the delta spline in BKS
(1971). The delta spline dies out at rate v = —2 + /3 and, as one moves one cell further
out, the present cell can be obtained merely by multiplying the past cell with the factor
v = —2+4+/3. For d = 2, H(z) has the same properties with the same factor v = —2+ /3.
The difference is that the delta spline is parabolic while H(z) is linear. For d = 3, H(z) is
the sum of two parabolas in each cell and each parabola dies out at its own rate. As one
moves one cell further out, each parabola in the present cell can be obtained by multiplying
the parabola in the past cell with its own factor. For d = 4, H(z) is the sum of three cubic
curves in each cell, which have analogous properties as described above. Pictures of H(z)
and K(z,y) with various values of y are given in Figure 1 and Figure 2.
Following is a list of properties of the Ly spline projection.

Property 1. The spline space 53,5 is a reproducing kernel Hilbert space with the repro-
ducing kernel K(z,y).

Property 2. The integral transform in (2.1) is well-defined for f € L;. This desirable
property enables us to apply the “projection” to the general density function. Actually,

the integral transform in (2.1) can extend to functions satisfying the conditions
feLled ={f: / |f(z)|dz < oo for all measurable A with finite measures}  (2.2)
A

and

f(z) = O(z*) for some a as z — oo. (2.3)
Property 3. Define another spline space
Sae = {z(z) : s(z) = N'(z)6 with 6 € £}
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The kernel K(z,y) reproduces Sq¢. That is,
o0
/K(:z:,y)s(y)dy = s(x) for s € Sq. (2.4)

Property 4. Let P be the space of polynomials of order d (degree < d — 1). The kernel
reproduces P. That is,

[ K@ p)dy = plo) for p e P. (2.5)

Especially,

o0
/K(z,y)dy =1.

Property 5.

7H(m)da: =1

Property 6. The kernel decays to zero at an exponential rate as |z — y| — 0. To be more

precise, we have

K (z,y)| < Cy"),

for some constants C' > 0 and 0 < v < 1, where n(z,y) is the number of knots between z
and y.
Property 7.

oo

/ K(z,y)y*dy — 2* = —By(w)

oo
where w = ¢ — §; if ¢ € [§;,&i+1) and B4(w) is the d-th Bernoulli polynomial. The above
equality says the bias of z¢, if approximated by its integral transform in (1.2), behaves like
the d-th Bernoulli polynomial in each cell.

All of the above materials are discussed under the case of unit knot distance. It

is just straightforward to extend the results to the case where the knot distance is h.
For examples, the kernel scaled by A becomes K (%,% /h and the bias in Property 7 is
—Ba(w)h? with w = 24,



3. Asymptotics
This section is mainly devoted to the asymptotic behavior of the estimator in (1.3).
We assume the knots are equi-spaced with distance h.

Theorem 1. Suppose f(#)(z) is uniformly continuous. For a fixed z, we have

(@)
Ef{(z) - f®(z) = —(ind_(zf))! Ba_s(w)h** + O(R* =),k = 0,1,...,d 1,

where w = z—';f-‘- if z € [€,&i41)-
Theorem 2. Suppose f(z) is uniformly continuous and that nh — oo and A — 0 as

n — oo. For a fixed z, we have
Var fy(a) = ~ (@)K (#,2) + O (-71;)
1 1
- S/ @ka(ww)+0 (3)

where K, is the spline projection kernel of order d and integer knots, and w = z—;& if
z € (&, i)

Pictures of Bg(w) and K(w,w) for d = 2,3 or 4 are in Figure 3 and Figure 4. From
Figure 3, gives an idea of how the spline projection approximates the true functions and
how the positioning of knots affect the approximation. From Figure 4, we can see as one
moves away from knots, the estimator in (1.3) tends to have smaller variance if the order

is even, or larger variance if the order is odd.

4. Comparison with histospline
Lii and Rosenblatt (1975) derived the asymptotics for histosplines on finite interval

[0, 1]. What they did is as follows. Place knots at {; = 337, =0,1,...,£+ 1. Let s(z)
be the cubic spline interpolator of the sample c.d.f. F,(z) with knots £ = {&}f:; and
with the same known boundary conditions s'(0) = f(0) and s'(1) = f(1) (or some other
known boundary conditions, e.g., s"(0) = f'(0) = s"(1) = f'(1) = 0 or f(z) is known
to be periodic and the periodic boundary conditions s'(0) = s'(1) and s"(0) = s"(1)
are imposed.). If the boundary behavior of f is unknown, then the boundary conditions

s"(0) = s"(1) = 0 will be imposed, and the resulting curve is the smoothest one in the

sense that fol (s"(z))?dz is smallest. The estimator s'(z) is used to estimate f(z).
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The following theorems concerning the asymptotics of s'(z) away from the boundary.
Theorem 1. Let f € C3[0,1] and w = z—;"ci, where h = e—_}_—l is the distance between two

knots. Then we have

bias = ES'(z) — f(:v) f ( )B (w)h® + o(h®)

ES"(z) - f'(z) = — (z) Bz(w)h2 + o(h?)
if 0 <z < 1is fixed and z € [;,&i+1) as Z — 00. (See Lii and Rosenblatt, 1975 and

Rosenblatt, 1976.)
Theorem 2. Let f be continuous on [0, 1] and let o = v/3 — 2. Then the variance of s'(z)

var §'(z) = in(—%lA(w) +o0 (%)

if 0 < z < 1 is fixed, w is the same as the above theorem and nh — co and A — 0 as

1s

n — oo. Here

01422 (o204 ) 13 (557)
o ze) | (w15) v (5-0-07)] 555
o|(=3)+ 5 (6-0-7)] Za)

Though the above theorems are done for estimators in finite interval, the authors believe,

for histosplines in the real line, the bias and variance cannot be better than those given in
the above theorems and may achieve the same results if further conditions, f® is uniformly
continuous on the real line in Theorem 1, or f is uniformly continuous on the real line in
Theorem 2, are met. Compare Theorem 1 and Theorem 2 in Section 3 and Section 4. The
biases for estimating f(z) and f'(z) are asymptotically the same for both estimators. The
variances are of the same order of magnitude O (-}-), however, the constant term in the
spline projection kernel estimator is smaller than that in the histospline. A plot comparing
A(w) and Ko(w,w) is in Figure 5. Figure 6 is 10 independent estimates using quadratic
spline projection kernel with h=1. Each estimate is based on 100 random numbers drawn

from the Gumbel distribution with density function

f(:v) — e %€
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Compare Figure 6 with Figure 10b in BKS (1971). Figure 6 shows less sampling fluctuation.

5. Variable knots
Instead of equi-spaced knots, we may consider variable knots. Suppose the knot
sequences have a limiting density p(z). To adapt the amount of smoothing to the local

density p(z), the estimate may be constructed out of K (-,—l%, F(%) /v/h(z)h(y), where K

is the spline projection kernel with unit knot distance and certain order d and h(z) = ;Thx_)-’

where h controls the overall smoothness. The estimate is given by

h0) =2 8 K (557 ) VIS,

1

Those X;’s which are not close to = have little contribution to the estimate. Therefore it
may not be unreasonable to replace h(X;) by h(z) to avoid the local smoothing parameters
from depending on the data.

An estimate for f(z) is then

Fol=) = 72 h(lw)K (h(xm)’ h‘é)) .

Studies (Huang, 1990) have suggested to choose p(z) proportional to

(O ]
f(z) '
That is, the local smoothing parameter should be chosen proportional to

-1

f(.'I)) 2d+1
(f(d)(w))2] '

This is similar to the results in Parzen (1962), he has the optimum value of & (in the sense

of minimizing mean square error at z) as

=i

hopt(z)ox [%} prEm

?

where d is the characteristic exponent for the Fourier transform of the kernel K.
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Appendix
Proof of Property 1: 53,5 is a Hilbert space which admits K(z,y). By the uniqueness
of the reproducing kernel, 53,8 is a reproducing kernel Hilbert space with the reproducing
kernel K(z,y). (See Saburon Saitoh, 1989)
Proof of Property 2: This can be easily seen by the fact that the (2, 7)-th entry of M1
goes to zero at an exponential rate as [t — j| — oo.

Proof of Property 3: By Property 2, the left part of (2.4) is well-defined. Then
oo
[ KG@wsway

= [ N@MNGN @6y

= N'(z)8
= s(z).

Proof of Property 4: Given p(z) € P,p(z) can be written as
p(z) = N'(z)6

where 8 = (...,0_1,80,61,...) satisfies 8, = O(n?~1). By Property 2, the left side of (2.5)
is well-defined. Then

/ K (2,y)p(y)dy

= [ N@M NN @)y

N'(z)8 = p(z).

Proof of Property 5: Recall that K(z,y) can be written as

K(z,y) = [é] ) Ne(w)H(z —i—£), w=y—¢.

=— d—;-]
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Then

1= /K(:l:,y)d:v
—o0

[¢] g
= <£=_?d_;1] Ng(w)) _/OOH(a:)dz

= 7 H(z)dz.

Proof of Property 6: This is clear from the fact that the (z,7)-th entry in M~ is of

form

d—1 i—i
(M_l)ij = 321 C[')’l JI.

Proof of Property 7: Without loss of generality, we may take integer knots. It suffices
to check
i) ¢ — Bg(w) can be written as N'(z)d, and
oo

ii) [ Bg(w)N;i(z)dz = 0 for all i.

Check i): z? — By(w) = z¢ — By(z — [z]) = z? — (z — [z])? + ZZ:]: ar(z — [z])F for some
suitable ax’s. Therefore i) holds.

Check ii): Note that N;(z), having support on [¢,7 + d], is the density for the sum of d
independent uniform (¢,¢ + 1) random variables. Let X = U; + ... 4+ U4, where U s
Uniform (3,2 + 1). It can be shown that X — [X] ~ uniform (0, 1). Therefore

/ Ba(w)Ni(z)dz = EBu(X — [X])

—o0
1

- / Ba(t)dt = 0.

0

Proof of Theorem 1 in Section 3: We will show the case & = 0 first

Efp(m) — f(x)
- / K(z,y)(F(v) — f(z))dy
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e

(d-1)
/ K(z,y)(f(w)(y—w)+ T

(d)
# L) ay (4.1)

where {4 is some number between z and y. Since K(z,y) reproduces polynomials of

order d,

(41) = / Ko, ICendy _ oty

@ — f(d
/ Ko, Loy yidy + f K(a, )L Cead 2T yag
f(@ — f(d)
i (m)B a(w)h? + / K(w,y) (é,,.,yzﬂ ! (m)(y—w)"dy (A.2)
The proof can be completed by showing the second term in (A.2) is O(R¢+1).
y (@ _ fd)(g
&i+mh
00 (&) — f(d)
=1 5 [ KEpI sy oy
&+ (m—1)h
< 5 G, mbmbyth (43)

where C and v are constants given in Property 6 of section 2 and w(f,h) is the first
modulus of smoothness of f defined as w(f, k) = max|f(z) — f(z + k)|. Since f((z) is
uniformly continuous, w(f(#,mh) = O(mh). Thus (A4.3) = O(h?*?). Therefore, we have

BJy(e) - 1) = -2 Bu(w)hd + 00144, (4.9)
For k > 0,
0 (k) d* (k)
BfY@) V) = [ T5K@niwiy - ) (45)
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We can exchange the order of integration and derivative because K(z,y) can be written

as N'(z)M~1N(y). Then
(49) = = [ K@) @iy - 19, (49)

By (A.4) and the result %Bd(w) = -(df—!k)!Bd_k(w)/hk, we have

F9(z)
T (d—k)!

(A.6) = Ba_r(w)h®% + O(R4—F11),

Proof of Theorem 2 in Section 3:
o0 oo 2
Var fy(e) = [ K3 e,n)fw)dy - ( / K(w,y)f(y)dy)
== [ K@u)(@) + £0) - =)y

-2 ( / K(w,y)f(y)dy)

= 2K(@,2)f(@) + 3 [ K¥e)(f) - @)y

—i— ( / K(w,y)f(y)dy)

It is clear K(z,z) = 3 Ko(w,w). To complete the theorem we need to show

[ K@) - @)y = 0(1) aad

/ K(,3)f(y)dy = O(1)
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We have -
| [ K@) - Sy

&i+mh
=I5, | Eeouw- @)
§it(m—1)k
o (2 2|m—1]|
S 2 7h2 w(f,mh)h =O(1)

and
| [ K wrwa

Ei+mh

=I5, [ EKewiwal
&+ (m—1)h
o (COnlm-1]
< ¥ = —Msh=0(1)

where My = max |f(z)| < oo.
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