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ABSTRACT

Empirical Bayes estimation is considered for an i.i.d. sequence of binomial parame-
ters 6; arising from an unknown prior distribution G(-). This problem typically arises in
industrial sampling where samples from lots are routinely used to estimate the lot fraction
defective of each lot. Two related issues are explored. The first concerns the fact that only
the first few moments of G are typically estimable from the data. This suggests consid-
eration of the interval of estimates (e.g., posterior means) corresponding to the different
possible G with the specified moments. Such intervals can be obtained by application of
well-known moment theory. The second development concerns the need to acknowledge
the uncertainty in the estimation of the first few moments of G. Our proposal is to deter-
mine a credible set for the moments, and then find the range of estimates (e.g., posterior
means) corresponding to the different possible G with moments in the credible set.
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1. Introduction

We consider the nonparametric empirical Bayes estimation problem of
observing Xi ~ Binomial (n, 91) , 1 =1,...,N, the‘Xi being conditionally
independent given the ei, and the 6i being i.i.d. from some completely unknown
prior distribution G (i.e., the ei are known only to be infinitely exchange-
able). Of interest will be estimation of the “current" GN , utilizing the
current XN and "past" X1""’XN-1'

There is an extensive literature on this problem, starting with Robbins
(1955). A few of the many references include Maritz(1966), Atchison and Martz
(1969), Jackson, O’Donovan, Zimmer and Deely(1970), Maritz(1970), Griffin and
Krutchkoff(1971), Copas(1972), Lin{(1972), Martz and Lian(1974), and Albert

(1984). Most of these present developments of specific empirical Bayes esti-

>0,

mators and proofs of convergence properties of these estimators as N

The binomial problem is an atypical empirical Bayes problem in the sense

> o ( see Sec-

that only the first n moments of G can be determined as N
tion 2). Hence substantial uncertainty about G can remain no matter how large
an N is available. This uncertainty can be quantified in a robust Bayesian

fashion. As N

>, the first n moments, cl,...,c , of G become essentially
n

known, so that it becomes known that
! i
Geb§ = { all distributions G : c, = Io e°dG(e), 1 =1,...,n }.

One can then determine the range of the Bayes estimate ( typically, the range

of the posterior mean ) as G varies over ¥. The analysis here is based on well



known moment theory ( from, e.g., Karlin and Studden(1966) )}, and is reviewed
in the appendix. Section 2 applies this theory to determination of the range
of the posterior mean. Related references to robust Bayesian estimation
include Berger(1984), Berger(1985), Berger and Berliner(1986), Berger and
0’Hagan(1988), Berliner(1984), DasGupta and Studden(1988), DeRobertis and
Hartigan (1981), Lavine(1987), O’Hagan and Berger(1988), Sivaganesan and

Berger(1989) and Wasserman{1989).

When N is small, one can still, of course, estimate the first n moments
of G. The most common estimate would be the ML-II estimate (see Section 3),
based on maximizing the effective likelihood for the moments. One could then
find the range of the posterior mean over all G with these specified moments,
but this clearly is too optimistic because it does not incorporate the error
in estimation of the moments. Indeed, it often happens that the ML-II estimate
of the first n moments of G lies on the boundary of the moment space, in which
case it can be shown that there is po variation whatsoever in the posterior
mean. Thus the ML-II approach here provides a very inadequate reflection of

prior uncertainty.

An interesting possibility to address the inadequacy of the ML-II
approach is to develop a credible set for the moments of G, and determine the
range of the posterior mean over all G which have moments in the credible set.
This is done in Section 3, where it is proposed that the range of the poste-
rior mean actually be presented as a function of the probability, %, of the
credible set. The credible sets considered are those with respect to a cons-
tant prior on a convenient parameterization of the moment space, a parameteri-
zation chosen so as to allow comparatively easy calculation of credible proba-

bilities via simulation. ( The credible sets could also be considered likeli-



hood based confidence sets, though we calculate their probabilities in a
Bayesian fashion.) Rather surprisingly, the answers do not seem to depend too

dramatically on the choice of (moderately large) 7.

The purpose behind this approach is to attempt to reflect the uncertain-
ty that arises out of uncertainties in G (the basic difficulty with empirical
Bayes analysis) without requiring either parametric modelling of G or the
full Bayesian solution of introducing a (nonparametric) second stage prior
distribution on G. The hope is that, in a given practical situation, the range
of the posterior mean will be small enough, for reasonable credible levels 7%,
that such knowledge about G need not be elicited. (This is a major goal of
this approach to robustness: one seeks to avoid difficult subjective elicita-

tion by arguing that the answer is robust over any reasonable prior.)



2. Empirical Baves Estimation of a Binomial Parameter

Consider the more general empirical Bayes situation where (i) at stage i
(i=1,2,...) we observe X1 which, conditional on 91, has a Bin(ni,ei) distri-
bution, the different Xl’s being independent; (ii) the Gl’s are independently
distributed according to a common prior distribution G. Our goal, at stage i,

is to estimate 9l without any assumption about G.

At stage i, Xi can take any.one of the values 0,1,...,ni, and the (mafginal)

probability, say pi(k), that X1=k is given by

k n -k
f(ih)e (1-8)'  dG(e)

pi(k)

va (k, j) IGJdG(e)
j=0 !

where ai(k,j)=(-1)J-kn1!/(k! (J=k)!(n -j)!) if j=k, and =0 if j<k. Thus, lett-

ing cJ denote the jth moment of the distribution G, we have

n
p,(k) = Y a (k,jle,  for k=0,1,...,n. (2.1)
j=0

We will assume that there will only be a finite number of distinct ni's as
i—>w, i.e.: the set of all nl’s will be a finite set. Moreover, we will
assume that n, will be equal to max{ni}dgf v infinitely often. Consequently,

as the number of stages increases, one could use the relative frequencies from

the collected data to accurately estimate the marginal probabilities, denoted



p(k), corresponding to a stage with n =v. But, as in (2.1), we can write

v
p(k) = ¥} a(k,j)cJ for k=0,...,v, (2.2)
3=k

where al(k, j) is obtained by replacing n, by v in al(k,j) of (2.1). Since the
relation between the p(k)’'s and the cj’s given above is one-to-one, accurate

estimates could then be obtained for the first v moments, CpreeesCpp of the
prior distribution G by simply solving the linear system of equations (2.2).

In the remainder of this section we assume that clp..,cv have been so

determined.
The Bayes estimate of 9i given X1=k (assuming quadratic loss) is given by the
posterior mean

k n -k
reCiye (1-8)' dG(e)

ei(k) =

n_ -k

k
r e (1-8)' dG(e)

n
i

= ¥y al(k,j)cj+1/pi(k).
j=0

Writing this as

(;l(k) = ale,...,c e o+ BC,...,c_), (2.3)

where



n_ -1
i

Y al(k,j)cj+1

al (k) ni) j=°
alc,...,.c00) = ———— and B(c,...,c )= , (2.4)
1 n1 nl 1 n1 n1
§:=21(k,3)cJ %Li‘(k’j)cj

it is clear that, when the first v moments of G have become known, the Bayes
estimate, at stage 1, is completely determined when ni< v, and is determined
up to the (v+1)st moment, cv+1, of G when nl= v. We, therefore, need pursue

only the case where n =v.

Alfhough the value of Ch1 cannot berdetermined from the data, upper and low—‘
er bounds on Cv+1 can be obtained using Theorem A.2. This, therefore, enables
us to find bounds on the Bayes estimate without making any assumptions, func-

tional or otherwise, about G. Letting c, and c respectively, denote the

1’

upper and lower bounds on Char’ the bounds on the Bayes estimate are given

as below:
inf el(k) = a(cl,...,cv) c, + B(cl,...,cv) (2.5)
and
~ »
sup el(k) = a(cl,...,cv) c + 3(01""’cv) (2.6)
»
where c, = ¢, ( c, ) and ¢ = c, ( c; ) when (v-k) is even (odd).



Example 2.1: Let n1=5 for all i, so that v=5. Furthermore, suppose that,
after N-1 stages (N sufficiently large) have passed by, the probabilities p(k)

(k=0,1,...,5) are accurately estimated to be
p(0)= .10, p(1)= .15, p(2)= .25, p(3)= .25, p(4)= .15 and p(5)= .10 .

Then, the first five moments of the prior distribution can be obtained by sol-

ving the equation (2.2), and are given below:
c=.500, ¢c=.290, ¢ = .185, ¢ = .130 and c = .100 .
1 2 3 a 5

Using Theorem A.2, we find the bounds for the 6th moment of the prior

distribution G to be

c, = .0827 and c = .0831 .
1 u

Now, suppose that, at stage N, we observe XN which has a Bin(v,GN) dist., and
that XN=k. Then, the bounds for the Bayes estimate of GN, viz: GN(k), can be
found using (2.5) and (2.6), and are given in Table 2.1 for various values of

k.

Table 2.1
k lower bound of aN(k) upper bound of éN(k)
0 .17 .17
1 .42 .44
2 .48 .49
3 .51 .52
4 .56 .58
S .83 .83




Note, in Example 2.1, that the upper and lower bounds of the estimate, for

each k, are very similar. This is due to the fact that the values of <, and c,

are very close. This phenomenon is to be expected for ‘large’ v. In fact, from

Theorem 4.5 of Karlin and Studden(1966), the largest value of c¢ for fixed

u °r
v, is 272 (Moreover, when c =(cl,...,cv) € Boundary of M, the difference is

always 0.)

3. Expanded Ranges for the Estimate

Since we are looking for answers that are robust w.r.t G, it would be desi-
rable, when N is not large, to give a range of values (for the estimate)
allowing for possible uncertainty about the moments C1“"’cv’ rather than
give a single value. Moreover, when N is not large, the ci’s obtained by
solving (2.2) (for the observed p(k)’'s) may even fail to be in the moment
space M - thus making the method described in the previous section inappli-
cable. We address these concerns in this section by developing credible
regions for ¢ and calcuiating the ranges of values (for the estimate) as ¢

varies over the credible regions.

3.1 Credible Regions for ¢

Assume that we are at stage N, and let X, be the data on X1~ Bin(ni,ei) for
i=1,...,N. Then, letting pi(xl) be the probability that X1=x1’ the likelihood

at stage N is



N N X n —xl
m opx) = (21)I e '(1-0) ' ‘dc(e).
i=1 i=t 1

It will happen that, without loss of generality, we only need to consider

c € int(M ). Then, using (2.1) and Theorem A.1 of the appendix, the likelihood

at stage N is proportional to

L b .c)I (o). (3.1)

Here, bU is obtained by replacing k by x, in ai(k,j) of (2.1), IA(') is the

indicator function of the set A, and (see A.1 and A.2 for definitions)

Q = interior of M
={c= (co,cl,...,cv) : A.m+1 and Bm+1 are p.d. if

v=2m+1 and, D and E are p.d. if v=2m }.
m+1 m

It will be necessary to simulate in the moment space in order to develop
credible regions for g.'Unfortunately, because of the structure of Q*, direct
simulation proved to be very difficult to carry out. However, it turns out
that there is a simple transformation from Q* to a space which is numerically
convenient to work in. We describe this transformation in the following

theorem, proof of which can be seen in pp44-48 of Karlin and Studden(1966).



Theorem 3.1 (Karlin and Studden): Let ¢ € Q. Then, ¢ has a unique

representation given by

m
c, = Y At for 1=0,1,...,v, (3.2)
J

where t=(t_,...,t ) and A=(A_,...,A ) satisfy
1 m - 1 m

(t,A) e Q ={ (t,A) : 0 < t1<----< t <1, O Ai<1, and
- m

n™ms

m
RJ =1 if v=2m-1, Y} AJ =1 if v=2nm. }
=1

j=1 J

Using the above representation, the likelihood in (3.1) can be written as

N m x1
mIZAaCy)t’ (1-t)
i=1 j=1 J xi J J

"
] I((t, ). (3.3)

Note that Q has simpler structure than Q* of (3.1) - this makes the likelihood

in (3.3) more tractable than that in (3.1).

To reflect the uncertainty in ¢ or, equivalently, in (E,é), we will consider

credible sets for (E,A) based on the constant noninformative prior

n(t,A) = IQ((E,ﬁ))
Then the posterior distribution is proportional to

N m x n_-x
T(A) = [EAC)t a-t) 'ty I5((t,2)).
i=1 =1 i) .

10



Thus, the 100y% HPD-credible region, say R(sw) , of (E,é) is given by
R(s)) = ( (LA eq: wm(ta) >s )

where s7 is chosen to satisfy

f n.(E,_A_)dEdA = v J" n*(t,x)di,_da.‘ .
R(sy) - Q -

That the posterior distribution is unimodal with unique mode, and (hence) the
HPD region R(sy) is unidue and connected are easy to verify. Note, however,
that numerical solution for s7 is hard due to the difficulty in integrating
over sets of the form R(SV) . In this paper, we find the value of sy using

Monte Carlo integration as described below. First we generate an "importance"
sample of £=10,000 values (Ei,éi), 1=1,...,¢, of (t,A) € Q by generating each
Ll as an ordered sample from the uniform distribution over (0,1), and (inde-
pendently) generating each éi from the Dirichlet(1,...,1) distribution. Then,

for a given s, we approximate the posterior probability of R(s) by

*

where Ss(i) =1 if n*(il,ii) > s, and = 0 otherwise. Then, the value of Sy
for given y, is approximated by choosing that value of s for which p(s) is

as close as possible to 7.

The results of this simple Monte Carlo integration proved to be accurate,

11



probably due to the fact that we are integrating a smooth unimodal function
over a small region. Thus we did not attempt to obtain a more sophisticated
importance function. We again emphasize, however, the value of simulating the

reparametrized (t,A) rather than the original moments ¢; early attempts at

direct simulation of ¢ proved unsuccesful.

3.2 Bounds for the Bayes estimate

Let the sample size at (the current) stage N be denoted by n*, i.e.: nN=n*.

Here, we describe how we calculate bounds for the Bayes estimate BN(k) when
the uncertainty in (t,A) or, equivalently, in ¢ is given by R(sw). We first

»*
consider the case where n =v.

For fixed (t,2A) € R(SW)’ let ci(E,A) be the lth(1=0,1“..,v) moment given by

(3.2). Also, let the bounds on the (v+1)St moment, when the first v moments

are fixed at these values, be cl(E,é) and cu(E,é). (Note that 01(5'5) and
cu(E,é) can each be written as a function of (E,é) using Theorem A.2 and

equation (3.2).) Now, let
alt,A)= a(cl(E,&),...,cv(E,ﬁ)) and B(t,A)= 3(01(3'5)""'CV(E'§)) (3.4)

where a(c1,...,cv) and B(cl,...,cv) are as in (2.4).
Finally, using (2.5) and (2.6), the lower and upper bounds over all priors

with moments in R(sy) for the Bayes estimate GN(k) of 6, when XN=k, are

given, respectively, by

12



0, (k) = inf{ alt, e () + B(LA) & w(tA) > s ) (3.5)
and
8,) = sup{ a(t,A)c’ (£,A) + B(L,Y) & « (LA >s ) (3.6)

The case y=0 is of special interest, since R(so) is then the Type-II maximum

likelihood estimate of (t,A), i.e.: the point that maximizes the likelihood in

(3.3). The ensuing range is thus the range of the possible estimates corres-

ponding to the "most likely" moments of G.
When n*<v, the corresponding bounds on GN(k) are given by the inf and sup of

{alt,Ae * (£,2) + B(LA) : w(t,2) > 5, }

where a(t,A) and B(t,A) are as in (3.4) with v now replaced by n*.

Example 3.1: Suppose N=41 and that n1=5 for i1=1,...,N. Suppose the past
N-1=40 data values XX s X, are summarized by the following:
k 0 1 2 3 4 5
Freq. | 4 6 10 10 6 4

The values of the bounds gn(k) and én(k) on the Bayes estimate are displayed

in Figures 3.1 and 3.2 for k=2 and 4, as y varies from O to 0.99. (In these

calculations, the likelihood of (E,&), see (3.3), has been obtained using all

13



N data yalues, both past and current.). Note that the bounds corresponding to
the ML-II moment estimate (i.e., corresponding to y=0) are very tight, quickly

spreading apart as ¥ increases to 0.1, and then remaining reasonably stable
until ¥ reaches to 0.9. This clearly shows the unsuitability of using the
ML-II moment estimate to determine robustness, and perhaps, surprisingly indi-
cates that any moderately large y should provide a reasonable indicator of

robustness.

Example 3.2: Suppose N=42 and that n1=5 for all i. Suppose the past N-1=41

observations are summarized as below:

Note that this data 1s skewed as opposed to the (symmetric) data in the previ-
ous example. The bounds on the Bayes estimate for the cases k=0 and 4 are
displayed in Figures 3.3 and 3.4. The extreme nonrobustness when k=0 probably

relates to the clash of the "current" observation (k=0) with the past data.

Example 3.3 (Martz and Lian(1974)):

The Portsmouth Naval Shipyard, Portsmouth, NH, must routinely assess the
quality of submitted lots of vendor produced material. The data consist of

the number of defects of a specified type in samples of size n=5 from the past
N-1=5 lots and from the current (sixth) lot. The past data are summarized by

the following.

14



The number of defects in the current lot is 0. It is desired to estimate the
lot fraction defective, 6, in the current lot. The bounds on the Bayes estima-

te of B8 are displayed in Figure 3.5.

Finding the values of gn(k) and §N(k) in the above examples required maximi-
zing/minimizing functions of 5 variables, with the variables being subject

to constraints. The calculations were done using the IMSL routine NCONF. With
the value of s7 given (for fixed ), it took, in most cases, about 2.5 seconds
CPU time on an AMDAHL/470 V7 (VM/CMS) to compute a single bound. For the
routine NCONF to work, we had to shrink the range, viz: (0,1), of each

variable by 0.01 at both end points.
APPENDIX

Let co=1 and c, denote the i*" moment of a prob. distribution on the interval

[0,1]. Thus, we define the (n+1)-moment space M by
M =1 (c,c,...,c):c =F 6'dG(8) for some prob. dist. G on [0,1] }. (A.1)

For use in this section, we also define square matrices A ) B .’ D " and
m+ m m

Em (where the suffix indicates the order of the matrix) as follows:

(A.2)

o
|
—
V]
=]
Q.
am

"
0

]
~—

Moreover, let A:+1 and Bz+1 respectively be the matrices obtained by subs-

tituting c =0 in A and B , and let 0°  and E° respectively be the
2m+1 m+1 m+1 m+1 m+1

15



matrices obtained by substituting ¢. =0 in D and E .

2m m+1 m
A necessary and sufficient condition for an (n+l1)-vector (co,...,cn) to be in
the moment space M is given in the following theorem. Proof can be seen in,

e.g: Karlin and Studden(1966).

Theorem A.1 (Karlin and Studden):

If n=2m+1 (n=2m), then c € M if and only if the matrices Am+1 and Bm+1 (the

matrices Dm+1 and Em) are positive semi definite. In addition, c € int M if

and only if these two matrices are positive definite.

It is of interest to consider the range of the (n+1)st moment C .1 subject to

the first n moments Cyr CyrernC being fixed. Thus, let , and . respectively

be the lower and upper bounds of C defined by

c, = inf { [ 8™*'dG(e) : f e'dG(e) = c, for 1 =0,1,...,n}
and
n+1 i
c, = sup { J e dG(e) : [J edG(e) = c, for 1 =0,1,...,n }.
Theorem A.2 (Karlin and Studden): Let ¢ = (co,...,c ) be in the interior of
- n

M. Then, cl and cu are given as follows. When n=2m,

det( A% ) det( B )
m+1l m+1
c,= - — and c =¢ + ——

1 det( A ) u n det (B )
m+1 m

16



When n=2m+1,

det( D° ) det( EC )
m+2 m+1
C = - ———————— and C = C + —-

det( D ) U " det(E )
m+1 m

Proof: Follows from Corollary 2.2b on pl12 of Karlin and Studden(1966).
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Figure 3.1: Lower and Upper Bounds on the Bayes Estimate eN for

varying ¥ when k=2 and data are as in Example 3.1.
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Figure 3.2: Lower and Upper Bounds on the Bayes Estimate BN for

varying ¥ when k=4 and data are as in Example 3.1.
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Figure 3.3: Lower and Upper Bounds on the Bayes Estimate GN for

varying ¥ when k=0 and data are as in Example 3.2.
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Figure 3.4: Lower and Upper Bounds on the Bayes Estimate eN for

varying ¥ when k=4 and data are as in Example 3.2.
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Figure 3.5: Lower and Upper Bounds on the Bayes Estimate GN for

varying ¥ when the data are as in Example 3.3.
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