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1 Introduction

1.1 The problem and motivation.

Sensitivity of Bayesian analysis to the choice of prior has recently received considerable
attention. It is now generally agreed that a convenient initial prior may be formed in-
corporating the features that are easy to elicit, followed by a sensitivity analysis when
the prior is allowed to vary in a “neighborhood” of the initial prior. Neighborhoods
have been specified in the literature in a variety of ways and indeed need not be met-
ric neighborhoods. Past work in this area has concentrated on few different types of
prior families such as parametric families (like conjugate priors), contamination classes,
density bands and densities with a few specified percentiles.

The class I of cumulative prior distributions to be considered in this article is

- F : F is a cumulative distribution function )
and F1(6) < F(0) < Fy(6) V6
where Fi, and Fy are two fixed cdfs (or more generally, Fy, and Fy are nondecreasing
right continuous functions satisfying 0 < Fi, Fiy < 1) and, Fi(0) < Fy(0) for all . We
will refer to the family I' in (1) as a distribution band.

In Bayesian analysis, the likelihood £(f) and the prior 7(6) are combined through
Bayes theorem to obtain the posterior distribution for the parameter(s) of interest. Thus,
it requires specification of two parametric models, the likelihood and the prior. Bayesian
robustness studies, so far however, are directed almost exclusively towards sensitivity to
the choice of the prior. In some sense, sensitivity to the prior and the likelihood can be
treated in a unified manner, by considering the prior as a probability measure on the
space of possible sampling distributions; recent work on this includes Lavine (1991).

In a decision-theoretic framework, a third component, namely the loss function
L(6,a), enters the picture, specification of which is again of concern. Surprisingly
enough, the literature on Bayesian robustness so far has ignored the question of sen-
sitivity of Bayesian analysis to perturbations in the specified loss structure. Use of

squared error loss (L(f,a) = (6 — a)?) and conjugate priors are quite common, mainly



because of their mathematical ease. Whereas much work has been done on the sensitiv-
ity of the Bayes estimator and the Bayes risk (under squared error loss) to deviations
from the conjugate prior formulation, such sensitivity analysis towards deviations from
the specific L(8,a) = (0 — a)? loss structure is lacking.

A formal approach towards robustness analysis to variations in both the prior 7 (6)
(or prior cdf F(#)) and the loss L(8, a) would be to let the prior vary in a class I' and,
to take a family (probably nonparametric) of loss functions £ and, find the ranges
of interesting posterior quantities or Bayes rules. We take a less formal approach and
consider a few plausible loss structures (such as squared error, absolute error and others),
let the prior cdf F(0) lie in a nonparametric family of priors, namely the distribution
band defined in (1), and study the ranges of the Bayes rules w.r.t. the different specified
losses. If robustness is achieved for the Bayes rule 8z, (X) over the prior class I' for a
specified loss ‘L;’, by comparing the behavior of 67, (X)) with Bayes rule 61,(X) w.r.t. the
other loss ‘L;’, we can see if the exact functional form of the loss ¢L,’ is important /crucial
in achieving robustness and, whether some types of losses behave better than others in
this respect.

We will restrict our attention to the following three standard losses :

Ly(0,a) = (0—a)?, the squared error loss,
Ly(8,a) = |0 —a|, the absolute error loss, and
L00) — { Ko(0—a) i 6—a>0 2)
Ki(a—0) if 0-a<0
the linear loss (with K, and K; appropriately chosen).

Note that L, is a special case of Ly with Ko = K; = 1. Obviously, these are not
the only possible loss functions that may occur. We choose them mainly because of
their mathematical tractability and also, real-life loss functions arising out of a utility
analysis can often be suitably approximated by them. The Bayes rules w.r.t. these
losses for a specified prior F and a fixed likelihood £x(f) are respectively : 61,(X) =
EF(@1X)(9), the posterior mean; &z,(X) = any median of the posterior distribution
F(0]X); and ér,(X) = any ﬁ“l—{-{(: 7) fractile of F(8|X) (cf. Berger (1985)).

The problem of finding the ranges of Bayes rules for the three losses Ly, L, and
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L3 over a prior class T' thus reduces to finding ranges of the posterior mean EF(¢1X)()
and posterior fractiles over the same class I'. In section 2, we describe a general method
for finding the ranges of EF®X)(h(9)), for any arbitrary functional h(6) which is con-
tinuously differentiable. This methodology is then applied to three specific examples for
finding the ranges of posterior mean. For finding the ranges of posterior fractiles, how-
ever, some additional definitions and results are needed and this development is deferred

till section 3.

1.2 Discussion on the class I':

An important aspect of prior quantification is that prior probabilities of sets and shape
features of the prior are much easier to elicit, while features such as moments and func-
tional forms are much harder to determine. Previous approaches to Bayesian robustness
attempt to incorporate the uncertainty in terms of classes of densities. The important
distinction of the distribution band is that here, we model the uncertainty of elicitation
directly in terms of prior probabilities of sets of the form (—o0, 8] (which we commented
are easier to elicit), and let it lie between Fi(0) and Fy(0). We feel this arises more
naturally from the elicitation mechanism.

The distribution band T is also very flexible in the sense that it can easily be
adapted to meet specific subjective inputs from the user in a straightforward manner.
As an example, suppose elicitation process specifies the prior median and quartiles of
an one dimensional parameter 6 at 0 and 31 respectively. Several priors, for example,
Fyx = N(0,2.19), F¢ = Cauchy(0,1) and many others (see Table 1), meet these quantile
specifications. A formal or nonparametric approach would be to define a class of priors
subject to these quantile specifications and do a sensitivity analysis, but this approach
often suffers from the inclusion of unreasonable priors in the prior class. Many Bayesians
argue for an informal approach, of considering a few plausible priors F,..., F, (i.e.,
in this example, N(0,2.19), Cauchy(0,1) and few others) and checking for sensitivity
only among these priors. One way to combine these two approaches is to define Fj, =
min(Fy,...,F,) and Fy = max(F,..., F,) and do sensitivity studies with the resulting

distribution band I', which has the flavor of the informal approach while preserving the
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essence of the nonparametric approach.

Another important aspect of the distribution band is that neighborhoods under var-
ious metrics on the space of distribution functions are often of the form (1). Suppose we
combine the outputs of a finite elicitation process through a reasonable (and preferably
tractable) distribution function F,. A natural way to incorporate the uncertainty in the
elicitation process may then be to allow an error of € in the specification, leading thus
to the class (1), with F£(0) = max[Fo(6) — ¢,0] and F&(0) = min[Fo(0) — ¢, 1]. Indeed,
this is the closed e-neighborhood of Fy under the Kolmogorov metric on the space of
distribution functions, defined by dg(Fi, F3) = sup |F1(0) — F»(0)|. Another commonly
used metric that also leads to a family of the ff)ifn (1) is the Lévy metric, defined as
dp(F1, Fp) = inf{e: F1(0—€)—e < F5(0) < Fi1(0+¢€)+¢}. In this case, using the notation
of (1), FE(0) = max[Fo(6 — €) — €,0] and F%(0) = min[Fy(0 + €) + ¢,1]. Notice that
FE and F} thus defined, are not cdfs, since 01—1-»123 FE(6) # 1 and alir_nw FE(6) # 0 (same
is true for F{* and Ff). But our methodology for finding the ranges of Bayes rules and
posterior quantities can be suitably adapted to treat the class I' (in (1)) generated by
FE and FZ% (or by F¥ and FE).

Kolmogorov and Lévy neighborhoods have been widely used in classical statistics,
see for example, Huber (1981) and Wiens (1986). As par our knowledge, this is the first
such attempt in Bayesian analysis. It is well known that dp(Fy, Fy) < dg (F1, F2) (for
any Fi, F3) so that Lévy neighborhoods are bigger than Kolmogorov neighborhoods. An
advantage of the Kolmogorov and Lévy neighborhoods is that these families often allow
for flexibility in the prior tail for small values of e. For example, the Kolmogorov distance
between Fiy and Fg is 0.081. Thus, a Kolmogorov neighborhood of Fy = N (0,2.19)
with € = 0.081 includes the flat tailed Fo = Cauchy(0,1) prior. Table 1 gives the
Kolmogorov and Levy distances between N(0,2.19) and several other natural priors,
each having median = 0 and quartiles = +1. It is interesting to see that ¢ as small as
0.03 suffices for covering flat priors like a ¢ prior with 3 degrees of freedom.

Yet another interesting feature of the family (1) is that any prior class IY can
be embedded into a family I' of the form (1) by defining Fi(§) = inf {F(8) : F €
I"} and Fy(0) = sup{F(f) : F € I'}. If F, and Fy defined in this manner are



distribution functions, the corresponding distribution band I' will include IV and thus
the ranges of p(z, F') obtained from I' can be used as bounds on p(z, F) for I'. This
may be particularly useful when the original family I is mathematically intractable.
Nevertheless if robustness obtains with the bigger family I, we know robustness is present
for I too.

The principal goals of this paper are then the following :

(i) to use neighborhoods of cdf’s as models for prior uncertainty; such neighborhoods
have been used in the classical robustness literature before, but their use in Bayes

theory is new;

(ii) to investigate the formal effect of a loss function in this setup within a class of

commonly used loss functions; we believe this is rather important;

(ii) to bridge together the ideas of informal and formal robustness checks by studying
CDF bands of the type min(Fy,F;) < F < max(Fy, F;), where Fy, F; may be

adhoc candidates for a robustness check.

Moreover, at a technical level, our results demonstrate further potential of moment

theory methods in this area.

1.3 History

The “robust Bayesian” view of quantifying subjective information through a class of pri-
ors has been exposed by many, which is too broad to be reviewed here. Excellent reviews
are done in Berger (1984, 1985 and 1990) and Walley (1990). Commonly used classes
can broadly be divided into five groups : conjugate classes, classes with approximately
specified moments, contamination classes, density bands and sub-sigma field classes.
The parametric analysis with conjugate prior classes includes Leamer (1978, 1982), Po-
lasek (1985), DasGupta and Studden (1988) etc. Classes with moment constraints have
been considered in Stone (1963), Hartigan (1969) and Goldstein (1980). Contamination

classes have been studied extensively in the literature, among others, see Huber(1981),



Berger (1984, 1985), Berger and Berliner (1986), Sivaganesan and Berger (1989), Das-
Gupta and Delampady (1990a,b). The density band was first proposed by DeRobertis
(1978) and DeRobertis and Hartigan (1981); recent work on this includes Lavine (1991),
DasGupta and Studden (1988, 1990), Bose (1990) etc. The sub-sigma field approach has
been considered in Fine (1973), DeRobertis (1978), Berger and O’Hagan (1989), Moreno
and Cano (1989), Berliner and Goel (1990), etc. Srinivasan and Truszczynska (1990)
and Wasserman and Kadane (1990) take a more general approach, based on functional
derivatives and theory of capacities. The approach of stable estimation is considered
in Meczarski and Zieliriski (1991). Another robust Bayesian viewpoint is to perform an
“objective” analysis with a noninformative prior. Work on this includes Jeffreys (1981)

and the “reference prior approach” of Bernardo (1979) and Berger and Bernardo (1989).

2 Ranges of Bayes rules for h(6) under squared er-

ror loss.

2.1 Notations, assumptions and preliminaries.

It is well known that, under squared error loss L,(f,a) = (6 — a)?, with prior cdf F(6),
the Bayes estimate of 8 is given by &r,(X) = EF(®X)(8), the posterior expectation of
6. In a more general setting, suppose interest lies in %(#), some known function of 4,
defined on the parameter space ©. The Bayes estimate for h(#) (under loss L; and
prior F), is then given by (£(f) here denotes the likelihood function)

Jo £(8))dF (6)

p(h, F) = EFR)(1(9)) =

A natural goal of robustness investigation to the choice of the prior F would be to

find the ranges of the Bayes estimate p(h, F'), as F varies over I'. Thus, we seek

p(h) = inf p(h, F) and  p(h) = sup p(h, F).

Notice the ratio linear posterior quantity p(h, F) is, in fact, well defined for all

monotone functions F, bounded between 0 and 1. For the sake of brevity, only the



problem of evaluating p(h) will be described; the infimum problem is technically exactly
similar and consequently, no attempts are made to elaborate on it. Some common
choices of h(8) are h(0) = 6, h(0) = Ic(0), h(0) = L(8,a) where L is a loss function
and a is an action, and A(6) = f(zo|60). These make E¥®1)(h(8)) respectively equal to
the posterior mean, the posterior probability of the set C, the posterior expected loss of

an action ‘a’, and the predictive density at zo.

Assumptions : The following technical assumptions will be made.

(1) The parameter space © is either a compact interval [a,b] on the real line £ or R
itself (in which case we take @ = —00, b = +0o and interpret the interval to be

open).

(2) Ya) = £0) =0 (eliin £(0) = 0 in case © = R) and £(0) is continuously dif-
ferentiable on (a,b). Cases where this assumption is not satisfied are rare; our
arguments can be adapted to the case when £(a) or £(b) may be nonzero, but at

the expense of significant technical complexity.

(3) R(0) is continuously differentiable on (a,b). In case ® = R, we also assume

Jlim h(0)4(6) = 0.

Notice that h(f) = Io(#) does not satisfy assumption (3) if, for example, C is an interval
[u,v]. This case needs special treatment and is deferred till Section 3.2.
We first give an example to illustrate the basic technical idea used in more generality

later in this article.

Example 1 : Suppose we sample X from N(6,1), yielding the likelihood

£(0) = exp (—%(0 - X)z) , 0 € R. The prior cdf for 8, F(8), is known to lie in the
band T' (cf. (1)), generated by two fixed cdfs F, and Fy (F < Fy), otherwise, it is
unknown.

Suppose we are interested in finding the supremum of the posterior mean. Using



the notation of (3), then,

pOUB)F(8) _Z £(0(6))F(6)do

W UONFEO) T d(y6)\F(6)do

p(h, F) = (4)

(on integration by parts).

Define f1(0) = £(6£(0)) and f2(0) = £4(6). Assume for the moment that p(h) =
sup p(h, F) is finite, equals A and is attained at ¥ € . By a standard linearization

Fer»
argument, we then have,

[* A0 = ALOIFOE >0 for every F T

with equality for F' = F. Equivalently, the infimum of [°°_{f1() — A f2(0)}F(6)d8 over
F € T is attained at F = F. (Notice this standard linearization technique reduces
the original problem of maximizing a nonlinear functional of F to minimizing a func-
tional linear in F. Such linearization techniques are also discussed in Srinivasan and
Truszczynska (1990) and Lavine, Wasserman and Wolpert (1988). A formal proof of the
validity of this linearization argument is given in Lemma 1 .)

Observe now that for any fixed A,
1
F1(8) =2 f2(8) = e 20 {_0 4 (z + N0+ (1 — 2)\)}, (5)

which changes sign at at most 2 points, say & and a; (eq < a3), with fi — Af, > 0 iff
0 € (a1, a2).

Hence, for the purpose of minimizing [{f1(8) — Af2(0)}F(0)d0 over F € T, we
will like to make F' as small as possible in the interval (a;, a;) and as large as possible
outside, in a way consistent with the conditions required for belonging to I'.

Towards this end, fix F(a;) = hy, where hy is any number satisfying Fi(q;) <
h1 < Fy(en). Subject to this constraint, the function F, € I' minimizing [{f(f) —
Af2(0)} F(6)d0 is then clearly given by

minfhy, Fy(0)] if —co<l<
Fr,(0) = § max[hy, Fp(0)] if oy <60 < ay (6)
Fy(6) if 0 < 0 < oo.



Note that oy and oy are solutions of f1(6) — Af2(8) = 0 and are therefore determined by
A. Thus, the problem of finding the overall optimal F over the class T is reduced to a
2-dimensional maximization, namely maximizing p(h, Fj,) over X and h;.

The basic argument given in the above example applies to more general situations.

We first prove that the linearization technique described in Example 1 works in general.

2.2 Linearization.

For a general function k() and any F € T, integration by parts yields

Jun MOX©O)AF(6) _ J, de(h(a)l(o))F(a)da
Ja 4(0)dF (6) 2L y0)F(0)d

Let fu(6) = &(h(0)4(6)) and £,(6) = (4(6)).

p(h, F) =

(7)

Lemma 1 Let IT™* be any class of functions G, which are nondecreasing, right continuous
and bounded between 0 and 1. Assume that for all 6 , £(0) < M < oo and for all
G eT™, [, ¢0) dG(0) = § > 0. Denote p(h,G) by s(G).

Suppose, for every real A, giglf_ f{fl(a) — Af2(0)}G(6)d0 > —co and is attained at

Gy €T*. Then )\odz-qfsup 3(G) < oo and is attained at G,.
Gel'*

Proof:  This lemma is proved in 2 steps.

Step 1.  First assume that sup s(G) is finite and equals Ao.
ger:

Then for any particular sequence €, | 0, there exists G,, € I'* such that
> £1(0)G.(6)d0
s(gn) fbfl( )g ( ) AO €, (8)
Jo 12(0)G(6)d0 —

=[O - Xk <o [ 0)5.0).
Since £(0) is bounded above, it now follows from (9) that
b -
[ {A1(8) = 2 £(6)}T2(8) < 0
= 3(G),) = Ao, ie., sup s(G) is attained at G,.

Step 2. We now prove that sup s(G) must be finite. For, if sup s(G) = oo, then for any
ger+ ger+
sequence M, T oo, we can find G,, € I'* such that s(G,) > M,, implying

[ 7(©)6.(0)d0 < M, [ 120G (0)a0 ©)

9



Then for any real A, using (9),

/a ()G (6)d6 — X / CF(0)0a(0)d0 < (M, — ) / ’ £2(0)G.(0)d6

—(Ma— ) /M £(0)dGn(6)
< —(M, - M. (10)

Since the right side of (10) goes to —co, we have a contradiction m

(From the above lemma therefore, for the purpose of maximizing p(k, F) over T, it
is enough to find, for real ), }'relg 2 {£1(6) — Af2(0)}F(6)do.

Using earlier notation, we assume that for any real X, f1(8)—Af;(8) changes sign a
finite number of times. This assumption is satisfied in all cases of practical importance.
In fact, for (#) = 6™, the number of sign changes is at most (m + 1) for common
likelihoods such as Normal, Gamma, Binomial, Poisson and Negative Binomial.

Suppose now we are in the special case where f; — Af, changes sign only twice, at
a; and ay, with f; —Af; < 0 on [a,0;] and [a3, ] and > 0 on (a1, @3). If we now fix the
value of F at ay, say, F(a;) = hy (where Fr(o1) < by < Fy(ey)), then as in Example

1, we get the following general form for the extremal F:

minfhy, Fy(0)] a<0< oy
F(0) = { max[hy, FL(8)] o1 <0< ay (11)
FU(o) (s 7) S 0 S b.

p(h, F) is then to be maximized over F of the form (11).

2.3 The Extremal Prior.

Finally, we present here, the form of the extremal prior F' when the function f; — Af,
changes sign n times, say, at a; < a3 < ... < ay.
[a, a:) for i=1
Define I; = { (ay, b for i=n+1
(ai-1,05) for i=2,...,n.
Furthermore, label I; as ‘+’ if f; — Af; is nonnegative on I;, and as ‘-’ if it is nonpositive

on I;.
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Theorem 1 sup p(k, F') = sup p(h, F), where
Fel Fel,

F:F@O) = h if 0=a5t=1,...,n
T, = = max[h;—1, F(0)] if 0 € I; and I; is ‘4’
= minh;, Fiy(9)] if 0el; and I; is * —'.

If, jor a particular i, I; is as labeled “+’ and I;yy as ‘~’, the corresponding h; is

fized and equals minfh;y,, Fiy(oy)]. Else, the hi’s are not fized and can take any values
subject to the restrictions Fi(a;) < h; < Fy(a;) and h; < h; ifi < j }

Remark 1. For finding the optimizing F' € T,, the optimal values of o;’s and h;’s have
to be determined through numerical optimization. The a;’s are determined by A (see

definition of a;’s), so the numerical optimization would be over A and the A;’s.

Remark 2. In the above theorem, we assume that both Fy and Fy are distribution
functions on the real line. € neighborhoods of Kolmogorov and Lévy metrices of a fixed
cdf Fy are of the form of the distribution band T, but as we mentioned earlier, F;, and
Fy are no longer cdfs (911130 Fr(6) <1 and olir_noo Fy(0) > 0), but nondecreasing, right
continuous functions bounded between 0 and 1. Interestingly, with minor modifications,
Theorem 1 can still be applied to these neighborhoods. For illustration, let us consider

the e—Kolmogorov neighborhood of a fixed cdf Fg,
I'={F: Fisacdfand max(0, Fp(d) — ¢) < F(6) < min(1, Fp(8) +¢), 0 R}

It turns out that, for evaluating B(h), it is easier to deal with the following enlarged

family.

™ { G : max(0, Fo(0) — €) < G(6) < min(1, Fo(0) +¢), 0 € R, }

0 < G <1, G nondecreasing and right continuous

For this enlarged family I'*, the linearization technique of Lemma 1 still applies
and Theorem 1 reduces the infinite dimensional problem of finding sup p(h,G) to a
finite dimensional numerical optimization. The only problem is, the faG)(ei;I;emal GerT*
thus obtained, might not be a distribution function. To exemplify, let us go back to the

problem of finding the supremum of posterior mean in Example 1 (cf. section 2.1), but
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now consider Fr(0) = max(0, Fo(f) — €) and Fy(8) = min(1, Fo(f) + €), where F, is a
fixed cdf on R, say for example, the conjugate N(0,1) prior. The form of the extremal
G is given by (6), and it is clear from (6) that olir_noo G(9) = eEI-nm min(hy, Fo(8)+€) > 0,
hence G is not a cdf. However, this problem can be circumvented by truncating G at
the left tail, i.e., by defining G,(0) =0 if —co < 8 < —n, and G,(f) = G(6) otherwise.
For large n, G, is a cdf and € . Let g and g, be the measures corresponding to G
and G, on the space ® = [—00,00] (both —co0 and +oo inclusive). For any bounded
continuous function f on R, satisfying o-ljinoo f(9) =0,

[1e)d@e) = m {f(—n)du([—oo,n))+ f(e)duw)}
®

[—7,00]

n—oo
[—n,00]

= lim / f(0)du(8) since Jim f(—n)=0

[-7400]

= lim [ fO)dun(0) = lim [ £(0)dGa(6)
It is now an easy exercise to show that Jim EG-(01X)(g) = EGlIX )(6), which establishes
E6(0|X)(0) to be the supremum of EF(X)(§) over the smaller family T as well. This

limiting argument can be modified for the case of general i(f) easily.

2.4 Application: Ranges of Posterior Mean.

In this section, we apply Theorem 1 to several examples on finding the ranges of posterior
mean over specific prior classes. Note that the posterior mean is the Bayes rule for 0

under the squared error loss L;(0,a) = (0 — a)?.

Example 2 (continuation of Example 1).

Suppose we observe X ~ N(6,1), and a finite elicitation process specify the
prior median and quartiles at 0 and +1 respectively. As we mentioned before, Fiy =
N(0,2.19), Fo =Cauchy(0,1), and several other priors (see Table 1) satisfy these speci-
fications. Combining the informal and the formal approach to Bayesian robustness (see
section 1.2), let us define F] = min(Fy, F¢), F} = max(Fy, F¢) and let T'; be the result-
ing distribution band. Also define, F = min(Fy, F¢, Fg) and F} = max(Fy, Fo, Fg),
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where Fg = Double Exponential(0, 1.44) (which also satisfies the quantile restrictions),
and let T'; be the distribution band generated by F? and FZ. In fact, I'; contains all
the priors that are mentioned in Table 1. In Table 2, we present the suprema (E),
infima (E) and the ranges (E — E) of the posterior mean EF®X)(9) over these classes.
[y and I'; yield almost identical ranges, indeed, these two classes are same except for
0 € (—0.396,0.396) where I'; is slightly wider. From Table 2, the ranges of EF(®1X)(0) for
small values of |X| are small, showing insensitivity to the choice of the prior, whereas
for large | X| values, the ranges are rather large. Such lack of robustness for large X is
often typical in Bayesian robustness studies. More discussions along this line follow in

Example 3.

Example 3 (continuation of Example 1).

Again, assume X ~ N(0,1), and suppose we decide, combining elicitation infor-
mation and mathematical convenience, on the conjugate prior Fo = N(0,1). Instead of
quantile specification, we now directly model our uncertainty in Fy in terms of 'y and
'z, the e—Kolmogorov and e—Lévy neighborhoods of Fy. Figure 2 shows the suprema
(Ex) and the infima (Ex) of EF(6|X) as F varies in ', whereas Figure 3 compares the
ranges (Ex — Ex and Er,— E;) over T'x and T';. Again, significant lack of robustness is
observed for large | X| values and/or large e. Two possible reasons could be suggested for
this lack of robustness. One is that we are allowing prior distributions with point masses
to be included in I'x and I'y. Secondly, if Fp is a N(0,1) prior, then an e-Kolmogorov
neighborhood of Fy contains priors with extremely thin as well as extremely thick tails,
in comparison to the tail of Fy. If Fj itself was thicker tailed, better robustness would
have been achieved. Another surprising feature is that though 'y C Tz, they yield
almost similar ranges. The base prior Fy is nearly flat for |§] > 2. Hence, even though
the band Tz, is quite a bit wider than Tk in the center, towards the tail T'x and T, are
almost the same. This makes the suprema and infima for the two prior classes rather
similar.

As noted before, the Kolmogorov distance between Fiy = N(0,2.19) and Fp =
Cauchy(0,1) is 0.081. Thus, an e—Kolmogorov neighborhood of Fi with ¢ = 0.081,
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which we denote by I's, contains Fg, all the other priors in Table 1, and I's D T, D Iy
(cf. Example 2). jFrom Table 2, the ranges of the posterior mean over the class I'; are
much larger compared to ranges over the classes I'; and I',. This is expected, I's is much
wider than the other two, has no quantile restrictions and, while in I'; and I';, the prior
tail is bounded between the exponential tail of Normal and polynomial tail of Cauchy,

the priors in I's have wider flexibility in their tails.

Example 4.

Let X be discrete ~ Binomial (n,f), yielding the likelihood £(d) = 6X(1 —
0%, 0 € [0,1], Xe{0,1,...,n}. We take Fy to be a conjugate Beta (a,8) cdf
and again, consider 'y and I';, an e-Kolmogorov and an e-Lévy neighborhood of F,
respectively.

For n = 5 and @ = § = 2, Figure 4 compares the suprema (E) and infima (E)
of EF(0]X) as F as F varies in e—Kolmogorov and e—Lévy neighborhoods of the Beta,
(2,2) prior. Figure 5 shows the ranges of (Ex — Ex) for Kolmogorov neighborhoods
with different combinations of (e, 8). These figures, especially Figure 5, clearly show
that for X compatible with the base prior Fy, the range of the mean is small, whereas
the ranges for extreme X values are much larger. For a neighborhood of the Uniform
(0,1) prior, the range is approximately the same (= 0.2) for all X’s, and in fact, Ex and
Eg are each approximately 0.1 unit away from the posterior mean under the Uniform
(0,1) prior. But for skewed base priors (such as Beta (0.5,2) and Beta (2,1)), or even for
some (non-uniform) symmetric priors (such as Beta (0.5, 0.5) and Beta (2,2)), extreme
X-values give a much larger range. Again, this lack of robustness can be attributed to
the inclusion of a large variety of priors.

(From Figure 4, it is seen that unlike in Example 3, the Lévy class 'y yields much
larger ranges than T'x. This is expected because, unlike in the normal case, Ty, is, in
fact, much wider than I'x. For example, when Fp is Uniform (0,1), the e-Lévy class is

exactly equal to the 2e~Kolmogorov class.
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3 Ranges of Bayes rules under linear loss.

3.1 The algorithm

In section 1.1, we introduced three different loss structures, namely L,, the squared error
loss, L, the absolute error loss, and L3, the linear loss (cf. (2)). We also mentioned
that L, is a special case of L3, and the Bayes rules under L; and L3 are respectively :
01,(X) = the posterior mean; and 61,(X) = any K_:-?E(= «) fractile of the posterior
distribution F'(0|X). A general method is described in the previous section for finding
the ranges of 6r,(X). In this section, we take up the problem of finding the ranges
of 6z,(X), i.e., posterior fractiles, when the prior cdf F varies in a distribution band
I (cf. (1)). As before, for brevity, only the problem of finding the infimum of the
posterior fractiles will be described (The supremum problem being exactly similar). For
this problem, we only consider a unique fractile (in case there are several), namely the

smallest one, which we define below.
Definition 1 For fized 0 < v < 1, we define the v-th fractile of a cdf F on R to be
r=inf{a: Pr{(~oco,d]} 2 7}. (12)

Next, we prove that the infimum of Q% over a family of distributions F, can in fact

be described, in terms of suprema of probability of intervals (over the same family F ).

Lemma 2 Let F be a family of distributions and let Q" = I%'lél.];__ QF. Then Q" satisfies
Q" = inf {a : sup Pp{(—o00,a]} > 'y}.
- acR FeF

Proof : The lemma is proved in 2 steps. For step 1, the statement
VF e F, i161£ {a: Pr{(—o00,a]} > v} > Q"

implies that VF' € F and any a € R, Pr{(—o0,a]} > v = a > Q". This, in turn,

implies ;1611;-_ Pp{(—o0,a]} > v = a> Q". It now follows that
i : - > > Q.
ilelge{“ IsgégPF{( co,a]} > 7} 2 Q
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For step 2, fix 6 > 0, and find F5 € F such that

Q' +6 > Q= inf {a: Pr{(~co,al} 27} > Q.

It follows that, 3 a* < @ + 6 such that Pg,{(—o00,a*]} > 7. Hence
sup Pr{(—o0,a*|} > 4. Thus, inf {a : sup Pp{(—o0,a]} > 7} <a* < QV+56.
FeF a€R FeF -

6 > 0 being arbitrary, the last statement, alongwith step 1, proves the lemma m

Lemma 2 gives us a clearcut algorithm for finding the infimum of the 4-th posterior

fractile over any prior class I', along the following steps.

(i) For a € R, find sup PFEX)(—c0, a]}.
Fer

(¢2) Find the collection A = {a : sup PFOX{(—00,d]} > 7}.
Fel

(#:) Find infimum over the set A, i.e., inf{a:a € A}.

The problem of finding the ranges of posterior fractiles over the distribution band
I' is thus settled, as long as we can carry out step (i), i.e., if we are able to find
sup PF1¥){(—co,a]} for any a € R. This is done (with some additional assumptions)
iFnE l]ﬂ3z—>,su and DasGupta (1990), and is briefly described in the next subsection. Most sur-
prisingly, as it turns out, the extremal priors F, € I' which gives sup PFC1X){(—o0, a]},
can be found with almost no numerical work. The numerical woFrle(Fis concentrated on

step (444), which involves finding the infimum of an interval, a relatively easy job.

3.2 Ranges of posterior probability of an interval

In this section, we very briefly overview the methodology for finding the ranges of pos-
terior probability of an interval [u,v], contained in the parameter space © = [a,b] (or
R), over the distribution band T' defined in (1). As noted before, PFCIX) ([u,v]) =
EFCX) (h(6)) with k(0) = I, 4(8), but It.)(0) does not satisfy assumption 3 of section
2.1, namely it is not continuously differentiable. Hence the methodology of section 2 and
Theorem 1 is not directly applicable here. The problem of finding sup PFOX) ([u,v]) (and %‘%{1 PFIX)

involves some unique features, which need careful mathematical treatment. For length
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considerations, we refrain from the details, but simply sketch the additional assumptions
that are required and the form of the extremal prior for the supremum case. The details
are given in Basu and DasGupta (1990).

In addition to assumption (1) and (2) of section 2.1, we need the following extra

assumptions here.

(3) FL and Fy are absolutely continuous on (a,b) with densities (w.r.t. Lebesgue mea-

sure) 7z, and 7y, and are differentiable at all but at most finitely many points.
(4) The likelihood function £(6) is unimodal about some w = w(X).

The linearization technique of section 2.2 still applies, and it reduces the problem
of finding sup PFX) ([u,v]) to evaluating infrer fb {f1(8) — Af2(6)} F(6)d6 where
fi(0) = A f2(2§r= (Iu)(6) — A)€'(0), and X is any (non;egative) real number.

The function f; — Af; defined above, changes sign at u,v and w; but the exact
sequence of sign changes depends on the relative position of u,v and w with respect
to one another. We thus have the following three cases: (A) w (o) < u (a3) <
v (as), (B) u () <v(az) <w(az) and (C) u (o) < w (a2) < v (a3).

Skipping the details of the derivation, the extremal prior F (at which the

sup P¥(1X) ([u,v]) attains), in general, is given by

Fel’
' h,' lf 0 = Q;
min[hl,Fu(G)] if a S 0 <o
F(0) = { max[hy, FL(0)] if a1 <0< ay (13)

minfhg, F,(0)] if az<8<a3
max[hs, Fr,(0)] if as <8 <b.

The optimal values of h, and h, are completely determined, (h, = hy = Fy(u)
in (A), and h, = hy = Fi(u) in (B) and (C); hy = hs = Fy(v) in (A) and (C), and
hy = hy = min[h,, Fy(v)] in (B)). In case (C), the optimal value of h, = h; is also
determined to be Fy(w), whereas, in cases (A) and (B), the determination of optimal
h., involves numerical optimization over only finitely many points (for details, see Basu

and DasGupta (1990)). Hence, the extremal prior F can be found here in a more or
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less closed analytic form, as opposed to the numerical determination of o;’s and &;’s in

section 2.

3.3 Application.

Example 5 (continuation of Example 2).

As before, let X ~ N(8,1), and consider the prior class I'; to be the distribution
band generated by Fj = min(Fy, F¢) and F; = max(Fy, Fc) where Fy = N(0,2.19)
and Fg = Cauchy(0,1). We consider four different losses, L! = L, = squared error, L? =
L, = absolute error, L? = L3 with Ky =1 and K; = 3, and L* = L3 with Ky = 1 and
K; =9. In Table 3, we present the ranges of Bayes rules with respect to these 4 losses,
namely, § = EF(X)(9), 6, = posterior median, 63 = i—-th fractile or the first quartile of
F(0]X), and &, = 15-th fractile of F(6|X). Even without different loss considerations,
these 4 measures give a quantitative summary of the posterior distribution F(6|X), so

their ranges are of importance (The ranges of the 2-th fractile and the =

-th fractile can
be obtained from the values in Table 3 by using symmetry).

In classical robustness studies, the sample median often turns out to be more robust
than the sample mean. In contrast, in Bayesian robustness context (at least in this
example), the posterior median 6, yields wider ranges than the posterior mean §;, except
for X = 0, as can be seen from Table 3. Another surprising observation is that, though
43 is further in the left tail of the posterior F(8|X) than é;, 8, being the furthest, all the
three fractiles é,, 83 and &4 yield almost similar ranges. In conclusion, we find that more

robustness is achieved in terms of the Bayes rule by using the L! loss function instead

of the other 3 losses L2, L3, L%.

4 Summary and concluding remarks

Much of previous work on Bayesian robustness has dealt with densities of the prior such
as density bands and their modifications. In this article we have proposed specifying
the prior through its cumulative distribution function, which we feel is more intuitive

and can be directly assessed from prior probability considerations. No assumptions are
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made about absolute continuity or existence of densities. Surprisingly, such a class is
mathematically tractable and indeed in some cases even closed form expressions for
the extremal priors are possible. This family can also be used to reconcile formal and
informal approaches to Bayesian robustness, and flexibility in the prior tail is achieved
very easily, as illustrated in the examples.

We have also proposed an investigation of the sensitivity of the Bayes estimate to
the choice of both the loss function and the prior. In this context, we have considered a
mixture of the informal and the formal approach, letting the loss function vary among
a few commonly used loss functions, whereas the prior cdf lies in a distribution band T.
Comparing different estimators arising out of different loss structures, such as the mean
and the median, are quite common in classical literature; such comparison in Bayesian
analysis is rare. Contrary to the results of classical statistics, we find that the Bayes
estimate under squared error loss, namely the posterior mean, is more robust than the
posterior fractiles, the Bayes estimates under linear losses.

As mentioned in Berger (1990), the selection of a prior class I' depends mainly on
the following two competing goals : (i) I' should contain as many “reasonable” priors
as possible, and (i) T’ should not contain unreasonable priors. While the “Distribution
Band” satisfies (i), it often contains unreasonable priors, such as priors with point
masses, leading to lack of robustness for moderate X. Indeed, the extremal G’s were
found to assign point masses to several points and also have flat pieces, i.e. regions with
zero masses. One possible remedy is to put further reasonable restrictions on the prior,
such as requiring the prior to be absolutely continuous w.r.t. Lebesgue measure. But,
this restriction alone will usually not change the values of (k) and p(h), as absolutely
continuous cdfs in a band will usually be weakly dense in the band itself. Other standard
shape restrictions include symmetry and unimodality. Surprisingly, we have found that
even I restricted to symmetric and unimodal priors does not lead to significantly better
robustness. The construction of the extremal priors under these added restrictions is
reported in Basu (1991).

Summarizing, the “Distribution band” T' is very intuitive, rich and can easily be

adapted to meet the specific subjective information of the user. It is also mathematically
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tractable, the ranges of interesting posterior quantities can be determined with limited
numerical work, and its use to study the sensitivity of Bayes rules w.r.t. joint variations
in the prior and the loss function is appealing. The main use of the distribution band in
Bayesian sensitivity analysis, however, seems to be in the case when the data are com-
patible with the prior(s) because then one can feel comfortable knowing that robustness

is present even when a rich family of priors is used in the sensitivity study.
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Table 1: Distances from N(0,2.19)

Kolmogorov Levy
“ Distribution Parameters | distance (dx) | distance (dr)

Logistic (0, 72) 72 = (log 3)! 0.015 0.014
Double Exponential (0,7%) | 72 = (log 2)™! 0.043 0.041
Cauchy (0,1) = (1, 72?) =1 0.081 0.079
t(2,72) 72 = 1.499 0.046 0.044
i(3,7%) 72 =1.709 0.031 0.030
t(4,1?) 72 =1.823 0.024 0.023
(5,72) 72 = 1.894 0.019 0.018
¢(10,72%) 72 = 2.042 0.010 0.009
t(15,72) 72 = 2.093 0.007 0.006
£(20,72) 2 = 2.119 0.005 0.005
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Figure 1: e-Kolmogorov neighborhood of N(0,4) and the maximizing G for posterior

mean. The dashed lines are Ff, and Fy;. The solid line is the extremal prior G.
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Table 2: Ranges of Posterior Mean EF®X)(§) (likelihood = N(9,1))

I's

X | EO(g) | R (g) | EFs0X)(9) | Sup (E) Inf (E) Range (E—E) ||

-5 —3.4366 —4.5632 —4.3069 || —1.1135 —7.4248 6.3113

—4 —2.7493 —3.4351 —-3.3073 || —1.0281 —5.1226 4.0945

-3 —2.0619 —2.2851 —2.3167 || —0.8952 —3.0454 2.1502

-2 —1.3746 —1.2822 —1.3885 || —0.6649 —1.8459 1.1810

-1 —0.6873 —0.5542 —0.6197 || —0.2514 —1.0263 0.7749
0 0.0000 0.0000 0.0000 0.3407 —0.3407 0.6814
1 0.6873 0.5542 0.6197 1.0263 0.2514 0.7749
2 1.3746 1.2822 1.3885 1.8459 0.6649 1.1810
3 2.0619 2.2851 2.3167 3.0454 0.8952 2.1502
4 2.7493 3.4351 3.3073 5.1226 1.0281 4.0945
5 3.4366 4.5632 4.3069 7.4248 1.1135 6.3113

u I s

X || Sup (E) Inf(E) Range (E —E) " Sup (E)

Inf (E) Range (E — E) "

—2.1994
—1.9261
—1.5534
—1.0826
—0.5221
0.0703
0.7218
1.5826
2.7697
4.3476
6.2418

—6.2418
—4.3476
—2.7697
—1.5826
—0.7218
—0.0703
0.5221
1.0826
1.5534
1.9261
2.1994

4.0424
2.4215
1.2163
0.5000
0.1997
0.1406
0.1997
0.5000
1.2163
2.4215
4.0424

—2.1994
—1.9261
—1.5532
—1.0822
—0.5214
0.0712
0.7214
1.5831
2.7701
4.3477
6.2418

—6.2418
—4.3477
—2.7701
—1.5831
—0.7214
—0.0712
0.5214
1.0822
1.5532
1.9261
2.1994

4.0424
2.4216
1.2169
0.5009
0.2000
0.1424
0.2000
0.5009
1.2169
2.4216
4.0424
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Table 3: Ranges of Bayes rules w.r.t. different Loss functions over prior class I'y

Posterior Mean (6,) ” Posterior Median (6;) "
X || EF~E1X)(9) Sup Inf Range " Sup Inf Range "
-5 —3.4366 | —2.199 —6.242 4.042 || —2.062 —7.548 5.486
—4 —2.7493 | —1.926 —4.348 2.422 || —1.849 -5.642 3.793
-3 —2.0619 { —1.553 —-2.770 1.217 || —1.547 -3.674 2.217
-2 —1.3746 | —1.083 —1.583 0.500 || —1.102 —1.678 0.576
-1 —0.6873 | —0.522 —0.722 0.200 || —0.482 —0.703 0.221
0 0.0000 0.070 —-0.070 0.140 0.049 —-0.049 0.098
1 0.6873 0.722 0.522  0.200 0.703 0.482 0.221
2 1.3746 1.583 1.083  0.500 1.678 1.102  0.576
3 2.0619 2.770 1.553 1.217 3.674 1.547  2.217
4 2.7493 4.348 1.926  2.422 5.642 1.849  3.793
5 3.4366 6.242 2.199 4.042 7.548 2.062° 5.486
Posterior }-th fractile (83) " Posterior 55-th fractile (6,) u
X || 6¥ 61X) Sup Inf Range " 5w (01X) Sup Inf  Range "
=5 —3.996 | —2.287 -7.921 5.634 || —4.498 | —2.445 —8.261 5.816
—4 | —3.309 | —2.106 —6.149 4.043 || —3.810 | —2.276 —6.580 4.304
-3 || —2.622 | —1.856 —4.447 2591 | —3.123 | —2.050 —5.006 2.956
-2 —1.935 | —-1.491 -2.833 1.342 | —2.436 | —1.740 -3.576 1.836
-1 —1.247 | —-1.015 -1.390 0375 || —1.748 | —1.354 —2.267 0.913
04 —0.560 | —0.420 —0.593 0.173 | —1.061 | —0.879 —1.113 0.234
1 0.127 0.143 0.014 0.129 | —0.374 | —0.297 —0.465 0.168
2 0.815 0.864 0.562 0.302 0.314 0.340 0.126 0.214
3 1.502 2.279 1.163 1.116 1.000 1.241 0.689 0.552
4 2.189 | 4.992 1.544 3.448 1.688 3.759 1.222 2.537
5 2.877 7.133 1.806 5.327 2.376 6.641 1.545 5.096
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Figure 2: Supremum and infimum of postérior mean in e-Kolmogorv neighborhood of
N{(0,1). The likelihood is N (X,1) and ‘E’ denotes ¢. Base mean is the posterior mean
w.r.t. N(0,1) prior
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Figure 3: Ranges of posterior mean in e-Kolmogorov and Le¥y neighborhoods of N (0,1).
The likelihood is N(X,1) and ‘E’ denotes €. The solid lines are the ranges in the

Kolmogorov classes. The dashed lines are those in the Levy classes.
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Figure 4: Supremum and infimum of posterior mean in e-Kolmogorv and e-LeVy neigh-

borhoods of Beta(2,2). The likelihood is Binomial(5,6). € = 0.03. Base mean is the

posterior mean w.r.t. Beta(2,2) prior.
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Flgure 5: Ranges of posterior mean in e-Kolmogorov ne1ghborhoods of different Beta
base priors. The likelihood is Binomial(5, §) and & = 0.03. The dlfferent pairs of Beta

parameters are shown at the bottom of the figure.
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