BAYESIAN HYPOTHESIS TESTING WITH
SYMMETRIC AND UNIMODAL PRIORS

by
Anirban DasGupta and Mohan Delampady

Purdue University Univ. of British Columbia
Technical Report #90-47

Department of Statistics
Purdue University

August 1990



Bayesian Hypothesis Testing with Symmetric and Unimodal Priors 1

Anirban DasGupta and Mohan Delampady

Purdue University University of British Columbia

Abstract. Lower bounds on Bayes factors in favor of the null hypothesis for some one-sided and
two-sided hypothesis tests are developed. These are then applied to derive lower bounds on Bayes
factors for univariate and multivariate testing problems. The general conclusion is that, for small
P-values, these lower bounds tend to be substantially larger than P-values when the priors satisfy
reasonable properties of symmetry and unimodality. These symmetry features are easily specified
in the univariate case but can be much harder in multivariate problems.

Key Words. Lower bounds on Bayes factors, star-unimodality, lower bounds on posterior proba-
bilities, multivariate tests.

1980 AMS Subject Classification: Primary 62A15; Secondary 62F15

Short Title: Bayesian Testing

1 Introduction

1.1 Overview

Bayes factors and posterior probabilities are tools used in Bayesian hypothesis tests. Lower bounds
on Bayes factors (and posterior probabilities) in favor of null hypotheses, Ho, have been discussed
in Edwards, Lindman and Savage (1963), Dickey (1977), Good (1950, 1958, 1967), Berger (1985),
Berger and Sellke (1987) Casella and Berger (1987), Berger and Delampady (1987), Delampady
(1989a, 1989b), and Delampady and Berger (1990) among others. The startling feature of these
results is that they establish that the Bayes factor and posterior probability of Ho are generally
substantially larger than the P-value. When such is the case, the interpretation of P—values as

measures of evidence against Hy requires great care.

1This research was supported by the National Science Foundation (U.S.) Grant DMS-89-230-71, and Natural
Sciences and Engineering Research Council (Canada) Grant A9250.

1



The interest in lower bounds on Bayes factors from Bayesian and likelihood viewpoints is that
they provide bounds on the amount of evidence for the null hypothesis, in a Bayes factor or weighted
likelihood ratio sense, that depend only on the general class of priors being considered, and not on a
specific prior distribution. Therefore, these lower bounds are very useful when the class considered

has appealing properties.

1.2 Notation

A random quantity X, having density (or mass function) f(z|6,7) is observed. The unknown p-
dimensional vector # is assumed to belong to a space © and inferences about @ are considered. 7 is
a nuisance parameter.

In the discussion that follows we shall consider two kinds of hypothesis testing problems. These

are, respectively, testing a point null hypothesis,
Ho:0=86y versus Hy:0# 6y, (1)
where 6 is a specified quantity, and testing a one-sided hypothesis,
Ho:c0< '8y versus Hiy:c'0> c'ty, (2)

where 6 is a specified quantity and c is a specified vector. Most of the interesting problems in
analysis of variance and linear regression are of this nature.

We assume that a classical significance test for (1) or (2) is based on a test statistic T'(X), large
values of which provide evidence against the null hypothesis, Hy. The P-value, or the observed

significance level, of data z is then defined to be
a = sup RK(T(X)2>T(z)), (3)
6€6y

where O is the subset of the parameter space specified by Hy.
Our approach to Problem (1) assumes a prior distribution = on ® which assigns mass mg to fy
and 1— g to O1 = {6 = p}°. Let the conditional density (with respect to Lebesgue measure or

counting measure as appropriate) of 7 on ©; be g;. In other words,
7(0) = molp—gy} + (1 — m0)g1(8)10, . 4)
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We assume an independent prior with density A on 7. The quantities of interest are then

(i) the Bayes factor of Hy relative to Hy:

B(z) = J f(z160, m)h(n) dy _
Jo, (J f(z|6,n)h(n) dn) g:(6) 46’

(ii) the posterior probability of Hy:
i 3 (1-m) 1 ]'1
P (Holz) = [1 e I
A similar approach is possible for Problem (2), but we prefer the following: A prior distribution
= with density g(f) and P"(Hp) = o is assigned to the space ©. As before, an independent prior
h is assigned to 7. Since mp is absorbed in g, it is easier to define the posterior probability of Hy

given z:

Jo, (J f(z]0,n)h(n)dn) g(8) d6
Jo (J f(=[6,m)h(n) dn)g(6)do

Since 7 is a nuisance parameter, it can simply be assigned a noninformative prior in the absence

PT(H()'Z) =

of strong subjective input. On the other hand, the quantity of interest, 8, needs to be handled with

care. If T is a class of prior distributions 7 under consideration, we will consider the lower bounds
Br(z) = inf B™(z
—1"( ) 7€l ( ),

and

. T 1- 1 -1
Pr(Holz) = ;Ié{,P (Holz) = [1+(7r_:°).ﬁ_r] .

Note that, once g, the prior probability of Hy, has been specified, Bg and Pg(Hplz) determine
each other. Therefore results can be presented in terms of one of the two quantities. In our

discussion we choose 1o = 1/2 and present only the lower bounds on the posterior probability.

1.3 Choice of G

Unlike a Bayesian, who might restrict g or g; to single densities, a robust Bayesian restricts g and

91 to classes of densities which consist of all reasonable choices. But any such restrictions require



specific subjective input. Of interest to Bayesians and non-Bayesians alike are choices of G which
require only general shape specifications concerning G.

Emphasis of this paper will be on deriving lower bounds on Bayes factors for classes of prior
densities which are interesting but have not been considered before in this context. In particular,
we shall consider the class of star-unimodal densities and symmetric star-unimodal densities. A
detailed discussion of the properties of star-unimodal densities can be found in Joag-Dev and
Dharmadhikari (1988).

Berger and Sellke (1987), Casella and Berger (1987), Berger and Delampady (1987), and De-
lampady (1989) consider unimodal symmetric densities for univariate testing problems. For multi-
variate testing problems Berger and Delampady (1987) and Delampady and Berger (1990) consider
unimodal spherically symmetric densities. Note, however, that unimodal spherical symmetry is
just one particular generalization of unimodal symmetry to higher dimensions. A more general
class is the class of all symmetric star-unimodal densities. In particular, standard densities such as
multivariate normal and multivariate Student’s ¢ with general form of covariance matrix belong to
the class of symmetric star-unimodal densities but not necessarily to that of spherically symmet-
ric densities. A comparison of these two different generalizations of unimodal symmetry will be
conducted and the implications of choosing any one particular class will be illustrated.

We shall discuss Problems (1) and (2) separately. In Section 2 Problem (1) will be studied.
General results will be derived and illustrated using examples. In Section 3 Problem (2) will be
discussed. Some comments and discussion will follow the main results in each of Sections 2 and 3.

The proofs of the main results will be given in Appendix.

2 Bounds for Point Null Hypotheses

Comnsider Problem (1). Since the problem can be expressed in terms of  — 6, without loss of
generality assume that fp = 0. In this section we shall consider the two classes, star-unimodal and
symmetric star-unimodal densities, for the choice of g; in (4).

To prove the results in this section, we require the following condition on f and h, which states



that the marginal posterior density of 8 has elliptical contours.

[ 1@, mamydn =+ (0 -wyae- ), (5)

where 7 is a nonnegative function decreasing in its argument, and y and A can depend on z.

2.1 Star-unimodal Densities

Let G denote the class of prior distributions 7, on the p-vector 8, of form (4) where g; is any star-
unimodal density. Then we have the following result for the lower bound on the Bayes factor of H,
relative to Hy, and hence an equivalent result for the lower bound on the posterior probability of

Hy given the data, z.

Theorem 1. If the prior density h on 7 is such that the condition (5) holds, then

inf B™(z) = [ P Ly o7 (v — 1% A ) dv] -1 ;

~€G Zg% (W A1) (6)
-1
- _ (A=mo) ( pJfdvPlr((vf— 124 1p) |
inf P"(Hola) = [” ~ (Z‘;% T eA) ) ] -0

Proof: See Appendix.

Remark: The interesting and important fact to be noted here is that the p-dimensional optimiza-
tion problem reduces to a univariate optimization calculation.

Example 1. X ~ N(6,I)in p > 1 dimensions. We want to test Hp : § = 0 versus Hy : @ # 0.
Since the covariance matrix is assumed to be known, the problem of specifying & does not arise.
Then, from (6), the problem reduces to finding supsy fy exp (—(v8 — 1)%z'z/2) dv.

For p=1,2, 3 and 4, mp = 1/2, and selected P-values, the corresponding lower bounds on the
posterior probability of Hy given z (denoted by Pgp) are tabulated in Table 1. Discussion of these
lower bounds will be deferred to a later subsection.

Example 2. X ~ N(6,%) in p > 1 dimensions. The covariance matrix ¥ is assumed to be
unknown here. A random sample, X, - --, X,,, is observed from this distribution. As in Example 1,
we want to test Ho : @ = 0 versus Hy : 6 # 0. We assign a noninformative prior on X, such as |2},

where a > 0. Note that the sample mean X and the sample covariance matrix S are sufficient
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statistics. Then we see that [ f(Z,s|0, £)h(X)dL is simply a p-variate Student’s ¢ density which
has elliptical contours as required by (5). Therefore (6) and (7) follow with  and A proportional

to T and s respectively.

2.2 Symmetric Star-unimodal Densities

In a problem such as in Example 1 or 2 the likelihood function exhibits many symmetry features.
Therefore a class G of prior densities which display some of these properties is more appealing
and interesting. Let G now denote the class of prior distributions 7 of form (4) where g, is any
symmetric star-unimodal density. Note that for p = 1 this class reduces to the class of symmetric
unimodal densities. We have the following result for the lower bound on the Bayes factor of Hy

relative to H;.

Theorem 2. If the prior density h on 7 is such that the condition (5) holds, then

1, p-1 _1)\2,f A-1 2,0 4—1 -1
inf B(z) = |sup 2o [r (w8~ 1WA 47 ((vB+ 17w A N)] dv] ™
T€G B3>0 2r (W A1)

(8)
Proof: See Appendix.

Again, note that the problem reduces to a univariate optimization. Examples 1 and 2 can now
be studied with this new class of densities. For p = 1, 2, 3 and 4, mo = 1/2, and some selected
P-values, the lower bounds on the posterior probability (denoted by Pssy) obtained in Example 1
are displayed in Table 1. Also included in this table are lower bounds on posterior probabilities
(Pys) obtained for the same problem over the class of unimodal spherically symmetric densities.
These numerical values were taken from Table 4 of Berger and Delampady (1987).

A comparison of these lower bounds is in order here. Clearly, the class US is contained in the
class SSU which in turn is contained in SU. Therefore Pyys < Pssy < Psy. When p =1, since
SSU coincides with US Pggy = Pys and hence the values of Pggp; are substantially larger than
the corresponding P-values, as was noted in Berger and Sellke ( 1987). Even the values of Pgy are
much larger than the P-values in this case. However, the behaviour changes dramatically for p > 1.

For p = 2, the values corresponding to SU and SSU are still larger than the P-values but not by

much. For p = 3 these values actually decrease below the corresponding P-values. The reason for



Table 1: Lower bounds for star-unimodal and symmetric star-unimodal priors

P — value =.01 P — value =.05 P — value =.10

Dimension=p Pgy Pssy Pys Psuy Pssy Pys PBsy Pssy Pus

hline 1 058 .109 .109 .174 .29 29 254 .39 .39
2 014 027 .089 .061 .113 .258 .108 .196 .363
3 .004 .009 .083 .024 .046 .246 .049 .093 .351
4 .003 .003 .078 .019 .020 .239 .044 .047 .344

this behaviour can be understood by examining the proofs of Theorems 1 and 2. Note that the least
favourable prior density actually has its support on the real line irrespective of the dimension p of

6. This implies that the class SSU (and hence SU also) becomes simply too large as p increases.

3 Bounds for One-sided Testing

Here we consider Problem (2). In addition, we assume that X ~ N(8,I)in p dimensions. The case
of unknown covariance matrix can most probably be handled under an assumption similar to (5)-
As before, we assume, without loss of generality, that 3 = 0. Unlike Problem (1), the hypotheses
here are on an equal footing. Therefore it is reasonable to assume that 7y = 1 /2 and assign a
symmetric prior distribution to 6. Let G denote the class of all symmetric star-unimodal densities.

Then we have the following result for the lower bound on the posterior probability of Hy : ¢'8 < 0:

Theorem 3. Ifc'z > 0,

1.,0-1 _ 2.4 -1
inf P*(Holz) = |1+ sup o ex@(-(vf+17c'z/2) dv )
TeG

p<0 fy vP-1exp (—(vB - 1)22'z/2) dv
Proof: See Appendix.
Remark 1. As in Theorems 1 and 2, the p-variate optimization problem reduces to a univariate
maximization calculation.
Remark 2. If p = 1, since symmetric star-unimodality is the same as symmetric unimodality, a

more general result can be proved as shown in Theorem 3.2 of Casella and Berger (1987).



This result of Casella and Berger shows that the lower bound on the posterior probability
coincides with the corresponding P-value. Our interest, however, is to examine the behaviour of
the symmetric star-unimodal class of densities in higher dimensions. For p = 2 and selected P-
values, we have computed the lower bounds on the posterior probabilities of Hg : 6 — 02 < 0, where
6 = (61,62)". Recall that X ~ N(6,I). Therefore the classical test (likelihood ratio test) rejects Hy
when (X; — X3)?/2 is large. Also, this statistic has a x? distribution with one degree of freedom if

Hy is true.

P-value .01 .05 .10
¥ .0015 .0123 .0344

The lower bounds given above indicate again that the class of symmetric star-unimodal densities
is too large, and that it contains densities which are unreasonable as priors. This can be seen by not-
ing that the least fa,voura.ble densities, at which the above lower bounds are attained, have support
on the real line and hence are not two-dimensional priors. Thus, reasonable priors to be considered

in these problems need to have restrictions in addition to symmetry and star-unimodality.

References

[1] Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New
York.

[2] Berger, J. and Delampady, M. (1987). Testing precise hypotheses (with discussion). Statistical
Science 2 317-348.

(3] Berger, J. and Sellke, T. (1987). Testing a point null hypothesis: The irreconcilability of

significance levels and evidence (with discussion). J. Amer. Statist. Assoc. 82 112-139.

[4] Casella, G. and Berger, R. L. (1987). Reconciling Bayesian and frequentist evidence in the
one-sided testing problem (with discussion). J. Amer. Statist. Assoc. 82 106-111.

[5] Delampady, M. (1989a). Lower bounds on Bayes factors for invariant testing situations. J.

Mult, Analysis 28 227-246.



[6] Delampady, M. (1989b). Lower bounds on Bayes factors for interval null hypotheses. J. Amer.
Statist. Assoc. 84 120-124.

[7] Delampady, M. and Berger, J. (1990). Lower bounds on Bayes factors for multinomial distri-

butions, with application to chi-squared testing. Ann. Statist. 18 xxx—xxx.
[8] Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, Convezity, and Applications.

[9] Dickey, J. M. (1977). Is the tail area useful as an approximate Bayes factor. J. Amer. Statist.
Assoc. T2 138-142.

[10] Edwards, W., Lindman, H., and Savage, L. J. (1963). Bayesian statistical inference for psy-
chological research. Psychol. Rev. T0 193-242. Reprinted in Robustness of Bayesian Analyses.
(J. Kadane, ed.) North-Holland, Amsterdam, 1984.

[11] Good, 1. J. (1950). Probability and the Weighing of Evidence. Charles Griffin, London.

[12] Good, I. J. (1958). Significance tests in parallel and in Series. J. Amer. Statist. Assoc. 53
799-813.

[13] Good, I. J. (1967). A Bayesian significance test for the multinomial distribution. J. Roy. Statist.
Soc. Ser. B. 29 399-431.

Appendix
Proofs of Theorems 1, 2 and 3 are given here. In all the proofs we make use of the following
representation for a star-unimodal distribution (see Dharmadhikari and Joag-Dev, 1988):

Result. IfY has a p-variate star-unimodal distribution, then Y = UY/?Z, where U has a Uniform

distribution in [0,1) and Z is a p-dimensional random variable independent of U.

Proof of Theorem 1. Note, from (5), that

pn r (WA )
B(z) = Jogo ™ ((6 — ) A=1(6 - 1)) g1(6) d6°



Hence, we need to compute E [r ((§ — u)A=1(6 — p))], where E denotes the expectation with
respect to the distribution which has density g;. Since g; is a star-unimodal density, 8 = UV/rZ,
where U ~ U[0,1] and Z has some distribution in RP. Therefore,

E [r ((0 —p)Y A6 - p))] = E [[)1 T ((ul/”Z —pY A (uV/PZ - ,u)) du]

= E [p/ol oP~1r (('vZ - YA (vZ - u)) dv]
= E[¥(2)],

where E on the previous line denotes the expectation with respect to the distribution of Z. Now

note that, since the distribution of Z is arbitrary,

sup E [¢(Z)] = sup ¢(2).
z€ERP

Therefore,

-1
e [ p ot (02— Y A7 0z — ) do
;Ielgv‘ B(z) = [zseu]gp (W A-1p) )

Since r is a nonnegative decreasing function, to find the supremum required above, we need only
maximize (vz — u)’ A~ (vz — p) over z € RP. We now note that the z that achieves that maximum
is Bu, where 8 > 0. O
Proof of Theorem 2. This is very similar to the proof above. Note that any symmetric star-
unimodal distribution has the same representation as given in Result above with the added condition
that Z be symmetric. Therefore the only change needed in the proof of Theorem 1 is in the
evaluation of sup E[(Z)]. We need to find this supremum over the class of symmetric Z. Note
that symmetric distributions in RP are mixtures of 2-point symmetric distributions. Therefore, we

now have,
sup E [(Z)] = sup [¢(2) + ¢(-2)] /2.
z€RP

Rest of the argument is exactly as in Theorem 1. o

We need the following lemma to prove Theorem 3.
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Lemma. For each a > 0, and b > 0, [foa zbexp (—%(z + 0)2) dﬂ?] / [folla zbexp (—%‘(@' - C)Z) df'?]

is a monotone decreasing function of c.

Proof of Lemma. Consider any ¢; < ¢3. Then we shall show that
J3 zbexp (—%(z + c2)2) dz < 5 ybexp (—%(y + c1)2) dy
Baten (-3 -e)?) de ~ [oypexp (-d(y—c1)?) dy

Equivalently, we need to show that,

K
= /Oa /Oa byt {eXP (—% [(m +e2)? +(y- c1)2]) — exp (—% [(a,- —a)?+(y+ 61)2]>} dz dy
<o.
Clearly,
K= -/a>:c>y>0 zbyb{exP (_% [(z +ea)’ 4+ (y- Cl)z])
_ ;x; (_—% [(z —a)?+(y+ c1)2])}dz dy
+ fa s y5e50 aby*{exp (—% [(e+e2)+ (v~ cl)z])
- eXl—) (——% [(t —e) + (y+ cl)z]) }dz dy,
and since,

/a .. -'v“’y" {exp (—% [+ 2)* + (5 - 01)2]) — exp (—% (2 - )+ (v + cx)zD

= /aZyZzZO ibyb{eXP (—% [(-T —a)’+(y+ 02)2])

—exp (- e+ ) + - 2] )} oy,

K = —/a_>_y2$20 zbyb{exp (—% [(a: + )+ (y- c1)2]) + exp (_% [(:v —a)+(y+ c2)2])
—exp (—% [(z -+ (y+ C1)2]) ~ exp (—% [(:c +a)+(y- 62)2])}dz dy
= exp (—%(-":2 + 3/2)) /a pyre30 zby*{exp(=caz + e19) + exp(caz ~ c2)

—exp(c2z ~- c1y) — exp(~c1z + c2y)} dz dy.
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Since c1y — c2z < €2y — €1z, We get, exp(—czz + ¢17) < exp(—c1z + coy) and exp(c1z — cy) <
exp(czz — ¢1y). Therefore K < 0, as required. ]
Proof of Theorem 3. From Result above,
Jicocoy &5 (~(8 = 2)(8 - 2)/2) ¢(6) o

Jreexp (=(0 — 2)'(6 - 2)/2) 9(6) db
E [exp (=(UY/?Z - 2)(UY/? - 2)/2) Lppsner 7<)

E [exp (~(U'PZ — 2y (U — 2)/2)]

Jios<op Jo vP 7 exp (= (vz — 2)/(vz — 2)/2) dvdF(2)

Jre Jo vP-Lexp (—(vz — z)(vz — 2)/2) dv dF(2)
Jap ¥2(2) dF(2)
Jre 1(2) dF (2)’

where F is a symmetric distribution depending on g, and

P"(Holz) =

Pi(z) = -[ v*"1exp (—(vz — z)'(vz — 2)/2) dv,
Y2(z) = P1(2)(o2<0)-

Since, F is a mixture of 2-point symmetric distributions,

[¢z(z) + P2(—2)

zGBP 1(2) + Y1(-2)

- [¢1(Z)I{c'z50} + ¢1(—2)I{c'zzo}]
z€RP P1(2) + P (-2)

o . $1(2) P1(=2)

= {{z c’zi;O} ¢1(Z) + '¢'1(—Z) {=: cgt;o} 1/)1(2') + 1,[11(—2)}
cnf - ¥1(2)

{aic'z<0} $1(2) + ¢1(—z)

_ Pi(=2)
- [1 +{zsc'ligo} ¥1(2) ]

. - _
11r1€11C';P (Holz) =

The third equality follows from
: ¥1(2) : ¥(~2)
inf = inf .
{z:c'2<0} ’ll)l(Z) + ’¢71(—Z) {z:¢'22>0} ¢1(Z) + ¢1(—2)
Set 02 = (2/2)~1, p = &% and v = p/o. Then, we have,

P1(—2) _ J3 vP~lexp (—(vz + z)(vz + 2)/2) dv
¥1(z) J3 vP-lexp (—(vz — z)(vz — £)/2) dv

12



dv
dv

2o exp (g (o4 )

J3 o=t exp (= ghs (v — p)?

From Lemma above, 9;(—2)/v1(z) is monotone decreasing in v = 2’z /v/2'z for each fixed value
of 2'z. Then to maximize 9;(—z)/¥1(2), subject to ¢’z < 0, we need only maximize 2’z for fixed
2'z, subject to ¢’z < 0. The unrestricted maximum of 2’z for fixed 2’z is achieved by 20 = foz,

Bo < 0. However, since we already have ¢’z < 0, it follows that
c'zg = Boc’z < 0.

Therefore, zg satisfies the restriction ¢’z < 0, thus giving us the restricted maximum also. This
implies that we need to maximize

Jd P2 exp (—=(vB + 1)%z'z/2) dv
J3 vp=2exp (—(vB — 1)22'z/2) dv’

which completes the proof. ]
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Abstract. Lower bounds on Bayes factors in favor of the null hypothesis for some one-sided and
two-sided hypothesis tests are developed. These are then applied to derive lower bounds on Bayes
factors for univariate and multivariate testing problems. The general conclusion is that, for small
P-values, these lower bounds tend to be substantially larger than P-values when the priors satisfy
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1 Introduction

1.1 Overview

Bayes factors and posterior probabilities are tools used in Bayesian hypothesis tests. Lower bounds
on Bayes factors (and posterior probabilities) in favor of null hypotheses, Hy, have been discussed
in Edwards, Lindman and Savage (1963), Dickey (1977), Good (1950, 1958, 1967), Berger (1985),
Berger and Sellke (1987) Casella and Berger (1987), Berger and Delampady (1987), Delampady
(1989a, 1989b), and Delampady and Berger (1990) among others. The startling feature of these
results is that they establish that the Bayes factor and posterior probability of Hy are generally
substantially larger than the P—value. When such is the case, the interpretation of P-values as

measures of evidence against Hy requires great care.
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