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Abstract. In this paper we consider non-linear threshold AR(1) processes, where the
parameter consists of the autoregressive parameter and a shape parameter f(-), the density
of the errors. On the basis of the local asymptotic normality of the model, we construct
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1. Introduction

In this paper we consider stochastic processes (X;) defined by the following difference

equation;
P
(1.1) Xe =Y [6(0,k) + ¢(1,k)Xe_1]I(Xe—1 € Ri) + e,
k=1
t € Z,

where I(A) is the indicator of the set A,
Ri = (Yk-1,7); 1 < k< p,

—RO =Y <N<Y<...<9p =0

and random variables €, t € Z, are assumed to be independent and identically distributed

with Lebesgue density f.

Such non-linear autoregressive (AR) processes, which are called as the first—order
threshold AR models or SETAR(1) models in the time-series literature, are known to be

practically relevant in the analysis of many time—series data. See for example Tong (1983).

The parameter (¢(¢,k); ¢ = 0,1, k = 1,...,p; f) = (4; f) is assumed to obey the
following regularity conditions.
(1.2) (i) 4(1,1) <1, é(p,1) <1, 4(1,1)4(1,p) < 1.
(ii) f is absolutely continuous with positive finite

Fisher information I(f) = /(f'/f)zfda: < oo.
(i) f(z), Vz € R, /zzf(:v)d:c = 0% < o0,
/:cf(x)das = 0.

It is well-known that condition (i) is sufficient for the geomeiric ergodicity of the process
{X:} of (1.1) and is almost necessary for the ergodicity. See Chan and Tong (1985) for
further details. Without loss of generality, we can reparametrize the model (1.1) and
rewrite the model in the form;
P
Xi =60+ > [6(0,k) + 6(1,k)X¢—1)I(Xe—1 € Ry)

k=1
(13) + €, te Z,



where we assume 6(0,1) = 0 without loss of generality in order to ensure identifiability of

the model (1.3).

One relevant issue in this model is the efficient estimation of the euclidean parameter
(6(i,k); 1 = 0,1; £k = 1,...,p) = 6 when the exact shape f of the error distribution
is regarded as a nuisance parameter. Previous results on this subject include adaptive
estimation in the linear AR(p) model by Kreiss (1986, 1987) and the corresponding result
by So (1990) for the non-linear threshold AR(1) model with symmetric error density f(-).
Our main new results in this paper are the proof of the fact that adaptation is possible
for the estimation of § and the construction of the efficient estimator which is adaptive for
all densities f of the distribution of the white noise (e;::t € Z) and not only for symmetric

ones.
This paper is organized as follows:

In section 2 we prove local asymptotic normality (LAN) under a local parametrization
for our model. While Kreiss (1987) obtains similar results for the linear AR(p) model, we
need to employ special properties of the non-linear threshold AR(1) models to ensure the

desired local asymptotic normality.

Section 3 deals with asymptotic minimaz bounds for estimation of 8 under nuisance
function f and the corresponding convolution theorem for the regular estimators. As is
noted by Kreiss (1987) in the linear AR(p) models, this lower bound is shown to be equal
to the bound obtained when f is regarded fixed.

In section 4 we construct a sequence of adaptive estimators of § which achieves this
lower bound for all densities f of the error distribution and not only for symmetric ones.
The methods are different from those used in Kreiss (1986) and So (1990) and more
similar to the ideas of Stone (1975) and Kreiss (1987). While Kreiss (1987) uses similar
construction in the linear AR(p) model, his proof cannot be carried over to the non-linear
model considered here and our proof depends heavily on the special non—linear structure

of the threshold AR(1) model.

To make the paper more inviting to read all technical proofs are given in section 5.



2. Local Asymptotic Normality

~ We consider the following local parameter (&, ) € Hy,, with
(2.1a) 0, =0+n"2h he R
fu =101 = [ B3 T + B/VRP,
B € Ly(R,N), BLVTF,

where H, C R?" x Ly(\) is chosen so that (1.2) (i) is fulfilled and [ A%d)\ < n. We note
that, as n — oo, H, — H = R* x {f# € Ly()\)|8 L V/F}.

Remark 2.1. As is noted in Kreiss (1987), it is enough to consider parametrization of

fx via B, such that [[v/n(v/Fn —VF) — B]2dX — 0.

See also Begun et al. (1983) for similar parametrization.

Finally we define on H the following scalar—product:

(21b) < (hl,ﬁl), (h2,ﬂ2) >= h’irPI(f)hz +4/ﬁ1 . ﬂzd/\,
where T is the (2p X 2p)—covariance matrix of an SETAR(1)-process with parameter 6.

Now the density of the distribution P, (5 gy of (Xo,...,Xn) can be expressed in the

form.
(22) o(Xa; 1y 8) - [ Sl — 67 — 1),
i=1
where the abbreviation
X(@E—-1)=(1,I(Xi—1 € Ry), XicaI(Xi_1 € Ry),..., Xi1I(Xi-1 € Ryp))

1s used.

To obtain local asymptotic normality, we also assume the following
gn(Xo0; hns Bn) = 9(X0;0,0) in
(2.3) P, o — probability, if (hy, Br) — (h,B).
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Now we can establish the following local asymptotic normality (LAN) for the model.

THEOREM 2.1. Let (Bn, hn) — (h,B) € H. Then

108(dPa (i, B/ dPr) — = S {p(e)h"X (i — 1)+

(2.4) 26(ei)// f(ei)} + ${A{ThI(f) + 4| B(R)|I*} = 0p,.,,(1),
and
_l_n (e T X (5 — Be:)
L <\/ﬁ ;{‘P( z)h X( 1) +2\/m}|Pn,0)
(2.5) = N(0,h{ Th1I(f) + 4/ B(R)|1*),

where ¢ = —f'/f, e; = X; — 07X (i = 1), and B(h) = B+ ¢v/f/2(ho + RT X1(j ~ 1)), h=
(ho, h1)- O

As well-known consequences of (2.4) and (2.5) we have
COROLLARY 2.2. Under the same assumptions as theorem 2.1
(2.6) {Pu(hu,Br);n € Z7} and {Pro;n € Z7}

are contiguous if (hy) i3 bounded and

c (\/iﬁ S ((eh™XG ~ 1)+ j‘%}lzﬂn(hnﬁn))
(2.7) = N(h{ThiI(f) + 4[|B(h)|1*), BT Thi I(f) + 4| B(R)||*),

£ (Z ¢(e)[ X1 — 1) = Xa] = TV2/I(f) | Pa(hn, ﬂn))

(2.8) = N(0,TI(f)),

where XG-1)=01,X1(J - 1)), h=(ho,h1)
X, =E{X1(j —1)} and T' = E[X; - X1]7[X1 — X1].
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3. Locally asymptotic minimax (LAM) bounds

We note that tangent spaces for 8y, 61, f are given by

(3.1) Py, = { > G/ b e R} ,
(3.2) Py, = { is@(e»xﬂj ~ Dha /v he R} ,,

(3.3) Py = {Z[ﬁ(ej)/ fle)l/vn; B € Lz(/\)} :

=1

respectively. Here Py,, Pp,, Py denote subspaces of the Hilbert space Ly(R™,B™, ™).

Since we are interested in estimating #; under the nuisance parameters (6, f), we

note that the effective score function A}, for 6; is given by
n —
(3.4) ‘ AL =) @(e)Xi(G — 1) = Xa(j — DI/ Vn,
j=1
and the corresponding effective information matrix I, for 6; is given by
(35) L = I(f)T,

where X(j—1) = (I(X;_1 € R1); X1(j 1)), X1(j —1) = EX1(j —1) and T is a covariance
matrix of X;(j —1). One important consequence of the above results is the following local

asymptotic minimax (LAM) lower bound.

THEOREM 3.1. (LAM bound) Suppose that £(-) is lower semicontinuous and sub-

convex. Then

lim liminfinf sup / £(v/n(By, — 61))dPy(h, B)

cC—00 N300 én (h,ﬂ)EKc
(3.6) > EY((I(/)L)~/*2),
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where K. denotes compact subset of the set {(h,B) € H:||(h,B)| < ¢} and Z is a standard

normal random variable on R?P71, a

Now we introduce definition of the regular estimators.

Definition 3.1: {én} is said to be regular sequence of estimators if for any sequence

O = B0 + hn/v/m, fol? = f1* 4 Bn/+/m such that (hu, Br) = (h, B) + o(1),
(3.7) L[v/n(0r — 0)|Pr(hn, Bn)] = L(V)

where L(V') does not depend on the choice of sequences (hy, (). For regular estimators

we have the following convolution theorem.

THEOREM 3.2. (Convolution theorem). Let {6,} be a sequence of regular estimates.
(3:8) LB — 6){Paln, fu)) = L(Ze + V)

where Zy ~ N(0,(I(f)T')™1) and V is some random variable which is independent of Z,.
O

Above results suggest the two alternative definitions of the optimality of the sequence

of estimators; namely.

Definition 3.2: A sequence of estimator which achieves LAM lower bound in (3.6) is
said to be LAM-efficient.

Definition 3.3: A regular sequence of estimators whose asymptotic distribution is

N(0,I;1) is said to be reqular—efficient.

In order to show that a sequence of estimators {T,} is efficient in either of the two

senses, it suffices to show that they are asymptotically linear; namely

(3.9) Tn = 61+ L7 AL(6)/V/n + 0p,,,(1),
where A%(0) = Y ¢(ej(0)[X1(j — 1) — X1]/+/n is the effective score function for 6;.
=1

J:
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Remark 3.1. We note that regularity of the estimator {T},} follows immediately from
that of the sequence {6; + I;*A%(8)/y/n} which in turn is implied by (2.8).

4. Construction of the adaptive estimator

In order to construct the efficient estimator, we assume the existence of the /n-
consistent estimator {6,}. Actually Chan and Tong (1985) proved that usual least-squares
estimator {6,} is y/n—consistent for the SETAR(1) model. For technical reasons, we also
use discretized version of the -0—,, which is formally defined as a point in n=1/272? closed

to 8,. Furthermore we suppose &(-) satisfies the following conditions:

0 fim [loe+h) - p@N fe)dz =0
(4.1) ) Jim [ 5o+ ) — (@) (@) = ~1(7)/2.
Then we have the following lemma.

LEMMA 4.1. (Existence of efficient estimator for fixed f). Assume {0,} is a sequence

of discrete \/n—consistent estimators. Then 0, defined below is asymptotically linear.
(4.2) On = 0n +T(82)/1(f) - An(Bn)/v/n,
~ n . . — n . — . —
where T(6) = 35 X1(j — 1)X1(j ~ 1)/, An(6n) = 3 ¢(ej(0n)) - (Xa(7 — 1) = X1)/+/n,
i=1 i=1
and X1 = 3 X1(§)/n. O
=1

We note that the estimator 6, depends on the nuisance parameter f. Thus natural
question is whether it is possible to construct estimators, which has the same property as
8., but does not depend on f. In order to obtain such an adaptive estimator, we have to
estimate A(0,) and I(f) consistently. Because of the lack of symmetry of f(-), we cannot
use the same technique as given in So (1990) but will use the ideas given in Stone (1975)

and Kreiss (1987) with appropriate changes to the non—linear situation considered here.

First we introduce the following notations

¢(X;0) = exp(—a®/20%)[oV2m, z € R
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$a(0) = [ otz —vio)f Wy
(&3) ~ [ v - ozt D,
where g is a density restricted to [—1,1] with g(z) < ¢(0) = 1 and ¢ is continuous.

Then we can establish the following results.

THEOREM 4.2. Let the sequence {6, } satisfy

(4.4) V(8. —8) = O(1).
Suppose o, — 0, ¢, — 00, [(f'/f)*f(z)dz < co and ¢ is continuous a.e. and for k, K >
0,

lo(z) — ()| < K(1 + |z — yl*).

Then we have

Bn(l) = i [ 2D Z{[so(x 5(6n); 0) = fon ()]

fou()
(4.5) (X7 -1) - 7)}9(37/%)61:0/" = 0pn,o(1);
where €;(8) = X; — 0TX(j — 1), Pno = P,(0,0). O
and

THEOREM 4.3. Let the sequence {0,} satisfy (4.4) and let

(4.6) fou(z) =1 Zm — €j(0n): o).
Suppose or = 0o(1), ¢ — 00, § > 0,c2/(n1~802%) = 0 and [(F'/f)*fd)\ < co. Then we
have
f'I’"( z) L T—e o z
VA [ < A et = i) o) — fu )
(X1(j—-1) - Xl)g(:r/cn)dx—
(47 VA [ ~ZE s i0te - ei(62) o) )
(X210 = 1) = X1)g(z/cn)de
= OPn,o(l)'



Above results imply the following main theorem of this paper immediately.

THEOREM 4.4 (existence of adaptive estimators). Under the assumptions of Theorem

4.3 we have
(4.8) On =0, + 1711, A(@n)/\/ﬁ
18 asymptotically linear and efficient. O

Here An(b—n) is the abbreviation for the Lh.s. in (4.7) and I, denotes consistent esti-
mator of I(f).

Remark 4.1. We note that consistent estimator I,, of I (f) are available. For example

we can use estimator I, = f: dnj(ej(8s); 8n)/n where §n;(e(8);0) is defined in So (1990).

=1

Remark 4.2. Our construction follow very closely that of Kreiss (1987). But the proofs
of the key substitution theorem 4.1, 4.2 for the non-linear time series model considered here
are completely different and depend heavily on the non-linear property of the SETAR(1)

model.

Remark 4.3. We also note that our results open the way for the construction of
adaptive estimator for many other interesting classes of non-linear semiparametric time—
series models; for example, we can get the exact same optimality results for the process

{X¢} defined by the difference equation;

Xe=0TX(t - 1)+ T(Xe_1) + e, t € Z,
where T'(-) is an arbitrary bounded function on R.
5. Proofs

We start with the following auxiliary lemmas
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LEMMA 5.1. Let conditions (i), (iil) of (1.2) be satisfied. Suppose 6, = 6 + h,/\/n
and hy is bounded. Then there exists constants M >0, p <1 such that

(51) sup B 0" (Xol) = ma()]| < M",

where p"(Alz) = p(Xn € A|Xo = z), mo(-) is the stationary initial distribution of the

process {X¢(0,):t € Z} and || - || is the variation norm of the signed measure. O
PROOF. We first note that there exist g(-) >0, k¥ > 0, 0 < § < 1 such that

(52) sup sup Balg(y)le] < (1 - 6)g(z).
n |z|>k

See Chan and Tang (1985) for the details of the choices of g(-), § and k. (5.2) in turn
implies (5.1) by the same arguments in the proofs of theorem 2.3 and 2.5 of Nummelin

and Tuominen (1982). O

LEMMA 5.2. If {X;} satisfies conditions (1) (iii) of (1.2), then

max |X(J)|/\/ﬁ = Opn,O(l)

1<5<1
(5.3) EX(j)XT(j)/n =TI nonsingular
=1
as n — 00. ]

PROOF. The first property follows from EX? < co, which is implied by the theorem
2.3 of Chan and Tong (1985). The second follows from the ergodic theorem. O

LEMMA 5.3. Let m:R — R be a square-integrable function, K = [m?%(z)f(z)dz.
Then

(54 Bl 7= 3o mle; (6. - D - X = 00) - K,
with 8, = 0 + ha//7, ha = O(1). O
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PROOF. The left-hand side equals
O(1) ) | En m*(ej(6))/n
7=1

(5.5) +2) " Eo[m(ej)m(ee)(X(j — 1) - X)X (¢ —1) - X)]/n.
J>e

We note that first term in (5.5) is K - O(1) and the second term is bounded by
(5.6) 2) K'Y Eam(e)(X(i — 1) - X)(X( — 1) - X)|/n.
i<j
In order to get the bound for the (5.6), we now apply the corollary 2.5 in chap. 7 of Ethier
and Kurtz (1986) to obtain the bound.

(5.7) K220 oMU (Fial|lF)lim(e)(X (= 1) = D)|[2l1X G = 1) = Xlats
i<j
where 1/u +1/(2+46) +1/2 =1 and a(F;—1||Fi) = 1/2- sup ||p(4|F:) — p(4)|1. By
AEF; 1
lemma 5.1 this in turn is bounded above by
(5.8) 2K Y Mp{~ /n-0(1) = KO(1).
1<J
This completes the proof. O

LEMMA 5.4. If {X,} satisfied the condition (i) of (1.2) and [z**®f(z)dz < oo for
some 6 > 0, then

(5.9) 2_IX(G) =TGN/ vr = Opao(D).
Jj=1 -

PROOF. We note that condition (i) of (1.2) implies geometric ergodicity of the process
{X:} which in turn implies strong mizing property of {X;}. Then we apply standard central

limit theorem for stationary process to finish the proof. 0

PROOF OF THEOREM 2.1.

It follows closely the corresponding proof of the theorem 2.1 in Kreiss (1987) with

minor modifications. O
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PROOF OF COROLLARY 2.2

We use the following orthogonality:

(5.10) Aq(6) L Zﬂ(ej(@)/\/f(ej)

and Cramer-Wald device to obtain the desired result. See (3.1) in Kreiss (1987) for similar

constructions in the linear AR model.

PROOF OF THEOREM 3.1

The assertion follows from essentially the same arguments as in the proof of Theorem

3.2 in Begun et al. (1983) by using LAN property of the process {X;}. O

PROOF OF THEOREM 3.2

It follows from essentially the same proof as in the proof of theorem 3.1 in Begun et

al. (1983) using LAN of the process {X;} and standard contiguity arguments. O

PROOF OF LEMMA 4.1

By using essentially the same arguments in the proof of theorem 2.1 in Beran (1976),

we can show

(511) AL(62) = B3O) + T I()6n — 6) = o9, o(1).

Then we note that ,

(512) VAL — ) i}{sb(ej(en)) — GO} = opun()

because v/A(X:1 — ) = opn,0(1)]and

(513) B jf;{sa(ej(en))—sa(ej(e))/n} < B [ lple+ ATXGYVR) (X)) = of2).

Now (5.12), (5.13) together with discreteness of {6} finish the proof of the LEMMA. [

PROOF OF THEOREMS 4.1 and 4.2

We note that the proofs of theorem 4.1 and 4.2 in Kreiss (1987) depend only on the
validity of the key lemmas 5.2, 5.3 and 5.4. This completes the proofs. O
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