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non-linear threshold AR (1) model with unknown error density f(-). On the basis of the
locally asymptotic normality (LAN) of the model, we introduce two optimality criteria
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and achieves the smallest possible covariance matrix among all regular estimators for a
wide class of symmetric error density f(-).
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1. INTRODUCTION

It seems generally agreed that the class of threshold time series models forms one
useful class of non-linear time series models. The practical relevance of non-linear analysis

of time series data seems to be widely recognized. See for example Tong (1983).

Recently Chan and Tong (1985) have discussed a simple first-order threshold AR (1)

model which is defined by the following difference equation;
P
X = k§—31 [0(0,k) +6(1,k)X¢—1]I[Xs—1 € Ri] + &,t € Z, (1.1)

where I(A) is the indicator of the set A,

Ry = (vk-1,7],1 < k < p,

— 0= <MN<...<9 =00

and {e:} is a sequence of white noises. They have obtained the necessary and sufficient
condition for the ergodicity of the process {X;} and shown that least squares estimators

of § = {6(:,k) : 4 =0,1,1 < k < p} are strongly consistent and asymptotically normal.

One relevant issue in this model is the efficient estimation of the parameter § when
the distribution of the error is regarded as unknown nuisance parameter. Most of previous
works on this subject assume either linearity of the process {X:} as in Beran (1976),
Kreiss (1986, 1987) or require normality of the error distribution for the efficiency of the
least square estimator even though asymptotic results hold for quite general distributional

shapes as is shown by Chan and Tong (1985).

In this paper we will introduce two alternative definitions of the asymptotic efficiency
of the sequence of estimators of 6§ which are based on the locally asymptotic minimaz
(LAM) bound and the convolution theorem for the reqular estimators respectively. Then
we construct the sequence of adaptive estimator which is locally asymptotic minimax and
achieve the smallest possible covariance matrix among all regular sequence of estimators

for a wide class of symmetric error density f(-).

This paper is organized as follows:



In section 2 we prove the local asymptotic normality (LAN) of the process {X;} and
introduce two asymptotic optimality criteria for the sequence of estimators of # which are

based on LAM bound and convolution theorem respectively.

In section 3 we construct a sequence of adaptive estimators which satisfies two opti-

mality criteria simultaneously for a wide class of symmetric error density f).

Finally, in section 4 we discuss the possible generalization of the main results to other

class of non-linear time series models. All technical proofs are given in Section 5.

2. LOCAL ASYMPTOTIC NORMALITY
First we assume the following regularity conditions on the process {Xc}.
Al: 6(1,1) < 1,6(p,1) < 1,6(1,1)8(p, 1) < 1.
A2: f is absolute continuous with finite Fisher information I(f) = [('/f)?fdz.
A3: f(z) >0, Yz €R, [zf(z)dz =0, [22f(z)dz < oo.

REMARK 2.1. Al and A3 are sufficient conditions for the geometric ergodicity of the
process {X1} and Al is almost necessary for the ergodicity. See Chan and Tong (1985) for
the details.

We also need the following condition in order to ensure LAN of the process {X;}.

A4: the density of the stationary initial distribution g(z;6) satisfies

9(z;0,) — g(z;6) in Py, prob. (2.1)
if 6, —60asn— oco.
REMARK 2.2. In fact condition A4 seems to be implied by the condition Al, A2

and A3. See Chan and Tong (1986) for the proof of the similar continuity property of the

initial density.
Now the density of the distribution of (Xj,...,X,) can be expressed in the form
9(Xo;6) I f(ei(8)), (2.2)
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where e¢(f) is the residual calculated from (1.1). Thus we obtain the likelihood ratio
APao/ P, = 9(X0;0)/0(X0; 0) T flee — (6 - YT X (= D)/ (e)y  (23)

where the abbreviations XT(:) = (I(X; € Ri),I(X; € Ri)Xi;k = 1,...,p) and e; =
et(6o) = X;— 07 X (t — 1) are used. After these preliminaries we are now ready to establish

local asymptotic normality (LAN) for the above likelihood ratio.

THEOREM 2.1. (Local Asymptotic Normality). Let h, € R?P be a bounded sequence
and 0, = 6y + hn/+\/n. Let conditions Al, A2, A3 and A4 be satisfied and let

Ba(6) =2 3 @& O)XG ~ D)/ = 1/, (2:4)
Then we have

1
log [dPns, /dPr,6,] — hEAL(80) + 5h’—,CI( A6k, — 0 (2.5)

in P, g, probability,

and
L(AR(8)|Pn,6,) = N(0,I(/)T(6)), (2.6)
where I'(6y) = E [X(])XT(])] and “=" denotes weak convergence. O
From the above theorem we can obtain the following result immediately.
COROLLARY 2.2. Under the same assumptions as above
{Pr,6,}and {Py g, }are contiguous
if hy, 18 bounded. , O

One immediate consequence of the above theorem is the following standard result on

the locally asymptotic minimaz (LAM) lower bound for the risk of estimators of 6.

THEOREM 2.3. (LAM bound for fixed f(-)). Suppose that £(-) is lower semicontin-

uous and subconver. Then

lim lim inf inf sup / £(\/r(b, — 8))dP, o > EL(Z), (2.7)
k—o0 n—oo 0n  6€B(60,k//7)
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where B(6o,k/\/n) = {6 € R? : |§ — bo| < k/\/n},Z ~ N(0, (I(AHT)™1) and | - | is any

standard norm in R?P, [

Above theorem suggests the following definition of the asymptotic efficiency of the

sequence of estimators, namely

DEFINITION 2.1. Any sequence of estimators 6, which achieves the LAM lower
bound (2.7) for any bounded continuous subconvex loss function £(-) will be called LAM-

efficient.

In order to define alternative concept of efficiency we need to define the concept of

regular sequence of estimators of 6.

DEFINITION 2.2. {T},} is said to be regular sequence of estimators if, for any sequence
0n =60+ hyn/\/n, By = b+ 0(1), we have

L(Vn(Tn = 62)| Py, ) = L(V) (2.8)

and the limit distribution L(V') does not depend on the choice of sequences @,,.

For regular sequence of estimators we have the following standard convolution theo-

rem.

THEOREM 2.4 (Convolution theorem). Let {T,} be a regular sequence of estimators.
Then

LT~ 66)\Page) — £(Z + V), (2.9)

where Z ~ N(0,(I(f)I')) and V is a random variable on R?? which is independent of Z.
O

The above result suggests the following alternative definition of the asymptotic effi-

ciency of the regular sequence of estimators.

DEFINITION 2.3. Regular sequence of estimators {T},} whose asymptotic distribution
in (2.9) is N(0, (I(f)T)1) is said to be regular-efficient.

Typically in order to show that a sequence of estimators {T,,} is efficient in either
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sense, it is enough to show that they are asymptotically linear; namely
T =00 + [T/ I()]An(66)/v/7 + 0(1/v/n) in P, prob., (2.10)

where A,(6y) = (1//n) 5 ¢(e;(6))X(j — 1) is the efficient score function for the param-
=1 | -

eter 6.

REMARK 2.3. Regularity of the asymptotically linear sequence of estimators is an
immediate consequence of the LAN property and the standard contiguity argument. See

(3.3) of Kreiss (1987) for the similar result in the Linear AR (p) model.

Standard method of constructing efficient estimators start with the existence of the
preliminary +/n-consistent estimators {5n} of §. For technical reason, we also use dis-
cretized version 8,, of the én which is defined as a point in n=% Z2P closest to 6,. In this
paper we choose the usual least squares estimators of 0 as an initial estimator 8,, which
was shown to be \/n-consistent by Chan and Tong (1985) under the conditions A1 and

A3. Furthermore, we also assume the following regularity conditions for o(-):
A5: ’{in% Jlo(z +A) - ¢(2))? f(z)dz =0
A6: Tim [[4(a + b) — $(2))/Alf (x)do = —I(f))2

Then we have

PROPOSITION 2.5 (Efficient estimator for fixed F()). Let {6n} be a sequence of
discrete \/n-consistent estimators. Then 6, defined below is asymptotically linear and

hence efficient.

~

On

]

On + (031 /I(f)) An(80) [/, (2.11)

where 0y = 53 X(j — 1)XT(5 — 1)/n. O
1

TEM:

Since above estimator 4, depends on the unknown density f(-) of the white noise, one
natural question is whether it is possible to construct estimators which are independent of
the density f(-) of the white noise but are asymptotically linear simultaneously for a, Widé
class of f(-). Such an estimator, if it exists, will be called adaptive estimator of § for the

given class of densities.



3. CONSTRUCTION OF ADAPTIVE ESTIMATES

In order to find the adaptive estimator, we first construct appropriate estimates of the
score function ¢(-) and the Fisher information I (f) and then show that the corresponding
sequence of estimators is asymptotically linear for each density f(-) in the class. Our
method of construction follows closely that of Schick (1986) in the semiparametric linear
model. See Kreiss (1986) for similar but more complicated version. First we introduce

following notations;
(i) k(z)=e"*/(14+e*)2,z € R (3.1)
(i) fa(z) = [ f(z — ant)k(t)dt
() fas(@:60) = an + 3 Kz - e(6))/an)/nan,
where a, = 0(1) and €;(6) = X; — 67X (i — 1). Then we define gn; to be the following
estimator of ¢(-)
Gns(2;0) = [f1;(2)/ fni ) — £ 3(=2)/ fus(~2))/2, (3.2)
where f,;(z) = foj(z;6) and j = 1,.
Let
An(0) =2 £ 4us(ei(0;0)X( — 1)/v/m (33)

be the estimator of A, () and let

b =B + (072 /1@ A @)/, (3.4)
where

iy =

.
IIM:

‘.7 ](e](en) Gn)/n (3.5)
and {0,} is a sequence of discrete \/r_z—consistent estimators.

We will prove that this estimator is adaptive for a wide class of symmetric densities
HO?
REMARK 3.1. As is noted by Kreiss (1986) in the ARMA model, our proof of the

asymptotic linearity depends on the symmetry of f(-) crucially. The corresponding result

for the non-symmetric but zero mean densities will be considered in a separate paper.
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Now we can establish the following lemma.
LEMMA 3.1. Let {6,} be a sequence of discrete \/n-consistent estimators of 6. Let
an = 0(1) and a;°n™! = 0(1) as n — co. Then

An(8n) — Au(8n) = 0(1)in Py g, prod. (3.6)

O

REMARK 3.2. While Kreiss (1986) considered similar adaptive estimator in the
ARMA model, his proof cannot be carried over to the non-linear time series model con-
sidered here. Our proof of (3.6) depends on the non-linear property of the process {X;}

crucially.
As an immediate consequence of the above lemma, we have

THEOREM 3.2 (Existence of Adaptive estimators). Let conditions Al, A2 A3, A4,
and A5 be satisfied and the assumptions of Lemma 3.1 be satisfied. Then we have that the

sequence of estimators
On =80+ |13/ 1.8,)] An(@a)/ v/ (3.7)
15 asymptotically linear and
L(Vn{Br — 6)|Pr,6,) => N(0,(TI(£))™Y) (3.8)
Jor any symmetric f(-). Therefore it is LAM and reqular-efficient. O

4. CONCLUDING REMARKS

There are several possible generalizations of the results in this paper to other class
of semiparametric non-linear AR models. As is noted in Section 3, we may relax the
symmetry requirement: f(z) = f(—z) in order to obtain adaptive estimator for a wide
class of densities f(-) with mean zero and finite variance. For technical reasons, we will

pursue this possibility in a separate paper.



As a second important extension, we note that the proofs of the main results depend
on some general non-linear properties of the process {X;} which can be satisfied in a variety
of other non-linear time series models too. For example, we can prove the same optimality

results for the process {X;} defined by
Xe=T(Xe—1) +6"X(t - 1) +er,t € Z, (4.1)

where T'(-) is a bounded function on R. Similarly fussy extension of the mode] (4.1)
considered by Chan and Tong (1986) provides another example of non-linear time series
model which allows the same type of adaptive estimation. Both of these possibilities will

be considered in a subsequent paper.
5. PROOFS

We start with the following auxiliary lemma.

LEMMA 5.1. Under the conditions Al and A3, there exist 0 < p < 1, C1,Cy > 0 such
that
1X:| < Ci+C, _él lejlp* =7 + p*| Xo| for i € 27, (5.1)
]:

where X; = X,;(6,) = GZX(Z' —1)+¢€,0, =6, + hn/\/n, by = 0(1) as n — oo. O

Proof of the Lemma. From the proof of the geometric ergodicity of the process {X:}
in Chan and Tong (1985), we note that there exist a function g¢(-) such that

(1) 9(T(2;6n)) < (1 - 6)9(z),z € R, (5.2)
(i) 9(z+y) < g9(z) + g(y),z,y € R
(iii) alz] < g(z) < b(1 + lz|),z € R,

where T'(z;6) = 7X,0 < § < 1,a,b > 0. Then we note

9(Xs) = 9(T(Xi; 6,) + ¢;) (5.3)
< (1= 8)g9(Xi) + g(es)
< T (1= 8V g(eis) + o(Xo)(1 5
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This together with (iii) completes the proof.

Proof of Lemma 3.1. Let 6, be any sequence such that 6,, = Oy + ho//r, by = 0(1).
Then by the discreteness of § ‘

n, 1t suffices to prove

An(6,) - An(n) = 0(1), in Py, prob.

We note that

En”An(an) - An(9n)H2

=45 B0 [1XG DI [ g ol6,) e &)z fn

by the symmetry of dnj(-) and ¢(-). Because of (5.1), (5.5) is bounded above by

(5.5)

i/n$ |5 5 T el (i - 9 0] (5.6)
=1 |j=1j=1

Next we note that

sup B ;| / [dni(2) ~ (@) F(2)da (5.7)
J<e

< 2,l¢;] / lan+5(2) — $(@)° £(2)da

28005 [ ()  gus (@) ()

SO [ lha-a(e) = 40P fla)do + 2 0(1ya0m-1
=0(1)

by using inequalities (3.15) and (3.16) of Schick (1987). Similarly we obtain

22 B [l Jtanito) - ) e)da] = 01,

(5.7) and (5.8) together with (5.6)

(5.8)

show that

Lhs. of (5.4) = 0(1) as n — oo,

This completes the proof.
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Proof of Theorem 2.1. The proof follows closely the corresponding proof of Theorem
3.1 in Kreiss (1986) with obvious modification. O

Proofs of Theorems 2.3 and 2.4. They follow from essentially the same arguments
given in the proofs of Theorems 3.1 and 3.9 of Begun et.al. (1983) together with the LAN
of the process {X,]}. |

Proofs of Proposition 2.5. By using the arguments given in the proof of Theorem 2.4

in Beran (1976), we can show that
An(0n) — An(6) - (CI(£) ' /n(6, — 8) = 0(1) in P, ¢, prob. (5.9)
This fact together with discreteness of 6, completes the proof. O

Proof of Theorem 3.2. The assertion following directly from Theorem 2.4 and Lemma,

3.1 by the discreteness of 0.,. 1
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1. INTRODUCTION

It seems generally agreed that the class of threshold time series models forms one
useful class of non-linear time series models. The practical relevance of non-linear analysis

of time series data seems to be widely recognized. See for example Tong (1983).

Recently Chan and Tong (1985) have discussed a simple first-order threshold AR, (1)
model which is defined by the following difference equation;

X, = kfi;l [6(0, k) + 6(1, k) X¢_1] I [Xe—1 € Ri] + er,t € 2, (1.1)

where I(A) is the indicator of the set A,

Rk = ('Yk—l)’)/k])l < k Spa

0= <N<...<9p =00

and {e;} is a sequence of white noises. They have obtained the necessary and sufficient
condition for the ergodicity of the process {X;} and shown that least squares estimators

of = {0(:,k) : i =0,1,1 < k < p} are strongly consistent and asymptotically normal.

One relevant issue in this model is the efficient estimation of the parameter 8 when
the distfibution of the error is regarded as unknown nuisance parameter. Most of previous
works on this subject assume either linearity of the process {X;} as in Beran (1976),
Kreiss (1986, 1987) or require normality of the error distribution for the efficiency of the
least square estimator even though asymptotic results hold for quite general distributional

shapes as is shown by Chan and Tong (1985).

In this paper we will introduce two alternative definitions of the asymptotic efficiency
of the sequence of estimators of § which are based on the locally asymptotic minimaz
(LAM) bound and the convolution theorem for the reqular estimators respectively. Then
we construct the sequence of adaptive estimator which is locally asymptotic minimax and
achieve the smallest possible covariance matrix among all regular sequence of estimators

for a wide class of symmetric error density f(-).

This paper is organized as follows:



In section 2 we prove the local asymptotic normality (LAN) of the process {X;} and
introduce two asymptotic optimality criteria for the sequence of estimators of § which are

based on LAM bound and convolution theorem respectively.

In section 3 we construct a sequence of adaptive estimators which satisfies two opti-

mality criteria simultaneously for a wide class of symmetric error density f(-).

Finally, in section 4 we discuss the possible generalization of the main results to other

class of non-linear time series models. All technical proofs are given in Section 5.

2. LOCAL ASYMPTOTIC NORMALITY
First we assume the following regularity conditions on the process {X;}.
Al: 6(1,1) < 1,6(p,1) < 1,8(1,1)4(p, 1) < 1.
A2: § is absolute continuous with finite Fisher information I(f) = [(f'/f)?fdz.
A3: f(z) >0, Yz e R, [zf(z)dz =0, [ 2% f(z)dz < co.

REMARK 2.1. A1l and A3 are sufficient conditions for the geometric ergodicity of the
process {X:} and Al is almost necessary for the ergodicity. See Chan and Tong (1985) for
the details.

We also need the following condition in order to ensure LAN of the process {X;}.

A4: the density of the stationary initial distribution g(z;6) satisfies

9(z;0,) — g(z;0) in Py, prob. (2.1)
if 6, — 0 asn— oo.
REMARK 2.2. In fact condition A4 seems to be implied by the condition Al, A2

and A3. See Chan and Tong (1986) for the proof of the similar continuity property of the

initial density.
Now the density of the distribution of (Xg,...,X,) can be expressed in the form
9(Xo;6) 11 f(e:(6)), (2.2)
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where e;() is the residual calculated from (1.1). Thus we obtain the likelihood ratio
APa,oAPn 0, = 9(Xo;60)/9(Xo360) T fle = (6 - 6)7X(t = 1)/ f(e),  (23)

where the abbreviations X7(1) = (I(X; € Ri),I(Xi € Re)Xi;k = 1,...,p) and & =
et(60) = X¢— 07 X (¢t — 1) are used. After these preliminaries we are now ready to establish

local asymptotic normality (LAN) for the above likelihood ratio.

THEOREM 2.1. (Local Asymptotic Normality). Let h, € R*? be a bounded sequence
and 0, = 0y + hn/+/n. Let conditions Al, A2, A3 and A4 be satisfied and let

An(0) =2 £ $(e; )X~ D)/v/mg = f'/F. (2.4)
Then we have

1
log [4Pr0, /dPa,6;] — k% An(80) + 5 HTT(F)T (B0 ) — 0 (2.5)

in P, g, probability,

and
L(An(0)|Pr,0,) = N(0,I(f)T(60)), (2.6)
where T(6y) = E [X(5)XT(j)] and “=” denotes weak convergence. O
From the above theorem we can obtain the following result immediately.
COROLLARY 2.2. Under the same assumptions as above
{Pnr,s, }and {Py g, }are contiguous
iof hy, 18 bounded. . 0

One immediate consequence of the above theorem is the following standard result on

the locally asymptotic minimaz (LAM) lower bound for the risk of estimators of 6.

THEOREM 2.3. (LAM bound for fixed f(-)). Suppose that £(-) is lower semicontin-

wous and subconvezr. Then

lim lim inf inf sup / 6(v/r(b,, — 0))dPn,g > EU(Z), (2.7)
k—oo 00 011 06B(00,k/‘\/7_l)
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where B(6o,k/\/n) = {8 € R?? : |60 — 6y| < k/\/n},Z ~ N(0,(I(f)T)~1) and |- | is any

standard norm in R?P, U

Above theorem suggests the following definition of the asymptotic efficiency of the

sequence of estimators, namely

DEFINITION 2.1. Any sequence of estimators §, which achieves the LAM lower
bound (2.7) for any bounded continuous subconvex loss function £(-) will be called LAM-

efficient.

In order to define alternative concept of efficiency we need to define the concept of

regular sequence of estimators of 6.

DEFINITION 2.2. {T,} is said to be regular sequence of estimators if, for any sequence
0n =00 + hn/+/n, hy = h+0(1), we have

L(V/n(Tn ~ 62)| P, ) = L(V) (2.8)

and the limit distribution £(V') does not depend on the choice of sequences 6,,.

For regular sequence of estimators we have the following standard convolution theo-

rem.

THEOREM 2.4 (Convolution theorem). Let {T,.} be a reqular sequence of estimators.
Then

LT = 00)|Pagy) —> L(Z + V), (2.9)

where Z ~ N(0,(I(f)I')~") and V is a random variable on R which is independent of Z.
a

The above result suggests the following alternative definition of the asymptotic effi-

ciency of the regular sequence of estimators.

DEFINITION 2.3. Regular sequence of estimators {7}, } whose asymptotic distribution
in (2.9) is N(0, (I(f)I")™!) is said to be regular-efficient.

Typically in order to show that a sequence of estimators {T.} is efficient in either
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sense, it is enough to show that they are asymptotically linear; namely

Tn = 05 + [T/ I(£)]An(66)/v/n + 0(1/+/n) in P, o prob., (2.10)

where An(6o) = (1/4/n) 5 $(ej(0))X(j — 1) is the efficient score function for the param-
=1 | -

eter 6.

REMARK 2.3. Regularity of the asymptotically linear sequence of estimators is an
immediate consequence of the LAN property and the standard contiguity argument. See

(3.3) of Kreiss (1987) for the similar result in the linear AR (p) model.

Standard method of constructing efficient estimators start with the existence of the
preliminary +/n-consistent estimators {#,} of §. For technical reason, we also use dis-
cretized version 8, of the 8, which is defined as a point in n~%Z2P closest to f,. In this
paper we choose the usual least squares estimators of § as an initial estimator 8, which
was shown to be /n-consistent by Chan and Tong (1985) under the conditions Al and

A3. Furthermore, we also assume the following regularity conditions for ¢(-):
A5: Tim [[p(z +h) ~ $(@) f(z)dz = 0
A6: lim [[¢(z + h) - $(2))/R]f(2)dz = ~I(f)/2
Then we have

PROPOSITION 2.5 (Efficient estimator for fixed f(-)). Let {6,} be a sequence of
discrete \/n-consistent estimators. Then 0, defined below is asymptotically linear and

hence efficient.

bn = 6n + (I3 /1()]An(82)/ v/, (2.11)
where Ty = _§1X(j ~1)XT(G —1)/n. O

Since above estimator 8, depends on the unknown density f(+) of the white noise, one
natural question is whether it is possible to construct estimators which are independent of
the density f(-) of the white noise but are asymptotically linear simultaneously for a Wid.e
class of f(-). Such an estimator, if it exists, will be called adaptive estimator of 6 for the

given class of densities.



3. CONSTRUCTION OF ADAPTIVE ESTIMATES

In order to find the adaptive estimator, we first construct appropriate estimates of the
score function ¢(-) and the Fisher information I(f) and then show that the corresponding
sequence of estimators is asymptotically linear for each density f(-) in the class. Our
method of construction follows closely that of Schick (1986) in the semiparametric linear
model. See Kreiss (1986) for similar but more complicated version. First we introduce

following notations;
() k(z)=e*/(1+e®)?,z€R (3.1)
() fa(z) = [ F(z — ant)k(t)dt
(i5) foi(236) = an + 3 Kz ~ €i(6))/an)/man,

where a, = 0(1) and €;(§) = X; — TX(: — 1). Then we define §; to be the following
estimator of ¢(-)

ns(@6) = () fai(2) = Fo (=) foi (=2))/2, (32)
where frj(z) = foj(z;0) and j =1,...,n.
Let
Bn(6) =2 3 dni(ei(6;,0X( — 1)/ v (3:3)
be the estimator of A,(6) and let
n =B+ [0/ 1 NAE) (3.4
where
fo =4 3 dni(ei(8a);B0)/n (35)

and {,} is a sequence of discrete v/n-consistent estimators.

We will prove that this estimator is adaptive for a wide class of symmetric densities
O?
REMARK 3.1. As is noted by Kreiss (1986) in the ARMA model, our proof of the

asymptotic linearity depends on the symmetry of f(-) crucially. The corresponding result

for the non-symmetric but zero mean densities will be considered in a separate paper.
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Now we can establish the following lemma.
LEMMA 3.1. Let {6,} be a sequence of discrete \/n-consistent estimators of . Let

an =0(1) and a,®n~! =0(1) as n — oo. Then
An(én) - An(an) = 0(1)in P, g,prob. (3.6)

O

REMARK 3.2. While Kreiss (1986) considered similar adaptive estimator in the
ARMA model, his proof cannot be carried over to the non-linear time series model con-
sidered here. Our proof of (3.6) depends on the non-linear property of the process {X;}

crucially.
As an immediate consequence of the above lemma, we have

THEOREM 3.2 (Existence of Adaptive estimators). Let conditions Al, A2, A3, A4,
and A5 be satisfied and the assumptions of Lemma 3.1 be satisfied. Then we have that the

sequence of estimators
b =B+ |05/ 10(Ba)| An(Bn)/v/m (3.7)
18 asymptotically linear and

L(+/7(Bn — 8)|Pr,6,) => N(0,(TI(f))™") (3.8)
for any symmetric f(-). Therefore it is LAM and regular-efficient. ]

4. CONCLUDING REMARKS

There are several possible generalizations of the results in this paper to other class
of semiparametric non-linear AR models. As is noted in Section 3, we may relax the
symmetry requirement: f(z) = f(—z) in order to obtain adaptive estimator for a wide
class of densities f(-) with mean zero and finite variance. For technical reasons, we will

pursue this possibility in a separate paper.



As a second important extension, we note that the proofs of the main results depend
on some general non-linear properties of the process {X;} which can be satisfied in a variety
of other non-linear time series models too. For example, we can prove the same optimality

results for the process {X;} defined by
Xe=T(X4-1)+6TX(t—1)+ep,t € Z, (4.1)

where T'(-) is a bounded function on R. Similarly fussy extension of the model (4.1)
considered by Chan and Tong (1986) provides another example of non-linear time series
model which allows the same type of adaptive estimation. Both of these possibilities will

be considered in a subsequent paper.

5. PROOFS
We start with the following auxiliary lemma.

LEMMA 5.1. Under the conditions Al and A3, there ezist 0 < p < 1,Cy,Csy > 0 such
that
Xl < C1+Co 3 leslo™™ + pilXo| for i € 27, (5.1)
]:

where X; = X;(6,) = HZX(?: — 1)+ €,0, =6 + hpn/\/1, by = 0(1) as n — oo. O

Proof of the Lemma. From the proof of the geometric ergodicity of the process {X;}
in Chan and Tong (1985), we note that there exist a function g(-) such that

(i) 9(T(z;6n)) < (1 - 6)g(z),z € R, (5.2)
(i) 9(z +y) < g(z) +9(y),z,y € R
(iil) alz| < g(z) < b(1 + |z|),z € R,

where T'(z;6) = 67X,0 < 6§ < 1,a,b > 0. Then we note

9(Xi) = g(T(Xi; 6n) + ei) (5.3)
<(1-8)g9(Xi)+ g(es)
< T (1= 8 gless) + 9(Xo)(1 - 6)'

9



This together with (iii) completes the proof.

O

Proof of Lemma 3.1. Let 8, be any sequence such that 6, = 6y + h,//n, hn, = 0(1).

Then by the discreteness of 8,, it suffices to prove

An(82) — An(62) = 0(1), in P, g, prob.

We note that

En||An(6n) -

=4 3 B [1XG - DIP [ lns(elt) - 6@ o] /o

by the symmetry of §,;(-) and ¢(-). Because of (5.1), (5.5) is bounded above by

=1

Next we note that

An(6n)lI?

sup Eplej| [ [Gni(z) — ¢(2)]” f(2)dz

< 9F, g / (dn15(2) — $(@)] f(2)de
+ 280165 [ [00s(3)  dos ) F(2)da

<OVEn [ ldn-a(e) ~ $(o)* f(&)de +2 0(1)az’n "

= 0(1)

by using inequalities (3.15) and (3.16) of Schick (1987). Similarly we obtain

sup FE,
k,j<i

sl [ (dni(o) ~ 900 f(2)de] = 0(0)

(5.7) and (5.8) together with (5.6) show that

This completes the proof.

Lh.s. of (5.4) =0(1) as n — 0.
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5 pi—j—lpi"k_1|e]-||ek|/(tfm‘ - ‘P)Zf(x)dw] :

j=1j=1

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)



Proof of Theorem 2.1. The proof follows closely the corresponding proof of Theorem
3.1 in Kreiss (1986) with obvious modification. O

Proofs of Theorems 2.3 and 2.4. They follow from essentially the same arguments
given in the proofs of Theorems 3.1 and 3.2 of Begun et.al. (1983) together with the LAN
of the process {X}}. O

Proofs of Proposition 2.5. By using the arguments given in the proof of Theorem 2.4
in Beran (1976), we can show that

An(bn) — Ap(0) — (I‘I(f))_lx/r_z(en —6)=0(1) in Py, ¢, probd. (5.9)
This fact together with discreteness of gn completes the proof. O

Proof of Theorem 3.2. The assertion following directly from Theorem 2.4 and Lemma

3.1 by the discreteness of 6,,. O

REFERENCES

Begun, J. M., Hall, W. J., Huang, W. M., Wellner, J. A. (1983) Information and asymptotic

efficiency in parametric — nonparametric models. Ann. Statist. 11, 432-452.

Beran, R. (1976) Adaptive estimates for autoregressive processes. Ann. Inst. Statist. Math.
28, 77-89.

Bickel, P. J. (1982) On adaptive estimation. Ann. Statist. 10, 647-671.

Chan, K. S. and Tong, H. (1985) A multiple threshold AR(1) model. J. Appl. Prob. 22
267-279.

and (1986) On estimating thresholds in autoregressive models. J. Time

Series Anal. 7(3), 179-190.

Kreiss, J. P. (1986) On adaptive estimation in stationary ARMA-models. Ann. Statist.
15, 112-134.

(1987) On adaptive Estimation in autoregressive models when there are nuisance

functions. Statist. Decisions 5, 59-76.

11



Schick, A. (1987) A note on the construction of asymptotically linear estimators. J. Statist.
Plann. Inference 16, 89-105.

Tong, H. (1983) Threshold models in non-linear time-series analysis. Lecture notes in

statistics. 21 Springer-Verlag, New York.

12



