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SUMMARY

We investigate robustness in the logistic regression model. Copas (1987) studied two forms
of Tobust estimators, a robust/resistant estimate of Pregibon (1982) and an estimate based on a
misclassification model. He concluded that robust/resistant estimates are much more biased in
small samples than the usual logistic estimate, and recommends a bias—corrected version of the
misclassification estimate. We show that there are other versions of robust/resistant estimates
which have bias approximately the same as and sometimes even less than the logistic estimate;
these estimates belong to the Mallows class. In addition, the corrected misclassification estimate
is inconsistent at the logistic model; we develop two ways to modify it to obtain the desired
consistency. The first method, based on correcting the score function, is a member of the Mallows
class. The second method adjusts the misclassification estimate directly; an asymptotic theory for
this new estimate is developed. The results are illustrated on data sets featuring different kinds of
outliers.
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1. Introduction

We consider robust estimation in the logistic regression model
Pr(Y = ljg) = F(="Br),  F(v) = {l+exp(-0)} . (1.1)

Along with the usual logistic model, we will be concerned with a misclassification model in which

each response is misclassified with probability v, so that
Pr(Y = 1|z) = F(2Tpr) + v {1 - 2F(z7 Br)} = G(27 Br, 7). (1.2)

In an important paper, Copas (1988) contrasts two forms of robust estimates:
e Robust/resistant estimates due to Pregibon (1982);
o The misclassification maximum likelihood estimate (mle) for model (1.2), corrected to be

approximately consistent for the logistic model (1.1).

Copas concludes that the latter is a preferable method of estimation at the logistic model, as it
seems to have the robustness properties of the former method while at the same time having less
small to moderate sample size bias. Model (1.2) also has uses when response misclassification is of
interest (Copas, 1988); these will not be discussed in detail here. Copas focused on small values of

v and the use of (1.2) in generating robust estimators and diagnostics.

Despite this work, a number of important problems remain to be investigated. Among these
are the following;:

e Pregibon’s estimate is inconsistent at the logistic model. Thus, it might be the case that
the bias observed in Copas’ study is really not so much a function of the entire class of
robust /resistant estimates as it is a function of the particular method employed. For example,
the “Mallows” or “Schweppe” classes (Kiinsch, et al., 1989) are consistent. Our results will
indicate that robust/resistant estimates can have much less small sample bias than previously
thought.

e The corrected misclassification mle is only approximately consistent, with no large sample
theory available. We will provide the required theory for the corrected estimate.

¢ In addition, we will propose and study two estimates which are closely related to the misclassi-

fication mle but which are consistent at the logistic model. The first method modifies the score
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function of the misclassification mle to make it unbiased at the logistic model; this estimate is
a member of the Mallows class. The second method starts from the misclassification mle, and
adjusts it to be consistent at the logistic model.

e We will investigate modifications of the usual logistic estimate which partially and/or fully

correct for misclassification, along with studying the large sample properties of these estimates.

The outline of this paper is as follows. In section 2, we will give an overview of the robust
estimates previously proposed in the literature, making a connection between robust/resistant
estimates and the misclassification estimate. In section 3, we discuss corrected estimates and their
asymptotic theory. In section 4, we introduce our misclassification—based estimate consistent at
the logistic model, and our logistic-based estimate consistent at the misclassification model. In
section 5, we illustrate the behavior of these estimates on three sets of data. In section 6, we
investigate the small sample bias properties of the robust/resistant estimates, and compute these

biases numerically in the two examples.

2. Robust Estimates

2.1. Introduction
The primary robust estimates for the logistic model (1.1) solve equations of the form

n
0= Z wiz; {Y; — F(z] ) — e(2:,8)} (2.1)

i=1
where the {w;} are weights, which may depend on the response. If w; = 1 and ¢(z;,3) = 0, then
(2.1) yields the usual logistic regression estimate. If w; = w(z;,z¥ ) and ¢(z;,z7 ) = 0, then
the weights depend only on the design and we are in the so—caled “Mallows” class. Finally, if

w; = w(z;,Y;), then we are in the “Schweppe” class.

2.2, The Mallows Class
In the Mallows-type formulation, the weights do not depend on the response directly, but are
instead functions only of the design {z;} and the parameter 8. Basically, the idea is that points
which have high leverage are “dangerous”, and should be downweighted. Estimators ﬁo in this

class are necessarily consistent, since in this case (2.1) is an unbiased estimating equation. While
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less efficient than the usual logistic mle, the Mallows class has an easily computed small-sample
O(1/n) bias which can be smaller than that of the mle, especially if there are unusual design points.
If superscript (j) denotes the jt* derivative, and if we define

n
Vai(B) = —n7 1Y wizial FO(2T B);

i=1

Tni(B) = Vi1 (B)n? 2”: 0l 2TV (B)War BV, (B)z: FO (2T B),

i=1

then by an analysis similar to that of Copas (1988), at the logistic model the first order bias is

E(Bo - Br) ~ —(2n)"! {Tz(Br) + 2Tn1(Br)} -

There are two important subcases: (i) the weights depend only on the design; and (ii) the weights

depend only on the probabilities.

CASE I: Leverage Downweighting Suppose that w(z;,z7 8) = w(z;), so that we downweight strictly
on the basis of leverage. In this case, w(!) = T,; = 0. For regression through the origin (Copas,

1988, p. 230), the bias is

Y wia FO (zifr)n ! 37, wis? FO (zi67)
("1 0 wiz? FO)(z:67)}° '

For example, if n = 50 and the z’s consist of 10 each at £2, £1, 0, then the bias for the mle is

E(Bo — Br) ~ —(2n)™1

approximately 0.019 at 87 = 0.5 and approximately 0.048 at 87 = 1. If instead we give weight of
only 0.5 to those observations with £ = 42, then the corresponding biases for the Mallows estimate
are 0.027 and 0.062, respectively. This is not by any means a design with any unusual leverage. In
practice, the Mallows weight assigned to the design points +2 will be very close to 1.0, and there

will be little difference in the bias behavior of the two methods.

While this might at first suggest that the Mallows estimators are generally more biased, this
is not the case in general. Of particular concern is the case of bias when there are unusual design
points, where the classic robustness theory (Hampel, et al., 1986) suggests that robust methods
should have smaller biases. We illustrate this numerically. Replace the previous design with the
same one except that 2 points are placed at £5, and give weight 0.5 to these unusual points, all

other weights being 1.0. The mle has approximate biases 0.036 and 0.060 at 87 = 0.5 and 0.1,
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while the Mallows estimate has biases 0.029 and 0.056. A Mallows estimate which gives zero weight

to the four most extreme design points has biases 0.021 and 0.053.

The main point of this illustration is that in a design with extreme design points, selective
downweighting can lead to less biased estimates when compared to the usual mle. The decrease in
bias, coupled with the robustness protection, can be worth the loss of efficiency. In the previous
example, a weight of 0.25 assigned to the unusal design points leads to a MSE efficiency of over

80% at the logistic model.

In his North Carolina Ph.D. thesis, L. Stefanski suggests downweighting on the basis of a
robust Mahalanobis distance. The basic idea is that those points which are not near the center of
the design space should be downweighted. Any of these robust methods depend on how well one
can measure the leverage of an individual point; this can be a nontrivial task. In the leukemia data
listed by Cook & Weisberg (1982), the most influential point occurs in a situation where there are
three identical design points. As a group, these points are highly leveraged, but automatic methods
for measuring leverage, such as that given above, may have problems identifying that each of the

points individually has leverage.
The appendix defines the Mallows leverage downweighting method used in our calculations.

CASE II: Prediction Downweighting An alternative is to set w(z;,z7 8) = w(z7 8), so that extreme

fitted probabilities are downweighted. An example of this kind is
c A
w(z"f) = [F(="8) {1 - F="B)}]" [FTA) + {1 - FTH}],

for constants (c,A). The choices (¢,A) = (0,0) or (1,-1) yields the usual logistic estimate. The
choice (¢, A) = (1,0) weights according to the variance of Y given x, and will handle outliers at very

low or very high predicted probabilities.

2.3. Schweppe Class
Pregibon (1982), Stefanski, et al. (1985) and Kiinsch, et al. (1989) have defined estimates in
which the weights depend both on the leverage and on the response. Here the correction terms

¢(z;,B) in (2.1) are necessary in order that (2.1) be an unbiased estimating equation given z.
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Pregibon’s method chooses ¢(z,8) = 0 and is thus inconsistent. The versions of the method of

Kiinsch, et al. used here are discussed in the Appendix.

2.4. Misclassification Estimate

For the misclassification model (1.2), the mle s, is an M—estimator solving

0= 2": wi(z] B,7)z: {Y: - G(zTB,7)}, where (2.2)
i=1
wi(z f,7) =(1 - 29)F(s7 B) {1 - F(a7B)} [G(=T B,7) {1~ G(=TB,M}] " -

These equations lie in the class defined by (2.1). Generally, (2.2) has more than one solution if
there is an influential outlier. Computation of the solution which maximizes the likelihood can be

tricky; use of GLIM often fails.

Recognizing that S, is inconsistent for Br at the logistic model Copas (1988) suggested a
bias—corrected version appropriate for small -, see section 3.3. This estimate remains inconsistent

at the logistic model.

2.5. Misclassification and Robust/Resistant Estimates
There are two easily identified methods for modifying the misclassification estimate ﬁ Mc to be
consistent at the logistic model:
o Directly adjust it for its bias, see section 4.1;
o Adjust the score function (2.2) to make it unbiased at the logistic model.
We pursue the second approach here.
The typical way to adjust an estimating equation to make it unbiased at a model is to subtract

the former’s expectation at that model. In (2.2), this simply reduces to solving
n
0=" wi(2]B,7)z: {Y: - F(zTB)}. (2.3)
i=1

Note that the solution to (2.3) is a member of the prediction downweighting Mallows class. Thus,
Copas’ methods can be looked upon as robust resistant estimates, and his criticism is not of robust
estimates in general but of the Schweppe class in particular.

The form (2.3) is also instructive as to the behavior of the resulting estimate. We see that the

weights become small when |z7 3] is large, with 7 controlling how extreme the fitted probabilities
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have to be before significant downweighting occurs. For those 4 not near 0, the weights become

nearly proportional to F(zT8) {1 — F(zT8)}, an option discussed in section 2.2.

2.6. Influence Functions
It can be shown that, in general, the Mallows leverage downweighted and Schweppe estimates
have bounded influence functions. The misclassification mle has a bounded influence function only
when ||z}| F(2T87) {1— F(zTBr)} is bounded, which occurs, in general, only for a scalar predictor
z; otherwise a ridge can be formed. The Mallows prediction downweighted estimates have a similar

behavior: their influence function is bounded when ||z|jw(zT8) is bounded.

Section 3: Estimates Corrected for Misclassification

In this section, we suggest three different estimates motivated by consideration of small mis-
classification rates. In section 3.1, we will define an estimate which corrects for the bias of the
ordinary weighted logistic regression estimate due to misclassification. In section 3.2, we suggest
a refinement of this estimate. In section 3.3, we study the behavior of the maximum likelihood
estimate under a small error rate misclassification model, computing its bias at the ordinary logistic
model. This leads to a third corrected estimate, which upon further modification becomes (27) of
Copas (1988). In section 3.4, we compute the asymptotic limit distributions of all these estimates

in a unified way, using techniques due to Stefanski (1985).

3.1: First Order Correction
Consider the Mallows class of solutions to (2.1), so that the weights {w;} do not depend on
the response. In the case that we have misclassification so that the model is given by (1.2), Eo
estimates not Br, but rather Sy, the solution to
n n
0= Z w;z; E {Y; — F(z:Bon)|z:} = Z w;z; {G(z7 Br,7) — F(zifon)} - 3.1)
i=1 i=1 ‘
Via a Taylor series expansion about 7, one can show that to terms of order O(y2), B = Bon +

H; 1(Br)Cn,1(Br), Where

Can(B) =7 wiwi {2F(IB) ~1};  Haa(B) =) wizal F{H){1-F=Ip}. (32)

i=1



This leads to the estimate

Ben = Bo + 175 (Bo)Cn,1(Bo) (3.3)
3.2. A Modified Bias Correction

One potential problem with (3.3) is that the substitution leading to (3.3) replaces fr by an

inconsistent estimate, 8. Possible improvement can be made by noting that, by (3.1),
0= Zwia;i {.&M — F(ziﬂT) 27:'} .

i=1 1- 27
This suggests modifying the definition of C,; in (3.2), leading to the estimate

Bz = Bo+ Hi (Bo)Cun(Bo)y  where | (3.4)

Cn,g(ﬂ) = 1 327 Z Wi {2F($?‘ﬂ) —_ 1} .
i=1

3.3. Correcting the Misclassification MLE
The estimates defined by (3.3) and (3.4) are modifications of the usual logistic regression
estimate to take into account possible misclassification. An alternative approach is to compute the
misclassification mle for a fixed v, and then correct it to bé approximately consistent at the logistic
model. This is the approach followed by Copas (1988), who does not compute the limit distribution
of his estimate. Such an estimate should inherit the robustness properties of the misclassification

mle, and, it would be hoped, advantageous bias behavior.

‘Under the logistic model (1.1), the solution BMC to (2.2) estimates Spsn, where

0= Ki(Br,7:Bmn) = > wilaT Brtn,7)zi {F(z¥ Br) — G(2T Brrn, 1)} - (3.5)
i=1

n
=1

Expanding fBarn about B in (3.5) yields 7 = Bun + Hya (B1,7)Cna(Br,7) + 0o(7), where

Ma3(B,7) =071 ) wia] B,7)zie] F(a7B) {1~ F(z7B)};
=1

Cas(By7) = =5 Y wilel B, )i {1~ 2F(aT )} (3.6)
i=1

Since the ordinary logistic estimate EL is a consistent estimate of 81, this leads to the estimate

Ec,.’i = EMC + H;;;(ELv 7)Cn3(§ln 7) (37)
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The bias corrected estimate developed by Copas (1988, equation 28) has the form (3.7), but with
(3.6) multiplied by 1 — 2.

An alternative estimator may be obtained by expanding Sr about Basy, in (3.5), leading to an

estimate like (3.7) but with the logistic estimate EL replaced by the misclassification mle EMC.

3.4. Asymptotic Distribution Theory
The estimates (3.3), (3.4) and (3.7) are of the same form, requiring initial M—estimates followed
by a correction. For fixed {;}, the limit theory follows from an easy application of Stefanski’s (1985)

techniques. Here we merely present the results.

Consider initial estimates ,E_,- for j = 0,1 solving the equations
0= t:(B).
=1
Define 8;,, as the solution to 0 = Y 1 | E {¢;;(8)|z;}. A corrected estimate is given as

E = Eo + H;/l (E1 )Cn(§1), where

Ha(By7) =07t Y Hi(alB);  Ca(By)=n"1) Ci(=TH).

i=1 =1

Of course, ﬁ estimates By, + 'H;,l(ﬂln)cn(ﬁln). If we define
= 0 7]
Vai(Bs1) =1 E {W'lpij(ﬂ)Ixi} i La(B)= 5T {H1(B)C(B)}
i=1

Zin(,BOn,,Hln) = n_l Z {VnI)l(ﬂOn)"/’iO(IBOn) + Ln(ﬂln)vn_ll (ﬂln)"pil (,Bln)} 9

i=1

then we clearly have that

(B — o) % n2/*(Bo — fon) + La(Bin)n"/*(By — B1n)
~ =Vig' (Bon)n ™72 Y~ hio(Bon) — Ln(Brin)Vi' (B1n)n™ 123" 91 (Bin)
=1

i=1

= _n—1/2 Z Zin(ﬂOn,ﬂln)-

i=1

~ Normal {0, 2,(fon, B1n,Br,7)} where

Qu(Bon, Bins Brs7) = 271D E { Zin(Bon, Bin) Z5(Bon, B1n) } -

=1



A consistent estimate of the covariance of p is

n
i=1
although in certain cases improved covariance estimates can be constructed, see below.

We illustrate the general result with Copas’ estimate, defined as (3.7) with w; = 1. Here

,El = EL, the ordinary logistic regression estimate, Eo = BMC, Bin = Br, Bon = B, Var(Br) =

—Hn(ﬂT), and
Yio(Bumn) = wi(z] Bagn,7)z: {Yi - G(=f Brns7)}; ¥u(Br) = z; {Y; — F(zIBr)};

Ha(Br) =071y 2l FOGTBr);  CalBryy) = #n_l > ei {1 - 2F (=7 Br)}
i=1

i=1

Vao(Baan) = (1= 210 3 wi(aT Barm, v)aia? FO T o)

i=1

La(Bry7) = ~+ 37271 =M (Brynn™t Y aial FO (] br)al 1 (Br)Ca(Br, 7).
i=1

This means that

Zin(Brn, Br) = — { V5" (Brtn)wi(2zT Barn, ) + Lo(Br, 7)1 (Br)} 2:Yi 4+ &

= Bi(Bz, Brmn,7)2:Y; + &,

where « depends only on the design but not Y;. Now Z;,, has mean zero, so that under the logistic

model, by taking covariance, we see that
n
Qu(Brns Br,7) = 071 Y T FO (@I Br)Bi(Br, Barns 7)z:aT BE (Br, Batns 7).
=1

A consistent covariance estimate for Beais nl Qn(Bme, BL,7)-

4. Consistent Estimates

4.1. Logistic Model
Under the logistic model, the misclassification mle and its corrected versions are inconsistent.
We obtain consistency by using a method of moments argument. By starting at the misclassification

mle, we hope to retain its robustness properties, especially to non-isolated outliers.
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The solution 3 Mc to (2.2) estimates fsn, the solution to (3.5). Thus, if E solves

n
0= in(ﬁ,‘y,ﬂMc), (4'1)
i=1
then B is consistent for B, see (3.5). Solutions to (4.1) usually exist because they are logistic

regression estimates with “response” G zTﬁMC, and weights w; zTEMc, . By a Taylor series,
g i 7 g i Y

nl/Z(E - :BT) ~ —A;J(:BT’ v, ﬂMn)Aln(,BT77, IBMn)nI/Z(,EMC - ﬂM'n)y where (42)

N
— p—1 § : . .
Aln(ﬂT77a :3) =n v a‘ﬁxt(ﬂT,'y’ﬂ)’
A2n(ﬂT 7,.8) =n"! }-n iK:‘(ﬂT"y ﬂ)
’ i=1 8'3::11: ,
Since EMc is an M-estimate, it has a standard asymptotic theory, so that

n1/2(ﬁ— Br) = Normal (0, A5, A1, A, AT, AT, where
An = Vn—l(ﬂT”YaﬂMn)Rn(ﬂT)‘y, ;BMn)Vn_l(IBT7 77ﬂMn)
VlBr78) =17 Y- i { 7 [T B, M} {F (T ) - 6F6,}]
=1
Rn(ﬂTa %, ,HMn) = n—l Z w?(ﬂ, 7):47,-:1:?1‘1(1)(2:?,311)
=1

A consistent covariance estimate may be obtained by evaluating these terms at (ﬁ,7,ﬁMc).

4.2. Misclassification—Consistent Estimate
In this subsection, we consider method of moments type corrections to the usual estimates,
corrections which yield estimates which are consistent for the misclassification model. The underly-
ing probabilities satisfy (1.2), while Bo solves (2.1) with w; =¢; = 0. As n —> o0, ,Eo converges to
the solution to ) w;z; {G(z¥ Br,7) - F(zTB)}. This suggests a correction to obtain an unbiased
estimating equation. Let ﬁ solve

0= wiai {F(sTho) = 7= (1 - 21)P(TB) } . (43)

i=1
If we define z; = { F(z?ﬁo) - 'y} / (1—27), then the solution to (4.3) is unique in general, as it is
the same as a weighted logistic regression applied to the “responses” z;.
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It is easy to show that ﬁ is consistent for 7. As in the previous subsection, E is asymptotically
normally distributed with mean Sr and covariance matrix n~1Q, where, under the misclassification

model (4.1), Q is consistently estimated by

~

Q = A3} B, A3, where

23n =—(1-29)n71 2": w;z;z?F(z?ﬁ) {1 - F(:v,Tﬁ)} ;

i=1

B =Y ol G(Th,7) {1 - GFAm)

i=1

The solution to (4.1) has an interesting connection to the bias—corrected estimates of the

previous section. The first step of a Newton-Raphson solution to (4.3) has the form

n “ln
By =y - [; wiziz? F(a7 fo) {1 - F(z,.TEO)}] ;wizi {1-2F(T50)} - _727, |

This is the same as the bias—corrected estimate (3.4), and its asymptotic distribution theory under

the logistic model is discussed in the previous section.

5. Examples
5.1 Introduction

We investigate three examples, one of which involves an extreme leverage and prediction out-
lier, i.e., an obvious leverage point with extreme predicted probabilities. The second involves an
observation which is only an extreme prediction outlier, while the third involves points which are
moderate prediction outliers but have considerable leverage. We shall see that the methods behave
differently in these data sets.

For the Mallows leverage downweighted and modified Kiinsch estimates defined in the ap-
pendix, we used the tuning constant b = 8. For the estimates of Kiinsch, et al. (1989), we used
the tuning constants b = 18; Kiinsch, et al. use b = 16. For the misclassification mle and its

modifications, we used 4 = 0.03 and 0.01.

5.2. Food Stamp Data
These data are discussed in Kiinsch, et al. (1989, p. 465). There is a single case, #5, which

is isolated in the design space, and appears to be a response outlier. The interesting coefficient
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is the fourth component B4, which changes considerably in numerical value and significance level
with the deletion of case #5.

The last component of z is at least 4.4, except for case #5 where this component was 0. The
fitted logistic coefficient without case #5 was (-5.3, 1.8, -.7, 1.1). The fitted probabilities were at
le;xst .33, except for case #5 which had fitted probability .005. In sum, case #5 is both a leverage
and a prediction outlier, and so is amenable for analysis by all the methods.

We see from Table 1 that each of the robust/resistant methods which involve leverage down-
weight case #5 sufficiently to obtain the desired change from the logistic mle. In this case, we must
choose v rather large, 0.04, in order for Copas’ correction to the misclassification mle to to show
the desired effect. By looking at posterior probabilities of misclassification, given that data are
misclassified with rate v, it can be seen that several other cases were more likely to be misclassified
than case #5, and hence 7 needed to be as large as 0.04 for case #5 to be fit as misclassified. For

comparison, we show the results for ¥ = 0.03, which do not pick up the outlier.

5.3. Leukemia Data

These data are listed in Cook and Weisberg (1982, page 193). One observation, #17, appears
to be a response outlier, but it is in a group of three points with identical extreme design values.
Without #17, the logistic coefficients were (.2, -23.5, 2.6). Observation #17 had prediction from
this fit of less than .001, but the response was Y = 1. This is an extreme prediction outlier.
However, #17 is not an extreme leverage outlier by itself, and quantifying its leverage is a difficult
task. The method of Kiinsch, et al. and the corrected version of the misclassification mle both show
the desired large change from the ordinary logistic mle, although former seems to have elevated
standard errors. Case #17 is a likely misclassified point, under model (1.2), and the new parameter
values reflect this. The Mallows and modified Kiinsch methods perform poorly here, as they had
difficulty assessing the leverage of the unusual observation. There are other ways of assessing

leverage, of course, and they might have led to better performance of the these estimates.

5.4. Rare Event Data Set
The final data set consists of 300 observations with two predictors (Xi,X3), generated as
follows. First, 296 observations were selected from an ongoing study of diet and breast cancer. The

37 cases with Y = 1 were included along with a non-random subset of the cases Y’ = 0. Here, X
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ranges from —j to j, for j = 1,2. In these data, the logistic regression coefficients were (-2.6, 1.5,

-.9). The 10" percentile of the probabilities from this fit was .05, while the 90" was .24.

We then added 4 artificial outliers to the data, all of which were extreme in the design space.
These were (Y,X;,X2) = (1, -.25, 4.5), (1, -.25, 5.5), (0, -.25, -4.5) and (0, -.25, -5.5). The
probabilities from the original logistic fit were .0011. .0005, .85, .94. Thus, the first two observations
are extreme in the prediction space. The latter two are not, although they are extreme comf)ared

to the rest of the data.

Our hypothesis‘wa,s that all the methods would easily handle the first two generated points,
but only the methods which account for leverage can handle the last two points. This is borne out

in Table 3, which lists the fitted values and their standard errors.

5.5. Summary

The key feature of these examples that they indicate that leverage and prediction each have
individual roles to play in the performance of fitting methods. Methods which only handle leverage
can get fooled by a leverage group. Methods which only handle extreme predictions can get fooled
by leverage points which have unusual predictions not near 0 or 1. The method of Kiinsch, et al.
(1989) works well on all these examples. However, there surely are examples which can fool this

method, and we by no means recommend it uniquely above the others.

6. Further Bias Expansions

6.1. Theoretical Developments

By means of formal asymptotic expansions, one can compute the bias of the robust/resistant
estimates discussed in this paper to order o (n‘l). We have already shown how to do this at
the logistic model for the Mallows estimates, see section 2.2, where we found that unusual design
points can make the bias of the Mallows leverage downweighted estimate smaller than that of the
mle. Bias expansions for the Kiinsch and modified Kiinsch estimates can be constructed as well,
but analytic expressions seem infeasible. Both estimates are M—estimates, and in the appendix we
provide formulae for constructing their approximate biases, as well as the bias of the consistent

estimates derived in section 4.1. In the appendix, we also compute the bias of the consistent
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modification of the misclassification mle discussed in section 4.1. In our examples, we computed

the necessary derivatives for the Kiinsch type methods numerically.

6.2. Biases in the Foodstamp Data

In Table 4, we present the approximate biases of the various estimates at the parameter value
BT = (-6.88, 2.02, -.76, 1.33) obtained by deleting cases #5 and #66 and refitting by logistic—
regression. We see in this table that the Mallows and modified Kiinsch estimates, which performed
very well on these data, have biases approximately as large as the usual logistic regression estimates,
while the Kiinsch method has only a moderately higher bias, at least when compared to the standard
errors in Table 1. The consistent misclassification estimate of section 4.1 also has reasonable bias

behavior. The score adjusted estimate (2.3) has worse behavior.

Copas’ corrected estimate is asymptotically inconsistent, so that one can speak of an asymptotic
bias to describe the difference between the correct logistic parameter and the value estimated. With
v = 0.01, these asymptotic biases are (.58, -.07, .02, -.10)7, while with v = 0.04, the asymptotic
biases are (5.3, -.92, .21, -.94)T. Thus in this particular example, 7 has to remain fairly small in
order that the asymptotic bias not become too large. Note that we had to use a value of v = 0.04

in order to detect the isolated outlier in this example.

6.3. Biases in the Leukemia Data

In Table 5, we present the approximate biases of the various estimates at the parameter value
BT = (-1.3, -3.2, 2.26) obtained at the logistic regression estimate. It seemed to us nonsensical to
evaluate bias at the mle having deleted the unusual point, as Table 2 indicates that the standard

errors of any of the estimates having deleted this point are extremely large.

The biases of the Mallows, modified Kiinsch and consistent misclassification estimates are
similar in this example. The score adjusted methods had larger but still reasonable biases. The
Kiinsch method has a much larger bias in the second component. There may be some numerical

instability here in our numerical calculation of the necessary derivatives.

6.4. Rare Event Data Set

For this data set we used ¥ = (—2.55,1.4,0.88). The bias behavior was much like in the food

14



stamp data, although note that in the third component of Ar, the robust/resistant methods which

account for leverage have much smaller bias than does the ordinary logistic mle.

6.5. Summary
While the Kiinsch method has the best performance in the examples, it has higher O(1/n)
bias. The biases were not unacceptably large for the food stamp and rare event data sets, but were

unusually large for the leukemia data.
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APPENDIX

A.1. M-estimates of Location and Scale
Stefanski’s idea was as follows. Let p = dim(z) and set w; = w(z;, ), where with m(z,f) =
max{F(zTB),1 — F(zT8)}, for a tuning constant b,

. bp1/2
w(z,f) = min [1’ m(z,ﬂszM—lz)lﬂ] ;

M =n"1Y gzl v (e, B)F(z] B) {1 - F(=T8)}.
i=1
Instead of this formulation, we have found that the following somewhat simpler method works
reasonably well in practice. Write 27 = (1, 27)T, and let (u, M) be a “robust” estimate of the
center and covariance matrix of the {2;}. Let 1, be any odd function, and define ¥25(v) = ¢3,(v)/€,

where £ = E2,(]|Zp-1]|) and Z,—1 is a (p— 1)—dimensional normal random variable with zero mean

and identity covariance. Define u;,(v) = ;5(v)/v. The estimates (i, M) are the solutions to:

n Z b [{(Z" — )Mz - u)}1/2] (7 —p) =0

n-—l Zuzb {(Z,- - ,UI)TM_I(Z,- _ ,LL)} (zi _ #)(Zi _ I‘)T - M.
1=1
In the calculations, we used the trisquared redescending function
Pip(v) = v {1 — (v/b)2}3 I{|v| < b).
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A.2. Mallows Leverage Downweighted Estimates
Ifd; = (z — p)TM~Y(z — ), then the Mallows weights to be used in (2.1) are

w(z, f) = w(z:) = uns {di/(p - 1)'/2}

Of course, in (2.1) we set ¢(z;,) = 0. Note that these weights can redescend to zero, so that
points which are extremely outlying in the design space receive zero weight. Note too that different

estimates of center and location can cause the weights to change.

A.3. Schweppe Estimates
For a given matrix M, the estimates defined by Kiinsch, et al (1989) follow (2.1), with

wi = u {IYi = F(aTB) = (a7 B, 2T M 2)|(aF M~12:)1 12},

where the function c(a,b) is chosen so that the right hand side of (2.1) has mean zero when evaluated
at fr and the logistic model. The matrix M can be estimated using equations (2.8) and (2.9) of
Kiinsch, et al (1989).

Alternatively, one might estimate the center and scatter matrices (u, M) as before and define
wi = uys {|¥; = F(s7B) - e(a78,d)| 1/ }.

In the text, we call this the modified Kiinsch estimate.

A .4. Bias Expansions for M-estimates
We assume that all expectations are conditional on z;,...,2,, and that E¥;(8) = 0. The
M-estimate is defined as the solution to 0 = ) 7 \F,(ﬁ) Write the j** component of ¥; as ¥;;.

Dropping the argument 8 and letting subscript 8’s denote derivatives, define

A, =n"1 zn:E\Ir,-ﬁ; B, =n"1 En: Ev, T, C,=n"! En:E\If;ﬁA,jl‘I!,-;
i=1

i=1 =1

D, = vec [n—l Ztra,ce {(E‘Il,-]-pp) A'B A1 }] .

=1
We claim that
E(B-B) = —n"471{(1/2)Dn - Cu} + o(1). (A1)

Proving (A.1) involves two simple steps. First recall from standard theory that
(B-8) = -47'n1 Y w: 10, (»7Y), (A.2)
i=1
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so that (E - ﬂ) has covariance n='A;1 B, A;!. By a simple Taylor series,
0=n""1 Zn: ['I’,-j + ‘I’g}ﬁ (ﬁ— ,3) + (1/2)trace {‘Il,-jpﬂ (ﬁ— ﬂ) (ﬁ_ ﬂ)T}] +0,(n31?),
i=1 .
If aI; is the j** row of A,, using (A.2) we thus have
0=n"1 zn: Vit az‘j (ﬁ—— ﬂ) —n2 2": z": [{lI!,-J-ﬁ - E(‘Ilijﬂ)}T A;I‘I‘i]
i=1 i=1 j=1

n ~ ~ T
+(1/2)n1Y trace {E (i385 (B-8) (B - 8) }_+ 0,(n=3/?),
i=1
Taking expectations yields the result.
It is possible to eliminate the second partial derivatives, as follows. Write ¥;; = ¥;;(Y;|z:,0)

and h(y|zB) = F(zT8)v {1 - F(:cT,B)}l_y. By definition, for every 3,

1
0= Z \I'ij(ylza ﬂ)h(ylza :3)
y=0

Taking two derivatives, we obtain

EVies=— > {Wiis(n)h5(v) + k() ¥Fs(y) + Lii(v)hps(y)} -

A.5. Bias Expansion for the Consistent Misclassification Estimate
In this section we compute a bias expansion for the consistent misclassification estimate defined
by (4.1). If we write w; = wi(z7 Brrn, ), Gi = G(z¥ Brrn,7), Ui = wiG; and F; = F(zTB7), then
by a Taylor series of (4.1) we obtain

0 =.n‘1 2": a:;z:?" { (wgl)Fi - Ui(l)) (BMC - IBM'n.) + wiF,-(l) (E— ﬂT)}
i=1

+(1/2)n7? 2”: T [(wgz)Fi - Ue(2)> {x.T (BMC - ,BMn) }2 +wi F) {z:‘r (ﬁ— ﬂT) }2]

i=1

+(1/2)n"? Zn: ziwiD FY {37? (E - .BT) (EMC - ﬂMn)T-'Ei +zf (EMC - ﬂMn) (,5 - ,BT>T -’Di} :

i=1

From (4.2), replace (,E— ,BT) by A;lA:, (ﬁMc - ﬂMn) in the last two sums, and recall from

standard M—estimator theory that the covariance of (,31\,1c — ﬂMn) under the logistic model is

n~1V, where V = §7' 5,57, where
n n
51 = n1 Z.’Di.’l:? (wgl)Fi — Ut(l)) ; Sy = n7! Z.’Eix?wt?Fi(l)'
=1 =1
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Taking expectations, we obtain
E (E - ,BT) = —L{I,E (EMC - ﬂMn) — (2n) " L7Y(Ls + L + Ls) + o(1), where (A.3)
n n
Li=n"1! inz?w,-Fi(l); Ly=n"1 Za:;a:?(wfl)ﬂ- - U,-(l));
i=1 =1

n n
Ly =n"1 ZzewiF.-(2)aai; Ly=n""! ina-ﬁ(w.(z)Fi - Uy,
=1

i=1

n
1 1) (1) . T a~1 -1, .
Ly =2 2wV FPasi; a5 = 2T A7 A1V Arn A7k
i=1
T . T T -1
a4 = T; Vz;; as; = —z; Ay, A1V — 23 VAL AL, 2.

Thus, from (A.3), we have to compute the first order bias for the misclassification estimate. This
is just an M-estimate, and the previous section can be used to compute this expansion. Detailed

calculations show that
E (Buec—Bun) = —(20)7 5718 + 0715705y, where

Sy =n"1 z": a:,-(a::frV:v,- (w?)F,- - U‘-(z))
=1

S3=n"1 Zz;wiwgl)ﬂ(l)zg‘Sl“lz,-.

i=1
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TABLE 1 —- FOODSTAMP DATA SET

For the various methods, parameter estimates are listed, along with standard errors in paren-
theses. A “*” indicates lack of convergence.

Method B Ba B3 N
Logistic mle -.93 1.85 -.90 33
(1.62) |(.53) |(.50) |( 27)

Mallows Leverage,b =8 |-522 1.80 [-.66 |1.05

Sections 2.2 and A.2 (2.63) |(.54) |(.52) [( 44)
Kiinsch, b = 18 -5.22 |1.67 |-.69 1.04
Sections 2.3 and A.3 (2.46) [(.50) |( .50) |( -42)

Modified Kiinsch, b =8 [-5.77 [1.83 [-.69 1.15
Section A.3 (2.68) |(.54) |(.52) |( .46)

Copas, 7 = 0.01 .88 |1.83 |-89 |[.32
(1.56) |(.53) |(.50) |(.27)

Copas, v = 0.03 -.71 1.83 |[-.84 .29
(1.51) {(.58) |(.50) |( .26)

Copas, 7 = 0.04 -7.90 |1.85 |[-.62 1.51
(4.03) {( .63) |(.55) |(.72)

Consistent, v = 0.03 -.81 1.79 [-.86 31
Equation (4.1) (1.47) | ( -40) |( -46) |( .25)
Consistent, v = 0.04 -6.43 |18 |-.71 1.26

(2.54) |(.41) |( .48) |( .42)

Score Adjusted, v = 0.03 |-.87 1.83 |-.88 32
Equation (2.3) (1.62) 1( .53) {(.50) |( .27)




TABLE 2 - LEUKEMIA DATA SET
For the various methods, parameter estimates are listed, along with standard errors in paren-
theses.

Method B B2 B3

Logistic mle 1.31 |-3.18 |2.26
| ( 81) |(1.86) |(.95)

Mallows Leverage, b = 8 |-1.20 [-4.05 [2.24
(.83) 1(235) [(.97)

Kiinsch, b = 18 02 |-18.55 [2.38
(1.08) |(13.25) | (1.17)

Modified Kiinsch, b =8 [-1.22 [-4.20 [2.30
(.84) [(2.46) |( .98)

Copas, v = 0.01 22 |[-22.97 |2.51
(1.34) |(26.50) | (1.62)

Consistent, v = 0.01 .19 -20.27 |2.42
(1.05) |(12.40)|(1.18)

Score Adjusted -1.27 [-3.25 |2.22
v =0.01 (.81) |(1.91)(.98)
Score Adjusted .15 -21.41 |2.47

v =0.03 (1.08) |(13.58)](1.22)




TABLE 3 - SMALL RATE DATA SET
For the various methods, parameter estimates are listed, along with standard errors in paren-
theses.

Method b1 B B3

Logistic mle -2.34 11.05 .07
(.30) |(.54) |( .23)

Mallows Leverage,b =8 {-2.61 [1.49 |-.96
(.34) {(.58) |(.33)

Kiinsch, b = 18 -2.44 11.22 -.85
(33) |(58) |(.32)

Modified Kiinsch, b =8 |-2.68 {149 |[-.96
(.34) 1(.58) |( .33)

Copas, v = 0.01 -233 [1.04 |.05
(-30) {(.54) [(.23)

Copas, v = 0.03 -2.58 |141 -.35
(41) |(.66) |( .15)

Counsistent, v = 0.03 -247 1127 |-27
(.23) | ( 46) |( .20)

Score Adjusted -233 (104 |-.01
v = 0.03 (.30) |(.54) |(.23)




TABLE 4 - FOODSTAMP DATA SET
For the various methods, approximate biases of the parameter estimates are listed. A

indicates lack of convergence.

Method Pr__ B2 B3 Bs

Logistic mle -.487 |.127 |-.027 |.091
Mallows Leverage, b = 8 -463 |.123 |-.027 |.086
Kiinsch, b = 18 -.634 1.197 |-.043 |.119
Modified Kiinsch, b = 8 -.518 {.135 [-.026 |.097
Consistent Misclass, v = .01 |-.529 |.140 {-.033 |.098
Consistent Misclass, v = .03 |-.638 |.179 |-.045 |.119
Score Adjusted, v = 0.03 -.794 }.246 |-.058 |.156
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TABLE 5 - LEUKEMIA DATA SET
For the various methods, approximate biases of the parameter estimates are listed. A “*»
indicates numerical instability.

Method b1 B2 B3
Logistic mle -.103 |-.976 {.270
Mallows Leverage, b = 8 -.107 |-.934 |.269
Kiinsch, b = 18 * * *
Modified Kiinsch, b = 8 -.119 |-.823 |.270

Consistent Misclass, vy = .01 {-.121 |-1.00 |.279

Consistent Misclass, vy = .03 [-.109 |-1.07 |.292

Score Adjusted, v = 0.01 -120 {-1.22 |.326

Score Adjusted, v = 0.03 -.145 |-1.51 |.393




TABLE 6- SMALL RATE DATA SET
For the various methods, approximate biases of the parameter estimates are listed.

Method P B2 B3

Logistic mle -.052 |.041 |-.045
Mallows Leverage, b = 8 -.052 }.042 {-.013
Kiinsch, b = 18 -.070 [.059 |-.015
Modified Kiinsch, b = 8 -.056 |.045 |-.002

Consistent Misclass, v = .01 |-.053 |.042 |-.046

Consistent Misclass, ¥ = .03 |-.064 |.054 |-.051

Score Adjusted, v = 0.01 -.067 1.057 ]-.056

Score Adjusted, v = 0.03 -.088 |.075 |-.071




