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-Minimax Estimation of Vector Parameters

In Restricted Parameter Spaces

Abstract

For arbitrary distributions Py in a k-dimensional space indexed by a p-dimensional
parameter ¢, the I-minimax estimator is derived when it is known that 6 lies in a sufficiently
small bounded convex set in R?. The family I' consists of priors of the form (1—¢)Gy +€Q,

. where 0 < ¢ < gy for some specified €9, Gy is fixed and @ belongs to a suitable family L.
Three choices of £ are discussed: the family of all distributions, the family of spherically
symmetric distributions and the family of spherically symmetric unimodal distributions.
The theory is applied to four speciﬁc' examples, including estimation of a single normal
mean and estimation of a multivariate normal mean. Stein’s identity is used here in a

novel way to check subharmonicity of risk functions.
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1. Introduction

Let X be a random vector with probability distribution Py where § is a p dimensional
unknown parameter. In this article, we consider the problem ofj estimating § under squared
error loss when @ is known to lie in a bounded convex set C in RP. The information that
0 lies in a bounded set is often available in practice. In fact, it may even be argued
that in virtually all real world problems, the parameters can be assumed to belong to
appropriate bounded sets and the standard theoretical assumption that they can take any
value in R? (or such unbounded sets) is really an assumption of convenience. The literature
on estimation of a bounded parameter includes Ghosh (1964), Casella and Strawderman
(1981), Bickel (1981), DasGupta (1985), Berry (1989), Eichenauer (1989a,b), Mintz and
Zeytinoglu (1984), Zeytinoglu and Mintz (1988), Donoho, Liu and MacGibbon (1990) etc.
I'-minimax estimation of the parameter @ will be considered. In the I"-minimax approach,
we assume that the prior G(8) for § belongs to a suitable family . We then minimize,
over decision rules é, the quantity r.(6§) = sup r(G,d) where r(G,§) denotes the Bayes
risk of § with respect to the prior G(8). If T’ iGsEEhe family of all priors, then I'~minimaxity
coincides with usual minimaxity. However, if I contains only reasonable priors which are
considered plausible in the context of a given problem, then a I'-minimax estimator indeed
provides a reasonable middle ground between a classical minimax estimator which may
be too conservative and a subjective Bayes estimator which may lack robustness against
misspecification of prior opinion. For a lucid discussion of the I'-minimax approach and
its relation to restricted risk Bayesian estimation, see Berger (1985); also see DasGupta

and Bose (1988).

We consider the family of priors
I'={G: G=(1-¢)Go +Q}, (1.1)
where 0 < ¢ < gy for some prespecified €q, Gy is fixed and the contamination @ belongs

to an appropriate family £. Three different choices of L are considered:

L, = family of all distributions
L, = family of spherically symmetric priors

L3 = family of spherically symmetric unimodal priors.
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Notice L3 C L2 C L;; it can thus be argued that £, or £3 may be used when prior
information is more precise and £; may be used when it is less precise. For £ = L;,
1 <2 < 3, the initial prior Gy is also assumed to belong to £;. This is clearly reasonable.
A very attractive property of the family (1.1) is that, in general, by allowing a mass of ¢ to
be redistributed in any of a variety of ways, flexibility in the tail of the prior G is achieved.
But notice that if § is known to lie in a small bounded set, the problem of specifying the
tail of the prior is no longer of concern. Thus, in our context, the contamination simply
plays the role of allowing a possibly small mass ¢ to be distributed according to some other
convenient distribution. For results on I'-minimax estimation of a one dimensional normal
mean when £ = £; or when ¢ = 1 and £ = L3 (i.e., when I is simply the class of all
symmetric unimodal priors), see Eichenauer (1989a,b). The principal advantages of our
results are that ¢ is permitted to vary, that we do not need practically any assumption
on the likelihood function and that our results are for parameters of arbitrary dimension.
The flexibility in the choice of ¢ is attractive and indeed has long been considered rather

desirable.

In section 2, we first give a simple result on subharmonicity of risk functions if the
parameter space is a sufficiently small bounded set in RP. We give a few technical lemmas

about subharmonic functions, followed by an explicit derivation of the I'-minimax rules.

In section 3, the theory is applied to four specific examples: estimation of a single
normal mean, estimation of a binomial success probability and estimation of a multivariate
normal mean. In each case, in order to apply the theory of section 2, one needs to check
that the risk function of the Iminimax rule is subharmonic (convex in one parameter
cases); in the normal problems, a novel application of Stein’s identity (see Stein (1973,

1981)) is made for this purpose. Section 4 contains some concluding remarks.

2. Derivation 6f the I'-minimax rule

A principal result needed for derivation of the I'-minimax rule is that the risk function
of the suggested rule be subharmonic. Towards this end, we assume that € lies in a bounded
convex set mS + @y where S is a fixed bounded convex set containing 0 in its interior, and

6o is a fixed point in RP; here
mS + 6o = {mf+0y: § € S}. (2.1)
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Notice that mS + 6o | {60} as m | 0. Thus for small m > 0, mS + 6o is a small bounded
set containing §o. Let G() be a fixed prior distribution on mS + 6, and let 6,,(X) denote

the Bayes rule with respect to G for estimating 6 under sum of squared error loss. Let

R(8,6) denote the risk function of §,,(X) and define
Q(Q, m) = AR(Q’ 6m)

where A(:) denotes Laplacian; we assume g(§, m) exists for all § in mS+§,. The following
theorem is implicit in DasGupta (1985); indeed a number of useful generalizations are also

given in that article.

Theorem 2.1. Assume g(,m) is jointly continuous in § and m at (0,0). Then there

exists mo > 0 such that R(f, 6,,) is subharmonic for § in mS + o for all m < my.

Discussion: Note that the value of my depends on the choice of the prior. It is possible
to write down a set of sufficient conditions under which AR(6, §,,) will exist and be jointly
continuous in § and m at (0,0). However we do not attempt to do it here since that is
not the main focus of this article. What is important is to realize that as long as the
parameter space is sufficiently small, the risk function of é,, will usually be subharmonic;
in any specific problem, one can directly verify how small the parameter space needs to be

for subharmonicity to hold. Section 3 contains a number of such illustrations.

We now give two technical lemmas later needed for the derivation of the I'-minimax

rule.

Lemma 2.2. Let f(§) be a continuous subharmonic function on a bounded sphere 5(8, R)
in R?, where for any r > 0, S(0,r) denotes the sphere of radius r with center at 0. Let
r1 < r2 < R. If m(r) denotes [ f(§)dSr(8) where Sr(-) is the uniform measure on the
surface of S(0,r), then m(r;) < m(rs).

Proof: See pp. 363, Rudin (1974).

Lemma 2.3. Let f(¢) be as in Lemma 2.2. If m*(r) denotes [ f(8)du,(8) where u.(-) is

the uniform measure on the whole sphere S(0,r), then m*(r1) < m*(ry).
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Proof: First assume f is also a spherical function, i.e., f depends on ¢ only through '6.
In this case,

Jf(s)s2=

m*(r) = constant -2 (2.2)

rP
Since Lemma 2.1 implies f(s) is nondecreasing in s, calculus now shows that m*(r) is

nondecreasing in r. If f is not a spherical function, define

he'9) = [ 1(Peyar(P) (2.3)

where I'(-) is the invariant probability measure on the group of p X p orthogonal matrices.

It follows from an easy application of Fubini’s theorem that

[ 1)) = [ @iune) (2.4)

Since h is subharmonic if f is, the result now follows from the earlier case.

We now present the main results. We make no assumptions on the distribution of the

observation X and no reference to it will be made.

Theorem 2.4. Assume 6 belongs to © = mS + §, for some m > 0, where S is a fixed
bounded convex set containing 0 and 6, is a fixed vector in RP. Suppose § has a prior G
of the form (1.1) where £ = £;. Let Q* denote the least favorable prior with respect to
the risk R(§,6) = (1 — 0 )r(Go, 8) + €0 R(8,8) when 6 is restricted to lie on the boundary
of mS+ 6o and let 6*(X) denote the Bayes rule with respect to Q*(6) under this new risk.
Then 6*(X) minimizes Z‘?I)‘ r(G, ), provided R(6,6*) is subharmonic.

Discussion: First notice that a least favorable prior Q* exists if 6 is constrained to lie on
the boundary of the parameter space. Also, note that &* is precisely the Bayes rule under
the original risk R(§, §) with respect to the prior (1 — £9)Gy + £0Q*. The hypothesis that
R(,6*) is subharmonic will usually be satisfied if m is sufficiently small. Evidence for
this was given in Theorem 2.1. Again, we emphasize that in any given problem, one can
directly verify the subharmonicity. Finally, we would like to caution the reader that even
though Theorem 2.4 gives a general method for finding the I'-minimax rule when £ — Ly

and m is small, identifying Q* in a high dimensional problem need not be easy. Finding
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@* in one dimensional situations is a relatively simple task. We will say more about this
later. Finally also note the rather interesting fact that the I'-minimax estimator §*(X) is

really just the I'-minimax estimator for the case € = gq.

Proof of Theorem 2.4: We will prove that for any rule §,

sup (G, §) > sup r(G, §*).
Ger Ger

However,

sup r(G,8) = sup sup [(1—e)r(Go,8)+er(Q,6)]
GEF Qel:l OSESEO

= sup [max {r(Gy, ), (1 — €0)r(Go, 6) +eor(Q, 6)}]
Qcr

1

= max {T(Go,é), sup [(1 —&o)r(Go, ) + eor(Q, 5)]}
QEL,

= sup [(1 —&g)r(Go,6) + eor(Q, )]

QeL,

= sup R(Q) 5)
feo

> sup R(6,6)
AL

> sup R(9,6%)
feoe

= sup R(6, 6*)
feo

= sup r(G, §*);
Gel

here the first five equalities and the first subsequent inequality are trivial; the next inequal-
ity is due to the fact that 6* is (by construction) minimax with respect to the risk R when
g lies on the boundary 90; the following inequality is a consequence of the subharmonicity _
of R(6,6*) (or equivalently, the subharmonicity of R(f,6*)) and the Maximum modulus
theorem, and the final equality follows from repeating the first five equalities in the proof

using 6* for 6.

Remark: In one dimensional problems, if 6 lies in the interval a < 8 < b, the required Q*
is simply a two point distribution @, with mass, say A¢g and 1— )¢, at a and b respectively.

Suppose we denote the Bayes rule with respect to (1 — €¢)Go + €¢Q2 under the risk R by
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6x. One can find the required A\g by computing R(G, 6x) and solving for A that satisfies
max{R(a, ), R(b,6))} = AR(a, x)+ (1 — A)R(b,8)). Of course, one must also check that

R(6,6x,) is convex on [a, ] or that its maximum is attained at the support of Q5,.

Theorem 2.5. Assume § belongs to the sphere S(Q,m). Let § have a prior G of the form
(1.1) where £ = L3. Let Qs denote the uniform distribution on the surface of S (0, m)
and let 65(X) denote the Bayes rule (under R) with respect to the prior Gs(§) = (1 —
£0)Go(0)+€0Qs(6). Then 65(X) minimizes Z}g‘ r(G, 6) provided R(f,§s) is subharmonic.

Proof: By a well known result, it is sufficient to prove that supger r(G, 6s) = r(Gs, 65s).
Towards this end, first notice that § has a spherically symmetric prior Q if and only if it
has the representation

QZT"QI,

where vy is distributed uniformly on the boundary of S(0,1), and 0 < r < m is distributed
independently of u (see Schoenberg (1938)). Denoting the distribution of r by F, we then

have,
supr(Q, és)
Q
= sup Eq(R(9,6s))
= sup//R(G, 85)dS,(6)dF(r)
P
— sup / R(8,65)dS(6)
0<r<m
=r(Qs,ds), by Lemma 2.2.
Hence, 7
sup 7(G,ds) = sup sup[(1 —e)r(Go,és) +er(Q, s))]
Ger 0<e<eo Q
= swp (1 —¢e)r(Go,bs) +er(Qs,ds)]
0<e<Leg

= max {r(Go, bs), (1 — €0)r(Go, ds) + eor(Qs, 8s)}
= (1 —€0)r(Go, 8s) + e0r(Qs, bs)
(since Gy is assumed to be spherically symmetric)

= T‘(Gs, 55),

as was required. This proves the Theorem.



Theorem 2.6. Assume 6 Belongs to the sphere S(0,m). Let 8 have a prior G of the form
(1.1) where £ = £L3. Let Qu denote the uniform distribution on the entire sphere S (0, m)
and let 6,(X) denote the Bayes rule (under R) with respect to the prior G,(§) = (1 —
€0)Go(0) +€0Qu(8). Then 6§,(X) minimizes gtgr)‘ r(G, 6) provided R(9,6,) is subharmonic.

Proof: The proof follows exactly in the lines of the proof of Theorem 2.5 by writing § = rv,
where v is distributed uniformly on the whole sphere $(0,1) and 0 < r < m and v are

independent.

Remark: Notice that for £ = £, and L3 as well, the T-minimax estimator is simply the

I'- minimax estimator corresponding to ¢ = ¢.

3. Examples and Applications

In this section, we will give four examples illustrating the theory of section 2. Interest
lies in finding how small the parameter space needs to be in order that the risk subhar-
monicity holds. Since the results of Section 2 imply that consideration of only £ = ¢,

suffices, we will assume ¢ is fixed in our examples.

Example 1. Let X ~ Bin (n,6) and suppose it is known |0 — 2| < m. Assume 6 has
a prior G = (1 — &9)Go + £0Q, where Q is symmetric and unimodal about % and Gy is
uniform on [3 — m, 7 +m]. This choice of Gy should be taken just as an artifact; but also
observe that for small m, this choice of Gy may indeed be a reasonable initial prior to use.
Theorem 2.6 implies that the Bayes rule with respect to Gy itself is -minimax provided
its risk function is convex for |6 — %l < m. Observe that the exact value of ¢ is rendered
unimportant by choosing Gy to be uniform on % + m. We will denote the Bayes rule with

respect to Gy by 6G,(X), and its value for X = j by d;. Direct computation gives

n

("7 i[5 + m) 2 (5 )i+

dj = =2 : (3.1)

()Y (8 + m)+i4 = (5 — mitit]

I
o

3
|
<

..
Il
o

Computation of R(f, g, ) is simplified by the fact that it is simply a polynomial of degree
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n; indeed

R(6,6c,) = Z(d,- —6)? (?) 7(1—6)"4, (3.2)

(3.2) was analytically differentiated twice and checked for nonnegativity, using MAPLE.
The following table gives the values of m up to which R(8,6¢,) is convex for |8 — %I <m,
for n = 2,5, 10,15, 20.

n 2 5 10 15 20
m 5 315 228 2 .1895
The numbers are indeed quite satisfactory; for small n, such as n = 5, if 8 lies in a

symmetric subinterval of [.185, .815], then the uniform prior Bayes rule is -minimax.
Even for n = 20, the uniform prior rule is I'-minimax if 6 lies in a symmetric subinterval of
[.3105, .6895], a reasonably large interval. If m exceeds the values given above, R(6,é¢,)
ceases to be convex, but in fact for somewhat larger values for m, 8¢, (X) remains I'-

minimax.

Example 2. Let X ~ N(6,1) and suppose [§] < m. Assume again 6 has a prior of
the form G = (1 — €0)Go + €0Q, where Q is symmetric and unimodal about 0 and G, is
uniform on [—m,m]. Again, other choices of Gy such as a normal density proportional to
e~ 5] |6|<m can also be handled. Theorem 2.6 again implies that the uniform prior Bayes

rule 6g,(X) is T-minimax if its risk is convex on [~m, m]. Easy integration by parts yields
6Go (x) =z+ 6(:1:)7

where

¢(m +z) — d(m — z)

o(z) = .
(=) ®(m+z)+P(m—z)-1’ (3:3)
where ¢(-) and ®(-) denote the normal pdf and cdf respectively.
It follows by an application of Stein’s Identity (Stein (1981)) that
R(9, 5Go) =1+ E9[u($)]’ (3.4)
where
u(z) = §*(z) + 268'(z). (3.5)
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Using Stein’s Identity twice more, one obtains

& R(0,66,) = Bolu" (X)) (3.6)

(3.6) enables one to check convexity of R(f,8g,) by doing a single dimensional numerical
integration instead of second order numerical differentiation; notice the latter is consider-

ably harder and often less reliable.

u(z) was again obtained using MAPLE and the expression for §(z) in (3.3). Numer-
ical results show that (3.6) is nonnegative for |§] < m if m < 2.065. Thus, if 6 lies in a
symmetric subinterval of [—2.065,2.065], then the uniform prior Bayes rule has a convex

risk and is ~minimax.

Again, as in Example 1, actually this rule remains I-minimax for a somewhat larger
value of m. The reason for this is that if § ~ Q where Q is symmetric and unimodal,
then 6 has the representation § = uZ, when u ~ u[—1,1],0 < Z < m, and u and Z are
independent. Denoting the cdf of Z by F, we then have,

supr(Q,éa,)
Q

—cup /0 " /_ 11 R(uz)du dF(z), (3.7)

F

where R(f) denotes the risk of 6g,(X) at 6. But (3.7) equals sup 1 [ R(v)dv, since
0<z<m 0
R(6) is symmetric in 6. Thus, as long as L [ R(v)dv is maximized at z = m, (@, ba,)
0
is maximized at @@ = Gy and 8g,(X) remains I-minimax. This was checked by finding

R(v) by using (3.4) and then numerically integrating R(v). Our results indicate that for

m < 2.54, L [ R(v)dv is maximized at z = m.
0

If X has known standard deviation o, the interval should be multiplied by &.

Example 3. In each of the examples above, the exact value of €y becomes immaterial for

the determination of m. We now give an example where the value of ¢y does matter.

Let again X ~ N(6,1) with |6] < m. However, we now let  have priors of the form

G = (1 —e0)Go + €0Q, where Q is only assumed symmetric about 0. We assume Gy is
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uniform on [~m,m|. Again, if Q* is the prior assigning mass % at each of +m, then the
Bayes rule with respect to (1 — €0)Go + €0Q* is I-minimax provided its risk function is
convex on [—m, m]. The value of m upto which this convexity holds now depends on the

value of € and is given below for some selected values of &g:

0 .005 .01 .05 1

B L

2.065 2.064 2.04 1.95 1.85

This seems to suggest that as ¢ increases, the region of convexity decreases.

Example 4. We will now give a multidimensional example. Let X ~ N,(6,I) and suppose
||0]] < m. Assume € has a prior of the form G = (1—€0)Go +e0Q, where Gy is the uniform
distribution on the sphere § (0,m) and Q is spherically symmetric unimodal. It follows
from Theorem 2.6 that the Bayes rule with respect to G is I'-minimax if its risk function

is subharmonic on the sphere S (0, m).

Denote || X||? by v; familiar calculations, using integration by parts, give

Vo (P16l < m|8 ~ N(g,I))
P(llell <m|f ~ N(z,1)) °

bGo(z) =z + (3-8)

where V,(-) denotes gradient with respect to z.

Using the facts that [|6]|2 is a noncentral y? with p degrees of freedom and noncen-
trality parameter v if § ~ N(z,I) and that a noncentral x? distribution is a Poisson (v)

mixture of central x? distributions, (3.8) simplifies to

d6o(2) = (1 + h(v))z, (3.9)
where e
h(v) = 2N(S;) ; (3.10)
and o .
N(v) = Z © Z,!” b(i), (3.11)
with -
b(s) = %ﬂ)/o B R (3.12)

11



By an application of Stein’s Identity (Stein (1981)), one gets
R(Q’ 6Go) = EH [u(v)]7

where

w(v) = p + 2ph(v) + vh*(v) + 4ok (v). (3.13)

In order to check if R(§,ég,) is subharmonic, we need to check the Laplacian of

R(8,6¢,) for nonnegativity. However, it follows from Stein’s Identity again that
AR(0,6c,) = Eg[Au(v)], (3.14)
ie., A(-) and Eg(-) can be interchanged. By direct computation,

Au(v) = 4vu" (v) + 2pu’(v). (3.15)

Again, direct computation gives
u'(v) = h*(v) + B'(v)[4 + 2p + 2vh(v)] + 4vh"(v),
and
u"(v) = B'(v)[4h(v) + 20k’ (v)] + 1" (v)[8 + 2p + 20h(v)] + 4R (v).

A’ k" and A®) are in turn given by

R'(v) = %ﬁ;—) - %h2(v)

3)(y
B (v) = % - gh(v)h’(v) - %ha(v)
and
3 2N(4)(V) " 3 ! 2 ! 1 4
h3)(v) = O 2h" (v)h(v) = SB'(v)[A(v) + h'(v)] — gh*(v). (3.16)

The idea is to compute N(v) and its derivatives and then sequentially compute h, h', K"

and (), which are then used to compute u’ and u", required for (3.15).

Finally, notice that computing N'(v) is facilitated by the fact that

(o]

M) =3 4 1) - b)),

2!
=0

12



and simple integration by parts yields the simplification

e F(p)EH

b(i +1) — b(3) = T

(3.17)

Similar simplifications occur for N" etc. Finally, (3.14) was computed numerically by a
single numerical integration [ Au(v)f(v)dv using MAPLE, where f (v) was obtained using
the formula

exp (—(v +16]1*)/2)
T2 20+0)/2 /o

/O'U (eXP(HHH\/r_') + eXp(——”HH\/F)) 7'—1/2(’0 _ 7_)(1)—3)/2 dr.
(3.18)

The value of the radius m upto which risk subharmonicity holds depends on the dimension

flv) =

p and is given below for p < 6. Notice the apparent monotonicity in p.

D 1 2 3 4 5 6
m 2.065 3.09 3.68 4.10 4.445 4.74

4. Concluding Remarks

The emphasis in this article is on applying the theory to some commonly occurring
situations. We find it encouraging that our methods apply to multiparameter situations
even if we go beyond the computationally convenient frameworks such as conjugate pri-
ors. The calculations are, of course, necessarily harder because of the restriction on the

parameter.

Other choices of £ may also be considered; for techniques that apply to the case
when £ is the class of star-unimodal or symmetric and star-unimodal distributions, see
DasGupta and Delampady (1990). Another practically important question is how does
the least favorable prior change when the parameter space is not sufficiently small so that
subharmonicity arguments are no longer valid. See Vidakovich and DasGupta (1991) for

results in this case.
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