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When reporters asked one of the county commissioners her response to the mayor’s
objection, she said in a voice of pained innocence, as though her statement would
clearly prove how illogical the opposition was,

“Their claim is that they don’t have all the facts, and therefore are
opposing this. They have all the facts that we ha.ve!’_’ :

Missoula, Montana,
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ABSTRACT

Burt, Jameson. Ph.D. Purdue University, May 1989. Towards Agreement: Bayesian
Experimental Design. Major Professor: Leon J. Gleser.

An experimenter wishes to design an experiment to settle an inferential ques-
tion about the value of a parameter . The data X,,...,X, from such an ex-
periment will be viewed by a class I' of Bayesians, where each such Bayesian v
has a prior distribution 7.,(6) for 8. Denote by As the event: “the collection of
all samples Xi,..., X, for which all Bayesians in I" agree to the correct decisioﬁ
concerning §.” Using his own prior distribution 7.(8), the experimenter wishes the
preposterior probability P(Ag) to be at least as large as a prespecified constant e
(0<e<l).

In the case of hypothesis testing, this paper gives necessary conditions for the
existence of a sample size NN, achieving thése goals, and also gives some sufficient
conditions for N, to exist. Interestingly, P(Ay) need not be monotone increasing
in n, so that observing data additional to the experiment can cause P(Ay) to
decrease from above € to below e. Consequently, to better settle the correct decision
concerning 8, the smallest value of N, such that P(Ag) > € for all n > N, is sought.
Bounds and numerical algorithms for N, are given. Some results extending the
theory to estimation problems involving 8 are also presented.

Restrict the event A4 so that each Bayesian, in addition to choosing the correct
decision, also satisfies his own goal for a low posterior expected loss using that
correct decision. This definition of A extends the theory, reducing to the original

theory through an induced set of new priors in the case of hypothesis testing.



1. INTRODUCTION

One goal of any inquiry—and certainly of an experiment—is that truth be
found and, usually, that the truth found out be agreed upon by others. An early
adherent of such ideas was C.S. Peirce (Dewey(1938), page 490), a mathematician

who wrote to the layman.

C.S. Peirce is notable among writers on logical theory for his explicit
recognition of the necessity of the social factor in the determination of
evidence and its probative force. The following representative passage
is cited: “The next most vital factor of the method of modern science is
that it has been made social. On the one hand, what a scientific man
recognizes as a fact of science must be something open to anybody
to observe, provided he fulfills the necessary conditions, external and
internal. As long as only one man has been able to see a marking upoﬁ
the planet Venus, it is not an established fact. ...On the other hand,
the method of modern science is social in respect to the solidarity of
its efforts. The scientific world is like a colony of insects, in that the
individual strives to produce that which he himself cannot hope to

enjoy.”

Peirce (Murphee(1964)) emphasized the use of a consensus in a scientific commu-

nity,

Given Peirce’s definitions of truth—namely, that to which a commu-

nity of investigators would give assent, based upon the results of their



cooperative inquiry—it clearly follows that ...“a claim to truth is a

public claim which only a public can verify.”

He also emphasized that the appropriate consensus is that resulting from observa-

tions in the long run, Peirce(1878),

“The opinion which is fated to be ultimately agreed to by all who
investigate, is what we mean by the truth, and the object represented

in this opinion is the real.”

The last two decades have seen a burgeoning of interest in the “social” aspect
of inferences. What inferences represent a consensus for several people? How can
the degree of consensus be measured? How can the opinions of others be used for
the inference of one? The ideas of some researchers about these questions are given
briefly in this introduction. Here are mentioned classical approaches to choosing
an experiment, Bayes approaches to choosing an experiment, and approaches to
reaching a consensus with or without an experiment. The last section of this intro-
duction gives an overview concerning the choice of a sample size for an experiment
so that a unanimous consensus results: the interest of this paper.

To facilitate this introduction, the following conventions will be used when ap-
propriate. The notation introduced here will usually differ from that of attributed
papers. Inferences or decisions are to be made concerning the value of a parame-
ter 6 in the parameter space ©. When this introduction discusses consensus, the m
members of a group I are to reach a consensus concerning #—a consensus repre-
sented by a probability distribution 7, or a decision @, possibly a randomized
rule (though our notation will not account for this). The group members have

prior densities

771(0)’ 7!‘2(0), o 17rm(‘9)



with respect to some dominating measure u(f) on ©. The members may also have

the loss functions, for some decision a in the action space A,
L]_(a, 0), Lg(a, 0), oo Lm(a, 0)

When an experiment will be performed, the data arise out of the sample space X
through the probability density f(z|f) with respect to the measure A(z). A sample
of size n uses the corresponding notation X™*, f(z,|0) and A(g,). An action “a”
might then be denoted a(g,). An ezternal observer—a decision maker, an arbi-
trator, or a fictitious though altruistic supra-Bayesian—may oversee the inference
for a consensus. Denote the external observer’s prior density by 7.(9). He may be
concerned only about his own decision, not some consensus. He then has his own
loss function L.(a,d). When the external observer considers the group members’
probability distributions as data, albeit of an unusual nature, call the group mem-
bers exzperts. When the external observer considers the group members’ welfare,
call the group an audience (or a community). The notation P(-) indicates that
the considered probability uses an implicit parameter with the value ¢ or uses the
distrii)ution ¢. For example, P, (-) indicates that n = ng, and P,(-) indicates that

the probability density v is used.

1.1 Classical sample size.

A frequentist decision approach, in the absence of an experimental cost assess-

ment, chooses a sample size n giving some small risk K. Denote the risk by

R(a,0,n) = / L(a(z,), 8) £(2, 10)dA(z,) -
A minimax approach seeks the sample size

no = inf {n > 0 : inf sup R(a,0,n) < K}
a€A 4€0



should such an ng exist.

Hypothesis testing

When the parameter space © is viewed as two sub-spaces O and O, through an
action space A containing two corresponding actions ag and ay, then the decision
problem is a hypothesis testing problem. When the subspaces ©, and ©; have
disjoint convex hulls, one version of this problem chooses a sample size ny through
a consideration of two points 8y € @ and #; € ©, which are each near to the other
subspace. If the loss for the wrong decision a( z,) =t is C;, 0 otherwise, the loss

function may be written

0 ifa(g,)=:iand € O;
C; ifa(zg,)=7and 9 ¢ O; wherei=0,1.

L(a(g,),0) =

For O restricted to the two points 6, and 6., the sample size for the risk bound K
is

(1.1) no = inf {n >0: in£ {ma.xR(a,B,-,n)} < K} .

a€ 1=0,1
For some nﬁmbers 0<a<land0<f<li,let C,=1/a Co= 1/(1 - p)
and K = 1. Then (1.1) can be rewritten
ng = inf{n >0: Py (a(;gn) = 1) <

a
and Py , (a(gﬂ) = 1) >  for some action a} .

In this form, we see that ng is the smallest sample size that can be used for an a-
level test having power 3.
Estimati

When L(a(z,),d) = (a(z,) — §)?, then :gﬁ R(a,0,n) is the expected mean

square. For some problems (eg, for the Gaussian distribution),

inf R(a,d,n) = inf sup R(a,f,n) forallfcO.
a€A a€A €@



A small expected mean square K is sought through the sample size n,.

Let I(-) denote the indicator function. When L(a(g,,),8) = I {Ia(,:gn) - 6| > d},
then R(a,0,n) = B (]a(,agn) -9 > d). This problem seeks that the width of
a 100(1 — K) percent ;:onﬁdence interval be no larger than 2d. The minimax

approach chooses the sample size

ng = inf{n >0: inf sup Py, (|a(;gn) -4 > d) < K} .
a€A 0€0

1.2 Single Bayesian sample size.

Design for linear models

The primary problem of Bayesian experimental design in linear regression mod-
els is not so much the sample size as the design matrix X, x, to use (this subsection
uses notation in fidelity with the literature). A set of parameters 0y; is estimated

by way of an experiment, having the design matrix Xjyn, modeled as
Yox1 = Zxkekxl + €enx1

where Xiyxn = (Z1, 2, ... Z,) is the design matrix, E(enx1) = Onx1, Cov(enx1) =
0*Inxn, E(0%) =03, E(fix1lo) = E(8kx1) = p, and Cov(fx1) = Akxk -
Interest in estimating c¢T# with interest (in cxx;) expressed through some mea-

sure v(ckx1) leads to minimizing (for least squares linear estimators):

(1.2) e |(v) (R+xx7)7]

where Yrxx = [(ccT)dv(c) and Rixi = 03A~. Minimizing (1.2) is equivalent
to minimizing the Bayes risk when the priors and likelihoods are normal. The
optimality criterion to minimize (1.2) is called variously 1-optimality, Bayes L-
optimality (Lg-optimality), and Bayes A-op'tima,lity (Ap-optimality; particularly
when % = Iix). Bandemer, Nither and Pilz (1987) survey Bayes experimental

design for linear regression models.



The ¢-optimal design points z; minimizing (1.2) depend upon the sample size n,
unlike classical designs. However, Chaloner (1984, Theorem 2) showed (for contin-
uous designs) that the number of distinct design points z; constituting a ¥-optimal
design matrix need be no more than r(2k — r + 1)/2, where r = rank(vixx); no
more than k(k +1)/2 4+ 1 for actual discrete designs.

Sample size

Bayesian decision theory, in the absence of a cost of experimentation, chooses

a sample size giving some small Bayes risk K. Denote the Bayes risk of the

decision “a” by
Rian) = [ [ L(a(,),6) f(2,16) . (6) dA(z,) du().
Then ng is that sample size for which
' 223 R(a,ng) = r7fl>—i(1)1 31615R(a,n) <K.

Denoting the indicator function by I(-), let g be some metric on a(z) — 6 and

let d > 0. One common loss function for estimation problems is
L(a),0) = I{g(a@) —9) < d}.

Adcock (1987) considers a multinomial distribution f(z|g) with k classes (ie,
8 = Okx1), using the conjugate Dirichlet prior density for 7.(g). He uses met-
rics like g(z) = z'’Mz for some positive definite matrix M, and like ¢g(z) =
max |riz;| for some r; > 0. He calls C(g,) = {0 1g(acz,)—0) < d} a tolerance re-
gi—on, either ellipsoidal or hyper-cubic with his metrics. Letting 0 < € < 1 and m.(+)

be the marginal distribution of g,, then Adcock seeks a sample size n for which

~

/X,, P(ge C(2,)]2,) ma(g,) dM(z,) > €.



Reworded, Adcock seeks a Bayesian confidence interval that is of fixed width and,
while not of some minimum confidence level, that has on average a 100¢-percent

confidence level.

1.3 Opinion-Preference pools (no experiment problems).

Suppose that an opinion or preference must be made with the information at
hand, though a sample may have already been collected. Although some of the
research in this area uses odds ratios and preference relations, this review considers
only group members fitting the usual Bayesian paradigm with prior pfobability
distributions and possibly with loss functions. The priors and loss fuﬁctions of the
observers represent information that plausibly can form/improve some opinion or
some decision. Four aspects delineate the research into opinion-preference pools.

First, the point of view may be categorized as follows.

I-1. external observer- An external observer uses his own prior (and possibly loss
function) to pool the group’s opinions, to pool the group’s preferences, or to

make his own decision.

2. group only- The group’s opinions/preferences are pooled without some single
guiding Bayesian prior. Often, an “axiomatic” (see below) approach is used
for the group to assure that its actions are rational: Bayesian. Without
an external obserVer, this problem has some deficiencies. If the axiomatic
approach, having its own deficiencies, is not used, then only approaches even

more ad hoc remain.

Second, whether decisions are to be made may be exhibited as follows.



II-1. aggregate probabilities- Only an opinion pool, sometimes called a consensus

of opinion, is to be made.

II-2. make decisions- A preference pool is to be made, usually by the use of both

the loss functions and the Bayes priors.
Third, the approach used to solve the problem is one of the following.

IIT-1. aziomatic- A set of reasonable (though on retrospect often unreasonable)

assumptions are used to deduce a formula for pooling.

III-2. modeling- In the most common models, the distribution of the group mem-
bers’ priors are modeled by some probability distribution (1, 72, ..., Tp|0),
possibly accounting for priors that are not independent of one another. Mod-
eling generally treats the group members’ priors as just data, rather than as

probability distributions.

Sometimes, both the axiomatic and the modeling approaches lead to the same
pooling form, eg, the linear opinion pool 7, = iz, a;im; for some nonnegative o;
summing to 1. The modeling approach may then provide values for the parameters,
parameters that the axiomatic approach only requires to exist.

Fourth, whether data have already been observed may be exhibited as follows.
IV-1. entirely a priori- No data can be separated from the group members’ priors.

IV-2. data- Some data may already have been observed by the group members.
The likelihood function for the data may be different for each group member.
Or, with the same likelihood function, the data observed may ha&e been
different for each group member. Or, with the same likelihood function

the same data may have been observed by all the group members. Some



researchers try to extract the likelihood from a group member’s prior. When
group members differ only because of the different data that they have seen,
not because of intrinsically different priors, this extraction of the likelihoods

results in unanimous agreement.

Simon French (1985) calls the “group” “aggregation of probabilities” problem
the text-book problem. For the text-book problem, a summary of the group must
be made for unknown ofher(s) in unknown circumstances. French also considered
the “group” “decision” problem.

deFinetti (Genest and Zidek (1986), page 130) showed that if L; = L, =
+++ = Ly, then a “decision” based on an average opinion of the “group” members
is better than a decision based on an average of the individual group members’
decisiéns. Consequent separate pooling of the group ‘rnembers’ priors and of the
group members’ loss functions have resulted from many “axiomatic” approaches
to a group’s decision. Simon French (1985) critically surveys many of the opinion
pools, especially those arising from the axiomatic approach.

Considering separate pooling of priors and losses in the group decision problem,
Hylland and Zeckhauser (1979) investigated 'the fbllowing fundamental axiom.
Weak Pareto Principle: If

/ Li(ay, 6)m:(8)du(8) > / Li(az, 0)m:(6)du(6)

- Jor all group members i = 1,2,...,m, then action a, is preferred to action a, (ag
would not be a,).

When the group is to behave rationally—ie, as some Bayesian would—Hylland and
Zeckhauser show (under mild conditions) that the Weak Pareto Principle leads to
an undesirable rule: a dictatorial decision which ignores the members’ priors ;.

Raiffa (1968) reasons that the Pareto Principle may not be fundamental, especially
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when the group members agree for disparate reasons. Keeping the Pareto Principle,
Weerahandi and Zidek (1981, page 88) allow the group to act irrationally, arriving
at the non-Bayesian group decision rule a, which minimizes

m
where Za,- =1,

=1

(13) 1[/ 2o Oym(@du(o)]

o
i=1 _ ’
for some nonnegative ; of any origin. When ay = a3 = -+ = apm = 1/m, (1.3) is
called the Nash product.

- Many workers in this field have concluded that an “axiomatic” approach is best
replaced by a “modeling” approach, usually necessitating an “external observer”.
Simon French (1985) calls this the expert problem. The opinion-preference pool
resulting from a modeling approach is then considered to validate or invalidate

pooling axioms in retrospect. A modeling approach typically updates an external

observer’s prior probability on the parameter space to
To = Tu(O|71, 72, . Tm) o Tu(0)9 (71, 72, . . . T |0)

as in Genest and Zidek (1986, page 120). Genest and Schervish (1985) do this for
an external observer who knows only the moments (at least one moment) of the
group members’ distributiéms.

One approach to a “group” “aggregation of probabilities” has the group mem-
bers engage in dialogue, called the Delphi technique when the group does not
physically meet. A formalized variant of this is the DeGroot-Lehrer “model”,
Lehrer and Wagner (1981). Here, each group member i elicits a weight wi; >0
representing how much ¢ would follow the opinion of j, where > 7=y wi; = 1. Group
member ¢ also has, for some single event, the probability 7r,(°) which he will update

(

to 7r,-k) on the kth iteration of dialogue between the group members. On the kth
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iteration of dialogue, ¢’° probability for the event is formalized to be
m
) = w gt = ,; wymy

Under mild conditions, there is one 7, to which limg—teo 7r,§k) = w. for every
group member :. In a variation of this problem, an opinion pool (“consensual
probability”) like = results from similar “dialogues” in which the weights w;j are
now allowed to vary at each stage k. Lehrer argues that any vagueness in a group
member’s prior is represented in the credence, through %, that he gives to others’
opinions. For an example, Lehrer considers “the definition of some word.” For a
proper definition of a word, person ¢ defers to some person j, who himself defers
to some person j’ who is unknown to i. Consequently, some expert who may
have put a definition in a dictionary is largely deferred to. The DeGroot-Lehrer
scheme iterates, adding information to the individuals but not to the group. The
DeGroot-Lehrer model demonstrates that just;without an experiment—group
members’ judgements of each other lead to agreement, though not necessarily to
a correct agreement.

Besides what actual examples would indicate, this discussion indicates that no
single fofmula for opinion-preference pooling is universally suitable. Some hopes

for opinion-preference pools are expressed by Genest and Zidek (1986):

Ignoring practical problems of implementation which are the object
of current research, the Bayesian program would seem to be entirely
satisfactory as a normative theory for the individual. However, groups
of individuals are left stranded; no concept equivalent to the classical

notion of objectivity is available to them.
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Weerahandi and Zidek (1981,1983) propos.e such a concept. Their
idea is related to what Dawid (1982a) defines and calls “intersubjectiv-
ity.” According to this definition, the opinion or conclusion reached by
an individual from the results of an experiment would be called “objec-
tive” or bperha,ps “intersubjective,” if the same conclusion were reached
by a succession of individuals faced with the same results. But just
as the classical notion of objectivity is challenged by inevitable varia-
tions in the results of repeated experiments, so intersubjectivity néeds
to contend with variations in the conclusions derived by the succession
of individuals viewing the evidence. This calls for an analogue of the
law of averages, that is, a method of “averaging” the possibly diverging

opinions of a group of analysts and a limit theory for the long run.
Simon French (Genest and Zidek (1986, page 138) responded,

Intersubjectivity is about consensus in the strict sense of that word,

that of unanimous agreement.

That is what this thesis will address.

1.4 Experiment induced consensus.

Consensus viewed as persuasion

Jackson, Novick and DeKeyrel (1980) consider an external observer (“advocate”
of his own position, with prior 7.) who wishes to convince a single group member
(“adversary” with prior 7,; the number of group members m = 1) of the advocate’s
opinion (or position) through an experiment. For example, the advocate may wish
that his level of achievement 6 be conveyed to a teacher (adversary) through an

exam of sufficient size n to convince the teacher that § > 8. The advocate would
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then want m1(0 > 6p|z,) to be large. As the advocate is assessing probabilities

preposterior and as g, is a random sample, then the advocate might assess

(1.4) /; 71 (8 > Bolz, ) ma(2,) dN(g,)

where
m(2.) = [ £(2,16)7.(6) du(6).

Jackson, Novick and DeKeyrel call the marginal probability density

(1.5) raa(0) = [ mi(lg,)ma(2,) dA(2,),

the advocate’s “preposterior density” for the adversary’s posterior density. The

probability (1.4) re-formulates to

(16) 71 ((80, +00)) = /O:wr..l(o)du(o).

Generally, the authors consider the rate at which the advocate’s preposterior
density for the adversary, 7..1(6), converges to the advocate’s prior density =.(6).
They measure this .rate of convergence through the corresponding rates of conver-
gence of the mean and variance of ..;(6) to the mean and variance of .(8). The
mean and variance are themselves the best measures of the convergence rate when
appropriate loss functions are used. Notice that the probability m,. ((00, +oo))
converges to . ((00, +oo)), not 1 since the advocate is not sure of 4.

Consensus measured by “votes”

“A group of statisticians or experts making inference from a common
source of data would normally be expected to approach a consensus
in their inference, even without communicating among themselves, as
the amount of data increases indefinitely. This obviously assumes not

only that no members of the group make mistakes, but also that none
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have adopted initial beliefs so prejudiced that they preclude a sound
conclusion. In terms of formal Bayesian inference one would expect
consensus to form if the members of the group make inference from a
common data set, if they have a common model or likelihood function,
and if none of their prior beliefs totally excludes any possible values of

the parameters,”

Owen (1985, page 1036). Owen restricts his attention to consensus without the
group members (“experts” in Owen (1985)) necessarily reaching correct decisions.
Owen’s comment above is true for the approach to a unanimously correct decision—
see Theorem 5.2 on page 109 of this paper. Considering % finite hypotheses, Owen

considers group member 4’s inaccuracy to be measured by the Bayes risk:

inf | / Lz n>,9)f(£n|9)7r~,(0)df\(z,.)dﬂ(a),

a€EA

where © and A contain A < co corresponding elements and L is 0 for a( z,) =
8. Owen considers group member v’s personal confidence in his decision to be
measured by

rgleaxr.,(el ) fory=1,2,...m

(Owen actually puts no finite limits on the size of the group I'). Let My(z,,) be
the number of members making the decision §. Owen measures the amount of

consensus by

(1.7) maxw ,
€6 m

the proportion of the group (at time n) who have chosen the majority decision
as—in contradistinction to the probability that all group members make the same

decision,

6e@ m

AN
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relative to some measure on X™. Owen shows that the “amount of consensus” con-
verges to 1, the “personal confidence” converges to 1, and “inaccuracy” converges
to 0—all at the same (suitably defined) rate as n increases. Owen (1985) explains

both the main interest and the conclusions of his paper,

“Since accuracy implies consensus, but not vice-versa, one would expect
that consensus forms at a rate at least as fast as accuracy, and probably
faster. This partly explains the extent to which these results [in Owen’s
paper| are counter-intuitive. However, a more important reason for
the counter-intuitive nature of the results is that experts are likely
to communicate, and this would accelerate consensus with or without

‘political’ forces coming into play.”

Dickey and Freeman (1975) was seminal to Owen (1985). Dickey and Freeman
consider a simila.r'_problem with the finite parameter space © = (6y,6,,... ,0,).
However, the breadth of prior distributions (distribution vectors (py, pa, ... p,)) of
the members in the group I are accounted for in an unusual way—indeed, I" cannot
be finite (m cannot be finite). The priors of the group I' are inventoried by the
Dirichlet distribution (not a “hierarchical” prior). The posteriors (vectors) of the
group I' have a corresponding inventorying distribution. This inventorying distri-
bution facilitates finding the proportion of the group I' who choose the same action
(ie, & € ©). This proportion is Dickey and Freeman’s measure of consensus [The
sheer number or breadth of posteriors (vectors) prevents a unanimous agreement,

whatever the sample size]. Dickey and Freeman (1975) comment,

“We do not discuss the data-sampling process, but it should be clear
that the theory, if so enriched, would offer a possible model for the

evolution of knowledge in a community of scientists ... The concept,
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introduced here, of the coherent transformation of a population of
prior probabilities may have uses in experimental design when a scien-
tist wishes to perform an experiment that will have a high chance of
bringing members of the population into close agreement. He might,
for example, choose a sample size large enough to make the variance
of a posterior probability in the modeled population less than a pre-
determined value. Alternatively, if the experimenter is himself con-
vinced that § = 1, he may choose to continue observation until at
least 100(1 - é) percent of the modeled population have posterior prob-

abilities, ¢;, within the range from 1 — ¢ to 1.”

1.5 Towards agreement: Bayesian experimental design.

In this paper, an experimenter wislies to design an experiment for the unani- .
mous agreement of a community of Bayesians (or audience) I' about the value of
the parameter 6. The observers v in T’ will make inferences about the value of ¢
through their prior densities 7.,(4) on © and data Z, from the experiment. Denote

by Ay the event
Ap = {gn : all observers in I' choose the correct decision| 0}

that the data g, from the experiment results in a unanimous and a correct decision
corresponding to the parameter §. Using his own prior distribution 7a(8), the

experimenter wishes the preposterior probability of correct agreement,

o= [, [, F(&alOm.(0) dA(z,) du),

to be at least as large as some prespecified constant ¢ (0<e<).
The goal of the experimenter can be restated in terms of the aspects delineating

opinion-preference pools earlier.
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The point of view is that of an “external observer,” here called the exper-
imenter, who evaluates the observers’ decisions. The point of view is also
that of the observers in the audience—the individual “members,” not the
“group”—who can make their own separate decisions, possibly spoiling the
experimenter’s wish for unanimity. In one sense, the observers’ decisions are
only facilitated by the experimenter, himself only providing odds for their
decisions. By allowing unanimity to fail (with probability 1 — p,), whose
point of view is taken becomes muddled. This is elaborated upon later in

this introduction.

While he doesn’t really make a decision himself (unless he is a member of
the audience), the experimenter wants the observers in the audience (“group
members”) to “make decisions” for themselves. Choosing an experiment for
unanimous agreement, the experimenter does not intend to compromise any

observer’s decision.

Since the experimenter anticipates unanimous agreement, the approach used
to solve his consensus problem is one of experimental design, not an “ax-

iomatic” or a “modeling” approach.

Whether or not “data” have already been observed by some group members,
the experimenter intends that more “data” will be collected through some

experimental design.

Viewed another way, the experimenter wants to satisfy the Weak Pareto Prin-

ciple: by satisfying its antecedent with a correct decision, and by satisfying its

conclusion (consequent), with a high probability € anyway.

Here is another perspective when T includes the experimenter. The experi-

menter seeks that a correct posterior decision be made using his prior = which can
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only be refined to a class of priors {m.,,v € I'}. This is a robustness interpretation:
a planned posterior Bayes robustness via experiment. As the robustness will only
occur with a probability of p,, the decision a(g,) is robust with respect to the

sample g as much as it is with respect to the prior =.

n

As mentioned,;the experimenter could wish to settle an inferential question
for a community of observers. Equivalently, changing only the evocative words
when the experimenter is also a member of the audience I, the experimenter could
wish that the Bayesian employer (customers, clients, boss, or board of directors)
make the same decision that the experimenter makes—rather like the persuasion
of Jackson, Novick and DeKeyrel (1980). Or symmetrically, the experimenter
could wish that he conform his own decision to his employer’s decision through an
appropriate experiment. This symmetry in the experimenter’s perception of the
decisions that will be reached (with a probability of p,) shows that the perspective
of the experimenter is one of “agreement,” not one of “persuasion.”

A strong interpretation ensues when the parameter space is binary, © = {6, 6, }:
when there are two hypotheses, both simple. For exposition, let the audience T’
comprise two observers with the priors mo = 7(6o) = 0.95 and m, = w(6,) = 0.05,
and let the experimenter’s preposterior probability p, be at least ¢ = 0.99. The

experimenter’s aim may be rendered:

The experimenter wishes that the correct decision—whichever it is—be

made when the odds are 19 to 1 against that decision.

For the experimenter, this wish will occur with a probability of at least .99.
Many correct agreement problems can be reduced to equivalent problems with
just two—though often extreme—observers, as above. This is the case for all

simple-simple hypothesis problems.



19

Even in simple-simple hypothesis problems, p, behaves unexpectedly. When
the density f(z|6) is Gaussian, the fifth example in Table 3.1 on page 50 exhibits
such behavior. There, the experimenter would prefer taking no samﬁle, for which
the probability of agreement pn = .80, than to chance his audience seeing the
outcome of a sample of size n = 30, for which pn = .79. Observing data additional
to the experiment can cause p, to decrease from above ¢ to below e.

This behavior of p; 1ea.cis to the following judgment about the appropriate
sample size to lead the audience to a correct agreement. When the audience will

see no data—from whatever likelihood function—that
(i) has not been seen a priori,
that
(ii) is in addition to the experimenter’s data,
and that
(iii) impinges upon the audience’s inferential question,

then the appropriate sample size is the smallest one giving correct agreement with

an adequately high probability:
N¢=mjn{n:n20, p,.,Ze}.

Alternatively, when the above conditions are not met, for example, when other
experimenters will be performing similar experiments, then the appropriate sample
size should give a correct agreement no matter how much data, will be seen by the
audience:

N:'£min{n:n20,pmZeforallmZn}.
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This gradation of the experimenter’s goal can be expounded upon. In a diluted
form, the experimenter could wish just that the observers agree. It is this weak
agreement that Owen (1985) approached while also using a weakened measure
of consensus that did not demand unanimous agreement. He measured consen-
sus by the proportion of observers agreeing (see (1.7) on page 14 of this thesis),
thus avoiding the need for an experimenter’s evaluation of any agreement. Uni-
fying some possible experimenter’s goals: just “agreement” graduates to “correct
agreement,” agreement to the correct decision (the experimenter uses the sample
size N, ); which itself graduates to “correct agreement at an arbitrarily large sample
size” (the experimenter uses the sample size N). In the last example of Table 4.1
on page 93, the observers unanimously agree for every sample. However, they may
agree to the wrong decision for some samples. Thus, p, = 1.000 for n = 1,2 and 3,
but p, = .84 for n = 100, while p, > .95 beyond n = 1000. Consequently, Ngs = 0
but N3 ~ 1000.

Section 4.6 considers the sample sizes that. the experimenter would choose
for sub-audiences Iy of the audience I'. The sample size N, for the audience T
may be larger than the maximum of the corresponding sample sizes for the sub-
audiences T of pairs of observers. In other words, there may be some sample size #
at which the probability of agreement is large for each pair of observers in T. Yet,
that same sample size & may not yield a large probability of agreement for all of
the observers in T'.

Bounds and numerical algorithms for the experimenter’s sample size are given
for hypothesis problems. Simple-simple hypothesis problems yield bounds on the
sample size in closed mathematical form. For a composite hypothesis problem
with a Gaussian likelihood, the formula (4.72) on page 92 gives a crude closed

form bound on the sample size. For simple-simple hypothesis problems, when the
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likelihood is Gaussian, a necessary condition that p, not be monotone increasing
in n is that the audience agree a priori: 7, > 0.5 for all ¥ € T, or else 7y < 0.5 for
all ¥ € T'. In some other problems, p, can be constant on an interval of possible
sample sizes n, p, can lack a certain “continuity” (at n = 0), and p, can change
its monotonicity several times: not just two times.

The experimenter’s goal of correct agreement is extended. The experimenter
wishes that each observer, in addition to making a correct decision, also satisfies
his own (observer’s) goal for a low posterior expected loss using that correct de-
cision. Chapter 5 is devoted to this extension in the case of hypothesis testing.
There, the extension is reduced to the experimenter’s original problem—by replac-
ing each prior with three induced priors, doppelgingers if you will. The audience I
seemingly increases threefold (page 105). In a special case of this extension, the

experimenter wishes that each observer have a large posterior probability:
m~(0lz,) >( forsome( >0.5 andforallyerl.

Some extensions to estimation problems are also made in Chapter 6.



2. TWO-ACTION PROBLEMS

2.1 Formulation of the problem.

We begin our study with two-action problems. Here, two hypotheses Hy, Hy
are under consideration. About these hypotheses, the experimenter can obtain
the statistical information of n independent observations X, X,--- , Xn. The
common (marginal) distribution of these observations is a member of a paramet-
ric family of distributions indexed by a parameter §, 6 € © C R!, and having
densities f(z|f) with respect to a dominating o-finite measure A(z) on a sample
space &'. If hypothesis Hp is true, the parameter 8 belongs to a subset ©, of ©. If
hypothesis H, is true, 8 belongs to ©;, = O ~ O,.

The choice of experimental design in this context reduces to that of choosing
the sample sizen, n = 0,1,2,---

Once the sample size n has been chosen, and n observations Z1,ZL2,...,Tn Ob-
tained, the likelihood function for 4 given the sample z, = (z1,22,...,2,) is

z,19) = Hf(:c,|0) for 0 € O.
i=1
This data is presented to an audience (collection) I' of Bayesian observers. An);
particula.rrobserver 7 in I' is assumed to have a prior density .,(8) for 6 over ©
relative to a dominating o-finite measure u(). Each such observer may also have

a loss function L,(a, ) defined on the action space

A = {ao, a1} = {choose Hy, choose H;}
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and ©. However, it is shown in Appendix A that under reasonable assumptions this
added structure is unnecessary, and that we can assume without loss of generality

that the loss function for all observers is the 0—1 loss function:

1 fa=ag, §€0, or a=a;, 0 €0
(2.1) L(a,8) = ° ' ' °
0 otherwise.
For this loss, it is well known that the Bayes decision for observer « is to select

‘hypothesis H; if the posterior probability of H; exceeds 0.5. That is, if

22w (Hilg,) = [ma(2)] 7 [ (@l (0)du(e),  fori=o,1,
where

My () = [ £ 10)7:(6) ),
then observer v chooses hypothesis Hp if m,(Ho|g,) > 0.5, and chooses hypoth-
esis Hy if my(Hi|g,) > 0.5. If ,(Holzg,) = 7 (Hi|z,) = 0.5, observer 4 can
randomize arbitrarily over the actions a; = “choose H;”, i =0, 1.

The experimenter wants all observers in his audience T to choose the correct
‘hypothesis. However, since the decisions of Bayesians who randomize between ag
and a; are unpredictable, we assume that the experimenter is conservative and
excludes cases where an observer reaches a correct decision by randomization.

Thus, the experimenter wants the data to belong to one of the following two sets:

A = {g;n : all observers in I" choose H,-}

(2.3) {2.:m(Hilg,) > 05, allyin T},  fori=0,1.

The experimenter has his or her personal prior density 7«(8) for 0. Thus,
the experimenter’s probability of obtaining data g, leading to agreement of all

observers at the correct decision is

(2.4) z W RIENDLX0 )d(z,) du(o),
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where A(z,,) = [T, A(z:) is the product measure on X" obtained from A(z). For
a given probability ¢, 0 < € < 1, the experimenter wishes to choose n such that

(2.5) _ Pn 2 €.

When there is more than one sample size n for which (2.5) Lolds, the experimenter

will use the smallest one,
(2.6) N, = min {n:pn>e}.

The Experimenter as an Observer

The experimenter may want to be included as a member of the class T' of
observers. To do this, and yet keep the distinction between experimenter and
observer, we can assume that there exists v in I' such that m,(8) = =.(9), all

0 0.

The Choicen =20
The experimenter has the option of taking no observations. In this case, each

observer if pressed to choose would select the hypothesis H; for which his or her

- prior odds
(2.7) 7o (H;) = /e T (8)du(6), i=0,1,

exceeds 0.5. Thus, these observers agree on a single hypothesis H; only if (again
excluding randomizers) 7.,(H;) > 0.5 for all ¥ € I. However, even if all observers
agree on hypothesis H;, the goal (2.5) cannot be achieved by the experimenter

for n = 0 unless the experimenter’s own prior probability

(28) m(H) = [ .(6) du(0)
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exceeds e. Consequently, a necessary and sufficient condition that (2.5) holds
for n = 0 is that

(2.9) Ty(H;) > 05, allye€l'  and T.(H;) > e.

for some ¢, ¢ = 0,1. When this condition is met, the experimenter lets the a priori

agreement of his audience stand, and takes no data (N, = 0).

Obdurate Bayesians

If any observer v in I assigns prior probability 1 to one of the hypotheses, and if
the experimenter’s prior probability for this hypothesis is less than ¢, then Pn < €
for all n = 0,1,---". To see this, suppose for example that Ty (Hy) = 1 for
observer ¥o. In this case, observer 7o always chooses Hj, regardless of the sample

size, and consequently Ao = ¢. Thus, from (2.4),

oo = [ [ FRalO)m(0) dr(z,) du(6)
< [ L Fzal0)aN(z,)] 7.(6) du(o)
- /e 7(6) dp(8) = m.(Hy)

and if 7. (H1) < ¢, it is impossible to have p, > €, regardless of the sample size n.

In consequence, it is assumed that no observer in I is obdurate. That is,

ASSUMPTION 2.1.
(2.10) : 0<m(Ho) <1

forallv eT

(and hence also 0 < 7(H;) < 1, all v € I'). Otherwise, it is impossible for the

experimenter to find a design (sample size) such that (2.5) holds.
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Although Assumption 2.1 is necessary for the existence of an n such that (2.5)
holds, this condition is not sufficient in general. An illustration of this assertion

will be given in Chapter 3. See also Section 2.3 of this chapter.

2.2 Some simplifications.

The major difficulties in determining a sample size n satisfying (2.5) are

(i)  The integral (2.4) defining p, is multidimensional, with the dimension in-

creasing with n,
(ii) the events A; defined by (2.3) are possibly infinite intersections
Ai = () {2, : (Hilg,) > 0.5}
~erl
and thus can be irregular in form. (Indeed, A; may not even be measurable. )

However, in special cases, considerable simplification is possible.

Reduction of Dimensionality

For example, the problem of having the dimensionality of the integral (2.4)
increasing with n does not occur if all the functions 7 (Hi|g,) depend on g_ only

t.hrough a p-dimensional vector function T}, = T.(z,) of z,.. In this case

(2.11) (Hilg,) = Qn(Tn), fori=0,1, yeT,
and

(2.12) Ai={t:Qu(t)> 0.5, all y € T}, fori=0,1.
Thus,

(213) pn= 3 [ [ o) dXG)au(0)

=0
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where the events A; are now subsets of the p-dimensional range T (T is a function
of n when X is discrete) of T}, and where f,(¢|0) is the density function (and A(t)
is a dominating measure on T') for T,, = Tn(g,,) obtained from the density f( z.10)
of the sample (Xj,...,X,). The integral over t in (2.11) is now p-dimensional
regardless of the‘va.lue ofn,n=12,...

Often, (2.11) holds for some functions Q;,(-) because a p-dimensional sufficient
(or Bayesian sufficient) statistic T, exists for the family {f(z|9) : § € ©). For

example, if ©¢ and O, consist of single points, ©; = {6;} i = 0,1, then

f(leol)
Tn = ,;1 F(zil0o)

is a one-dimensional sufficient (Bayesian sufficient) statistic — see Chapter 3. For
-another example, suppose that {f(z|f), § € O} is a p-parameter exponential
family: |
(2.14) f(|0) = exp{T(z) - c(6) + d(6) + S(z)}Ip(<)

where a - b denotes the inner product of the vectors a, b and I B(+) denotes the
indicator function of the event B. In this case
(2.15) T, =Y T(X)

i=1
is a p-dimensional sufficient statistic for 4, and n = ¢(9) is the p-dimensional
" natural parameter of the exponential family.
The following is a special, but interesting, case where (2.11) holds, and yet no

sufficient statistic of dimension less than n need exist. First, in general, we may

define the conditional prior density of § given H; for observer ~:

[7r.,(H,-)]'17r.,(0) , if§ € ©;
0 , if 0 & 0,

(216) iy =
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where 7, (H;) is defined by (2.7), 1 = 0,1. Thus,
(2.17) 1(0) = oy Ho Yo (8) + (B )1(0).

Now consider a class of ky density functions uﬁ-o)(G), J=1,2,..., ko on O, and a

class of k; density functions ug-l)(G), J=12,... k on ©,. Suppose that

Tiy(8) = Zd§2 u{)(8)

=1
where kj(,'y) >0allj=1,...,k, and Zf':l diy =1, ¢ = 0,1. That is, for each
observer v, the conditional density x:,(6) of 8 given that H; is true is a finite
mixture of u; )(0), u,(c?(ﬂ), ¢ = 0,1. It then follows that

7y (H) E d¥)m

- (218) (Hilg,) =
E 77‘7(H ) Z d(') (f)(
1=0 i=1
where

m{(g,) = /é.- (2, 10)u$? (6) du(8) .

Let
m(,o)(g ) .
Ay MheRi=lek
T, = Ta(g,) = m) z.)
z;ikn—l! ) whenj=k0+1,..-,k0+k1—1'
1 ~n ’

Then it is straightforward to show that =,(H;|g,) satisfies (2.11) with

Tn = (Tnla teey Tn,ko+k1—1), .

However, {f(z|6), 8 € ©} can be the family of Cauchy densities with location

parameter §; that is,

1
f(z|0) = Ty Py on —oo < < oo.
In this case, the order statistics based on the sample z, =(z1,...,2s) are known

to be minimal sufficient. Thus, we have an example of (2.11) being satisfied even

when no sufficient statistic of dimension less than n exists.
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Further Simplification

Let
(219) V; = ‘/l(gn) = II’GIFW’Y(HJ%n) ? fOI' Z = 0’ 1'
Yy

If is easily shown that
(2.20) A; = {Vi>05} C A; C {V;>05)}

Assume that Vo, Vi are measurable functions of g,, n = 1,2,---. IfTis a
finite set, this assumption is always correct (indeed, in this case {V; > 0.5} = A)).
In general, V5 and V; are measurable under relatively weak regularity conditions.
However, exposition of such conditions takes us too far from our main theme. It
is usually easier to verify measurability directly in each specific application.

If Vo, V] are measurable, let
G (v/6) =P {V; < v},

be the cumulative distribution function of V;, i = 1,2, n = 1,2,---,all 9 € O.
Corresponding to the set relation-(2.20) is the probability inequality
1
(221) S [ -6 Es0)] m () du0) < pu <
=0 ¢

5 /e._ [1 - GIM(0.5-16)] 7.(6) dp(6),

1=0
where

G (v—-|8) = 1i¥nG£”>(w|e).

Notice that Vo, V; are scalar random variables. Indeed, since m.,(H:|g,) is

between 0 and 1 for all v € T, it follows that

0V, <1, fori=0,1, n=1,2,--- .
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If we can find Gg")(-v), t1=0,1, foralln =1,2,-.., (2.21) gives us a computable
(by computer, if necessary) way to bound p,. Indeed, finding n such that
1 | ~
(2.22) pn= % /@ Py(A;)m.(6) du(0) =
1=0 §

5 [, [1=60518)] 7.(6) du(e) > «,

i=0

gives us an upper bound for the value of n needed to achieve (2.5) — that is, to
make p, > €. When I is “closed,” 5, = p,. |

The above results look simpler than the original problem, but obscure the
fundamental difficulty of actually finding Vj, V; for each n and obtaining the cu-
mulative distribution functions of these random variables. Further, as we will see
in Chapters 3 and 4, even when both of these tasks can be done, there are still
complications in computing §,. Further, there are some unexpected and subtle

philosophical problems that arise in determining a sample size n.

2.3 A theoretical point.

It is worth noting that in some special cases of two-action problems (notably
the case @y = {6o}, ©1 = {6,}) it is possible to determine prior densities 65(8),
61(0) on O such that '
U Jo,(2,10)5:(9) du(o)

Y Jo £(2418)6:(6) du(8)

If there exist 7o, 7, in I such that

(2.23) for:=0,1.

7 (0) = 6:(9), for both 7 =0, 1,

then we can characterize observer v, as being the most difficult observer in T
to convince about the truth of Hy, and observer 71 as being the most difficult

observer in I' to convince about the truth of Hy. If no such observers o0, Y1 exist,
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we can “close” I by adding observers with priors §o(6), 6;(8) to I'. If T is “closed”
' (fL = A;; or can be “closed,” A; C A;) this way,

(2.24) Ai = {Vi> 05} = {6(Hilg,) > 05}, fori=0,1,

so that the experimenter can ignore all observers in I' except for the extreme
observers with the priors §o(#) and 6,(8). That is, I' can be treated as if it contains
only two members.

Sometimes (again see Chapter 3), no member of T is obdurate, but 80(0) or
61(9) correspond to obdurate observers. That is, we can have 0 < 7y (Ho) < 1, all
4 €T, and yet

60(Ho) =0 and/or &;(Ho) =1.

If this is the case, the discussion in Section 2.1 shows that it may be impossible
for the experimenter to find a sample size n such that Pn 2 €.

A generalization of the situation described above is as follows. Assume that
for each n =1,2,--. , there exists a ﬁnite partition Bf"), cen, B(M") of X" and prior
densities 6§;)(0)_on ©, 1=0,1, j=1,...,M, such that
| Jo, f(2416)6:(0) du(0)
Jo F(2,10)6:3(6) du(6) ’

Then, observers with priors 6;;(4) are most difficult to convince about the truth

(2.25) Vi

on g, € Bj(n) .

of H; when data g, in BJ(-") are observed. (Note: We can allow M to also depend
onn.) Ifforalln=1,2,---allj=1,...,M and i = 0,1, there exists an observer
'y,(]" ) such that

7 (0) = §M0), aldeeo;,
we say that I is “compact.” Otherwise, we can “compactify” T' by adding observers
with priors 6,(;‘), t=0,1, j=1,---,M, n=1,2,--. toTl. Consequently, if

we know that the desired sample size n is no greater than some N, 1 < N < oo,
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we can treat I' as if it were a finite collection of observers, even if originally I" was
assumed to be uncountable.

Although such “compactification” of T' is of some theoretical interest, it does
not really simplify the problem of choosing n, since to verify the existence of
priors 6,(]" )(0) satisfying (2.25), we need to either obtain Vj, i = 0,1, or at least
know some properties of V;. (In this sense, our argument is somewhat circular in
nature.) However, our discussion does suggest the potential for simplifying two-
action problems in which a large collection T' of observers is hypothesized. We
have also indicated in passing that (2.10) is not, in general, enough to insure the

existence of an n such that p, > e.

2.4 Priors in monotone likelihood ratio families have two extreme ob-

servers.

We present a class of problems for which there are two extreme observers with

priors §o(9) and 6,(#). We make two assumptions,

ASSUMPTION 2.2. The parameter space ©q is to the left of the parameter
space ©1. That is, 8y < 6; when 8, € Oy, 6, € O;.

We introduce the notation “<” to denote a monotone likelihood relation be-

tween two densities. That is, for two densities g; and g2,

(2.26) N1 <92 if is non-decreasing in y.

2(y)
91(y)

Similarly, define g, > g; when g; < g,. For an index v € B C R!, we say that

{9+, ¥ € B} forms a monotone likelihood ratio family when

(227) 9n =Gy, OF gy > v, for all T,72 € B.
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We say that this is a non-decreasing monotone likelihood ratio fainily when

(2.28) Gy = Gya for all vy < v, € B.
Equivalently,

9+(y3)

9v(y2)

is a non-decreasing function of 4 whenever y, < ys. To ensure that extreme priors

exist, we make

ASSUMPTION 2.3.

(a) The audience space T' can be mapped one-to-one into a subset of R.

(b) The audience’s priors {ny, v € '} form a non-decreasing monotone likeli-

hood ratio family.

With this assumption, whenever 6; < 05,

7r.,(93|§n) - f(z,103) 7y (63)

my(0lg,)  F(2.102) 7 (02)

is a non-decreasing function of 4. So {=,(8|z,), v € '} forms a non-decreasing
monotone likelihood ratio family. [Note: Let {f(z]9),6 € ©} form a non-decreasing
monotone likelihood ratio family and consider that “z, < ¥ ” means z; < y; for
every ¢ = 1,2,...,n. With Assumption 2.3, the distributions =, (8|zg,) satisfy the
formal relation (2.27) for a non-decreasing monotone likelihood ratio family in the
three senses involving any pair of the three variables v, 4, or z,]. Consequently,
for ;1 < 79,

(2:29) T12(00) < 74 (©0)

and

(2.30) T2(Ool2,) < 7Ty (Oolz,)-
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Let
v- =infy and v, =supn.
~er ~el’

When T is “closed,”

(2.31) 80(0) = 7, (0) and 6,(9) = m.,_(6)
and
(2.32) 8y < 1y < bo.

Whether or not I' can be “closed,”
(2.33) Jlim 7,(80) < m,(0p) < Jim 74(O0) for every v € T
and

(234) Vo = lim 7(Bolz,) < m(Golz,) < lim m(Oolz,) = 1-TA.

2.5 An interpretation of the experimenter’s goal.

Above, the experimenter sought that the correct hypothesis Hy or H; be chosen
for any 7, v € T'. Equivalently, he sought that the correct hypothesis Hy or H; be
chosen robustly — robustly with respect to the prior 7. That is, the experimenter
can view 7 as belonging to a class {r,, v € T'} of possible priors whether or not
such a class derives from an audience. With this interpretation, the sample size N,
will produce a robust sample — not a robust decision procedure per se — with a
probability p, of at least . The experimenter plans for posterior Bayes robustness
via experiment.

We now turn to some special cases of two action problems. In Chapter 3,
we treat the case where Oy and ©®; are both simple'(G),- = {6;},: = 0,1). In
Chapter 4, we consider one-sided testing problems with special attention to the

case where {f(z|0), § € O} is a one-parameter exponential family.
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3. SIMPLE VS. SIMPLE HYPOTHESIS TESTING

3.1 Introduction.

In the context of the two-action problems considered in Chapter 2, it may be
the case that @9 = {6p}, ©1 = {61}, so that the parameter spaces corresponding
respectively to hypotheses Hy, H; each contain one point. In this simple vs.
simple hypothesis testing situation, each observer’s prior distribution =.,(8) on ©

is determined by a single number

7y = 7y(Ho) =1 — =, (Hy), for vy €T
We assume that no observer is obdurate; thus,
(3.1) O<my <1, forallyeT.

If a sample g, = (z4,...,Z,) is presented to observer ~, that observer calculates

his or her posterior probability

7('»,f( zn |00)

m(Holg,) = T f(2,100) + (1 — ) f(%,]61)

where

f(z,10) = f_[ f(z:]0), with 6 = 6, 0, .

1=1

Observer - decides in favor of action aq = “decide Hy is true” if =, (Ho|z,) > 0.5,
and decides in favor of action a; = “decide Hj is true” if m,(Ho|g,) < 0.5.
If 7(Ho|z,) = 0.5, the observer can arbitrarily randomize between the two ac-

tions.
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The experimenter’s prior distribution on © is determined by 7. = m.(Hp) =
1—m.(H;). From the experimenter’s perspective, the probability that all observers

in I arrive at the correct decision is

62 pn= [ Sl + (-7 [ 200,
where
Ao = {~,. my(Holg,) > 0.5, allye r},

(3.3)
A = {gn :7y(Holg,) < 0.5, allye r}.
The simple vs. simple two-action problem permits all the reductions mentioned

in Chapter 2, Section 2.2. For example, for n > 1, a sufficient statistic for

{f(2,.10), 0 = 6o,0:} is

f(Xi |91)]
3.4 = T, = ) In
ey (&) = B |50
and
1
@9 (%) =
Ty
Also,
1
(3.6) Vo = infm,(Holzg,) = T ioeTe
where | _ing
_ — infr,
lo = sup [1 m’] = = < )
vel | Ty ;Ielf‘m’
while
. 1
(3.7) Wi = infr,(Hg,) = 1 —supm(Holg,) = TTLa
where .
— supm.,
| = inf [1‘”’} = — €l
vel'{ my sup T

~er
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The random variables V3, V; are the posterior probabilities of Hy, H; for two

Bayesian observers having prior distributions determined by

(3.8) T, = ixg"m, = 7,(Ho) = 1 —m (H)

and

(3.9) Ty = supwy = m,(Ho) = 1—r,(H),
~er

respectively. As discussed in Chapter 2, Section 2.3, we can “compactify” L, if
necessary, by adding two observers to I' with prior probabilities =, 7, respec-
tively, for Ho. These two observers are the most extremely opinionated, and the
experimenter need only concentrate on these two observers in order to design the
experiment. [Note: It is possible that one of these two observers has the same
prior probability for Hy as the experimenter. That is, the experimenter may be a
member of I', and have one of the two extremes of prior opinion in I'. As mentioned
in Chapter 2, this possibility is easily accommodated by the theory.]

Note that although 0 < 7, < 1 for all 7 € T, the collection I' can be large

enough so that there exists a sequence {7 : ¢ =1,2,-..} of observers for which

.either
lim 7., =0,
$1=—+00
or
limm, =1,
1—+00

or both. In this case, as discussed in Chapter 2, if the experimenter’s own prior
probability for Hy satisfies 7, < e or 7, > 1 — ¢, the experimenter cannot find a

sample size n such that p, > ¢. Consequently, we make the following assumption.

ASSUMPTION 3.1. 0<r, <7, <1.
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Frc;m Assumption 3.1, it follows that
(310) O<llslo<00.

It now follows from (3.2), (3.3), (3.6) and (3.7) that

(3.11) Pn = w.]%o {T.<c}+(1- r.)]%l {T, > a1},
where
(3.12) =-—In(lp) =In [1 ILWL] , ca=—-In(l})=In [1 :rku} .

Note that it follows from (3.10) that

—0<gg<c <.

3.2 Existence of n such that p, > ¢.

It is easily seen that no observations need to be taken if 7, < % and 7, < 1—g¢,
orif m, > % and 7, > e. In the former case, all observers in I’ will choose action a
in the absence of data, and the experimenter’s probability that this action is the
correct one is pg = m.(H;) =1 — 7, > €. In the latter case, all observers in T’ will
choose action ag in the absence of data, and the experimenter’s probability that
this action is the correct one is po = 7.(Hp) = 7. > €.

In order that observations provide information about the truth of hypotheses

Hy and Hy, we make the following assumption.
ASSUMPTION 3.2. The parameterization of f(z|0) is identifiable.

‘That is, for some measurable set .4 C X for which A\(4) > 0, we have f(z]6o) #
f(z[6;) for z in A.
As already shown, we can assume without loss of generality that there ére

only two observers v, and v, in I with respective prior probabilities 7, and =,
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for Hy (or, equivalently, for 6y). The experimenter may have prior probability =,
for Hy included within the interval [r,,7,], or m. may lie outside of this interval.
The latter case has some resemblance to Jackson, Novick and Dekeyrel’s (1980)

adversarial setting, but the goals are different.

A Frequentist Approach

One way to approach the problem of determining a sample size n such that
pn 2 € is to solve a frequentist problem. That is, find a sample size n as small as

possible such that both of the following inequalities hold:

BO(AO)=P90{Tn<CO} > €,
Pel(A1)=f;1{Tn>cl} > €.

(3.13)

It will then immediately follow from (3.11) that p, > e.

The above approach is clearly conservative, but has the merit of providing a
convenient algorithm for finding n. Suppose that the distribution (particularly the
cumulative distribution function) of T}, is known under 8, 6y, for all n >1. In

this case, one can simply start calculating
F, (Ao) = F{9(co—), F, (A1) =1-FY(a)

. forn =1,2,--., increasing n in steps of 1 until (3.13) is satisfied for the first time
(Here, F{O() is the c.d.f. of T}, under 6o, F(V)(-) is the c.d.f. of T, under 6,). The
existence of such an n is guaranteed by the following theorem, which also provides
a way of obtaining a value for n when the distribution of T, is unknown, or difficult

to calculate.

THEOREM 3.1.  Let Mi(t) be the moment generating function of

L = In[f(=|0:)/ f(=|00)]
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under 6;, 1=0,1. That is,

(3.14) M:;(t) = /X [;Ei{zg} f(z]6;)d\(z), fori=0,1.
Let
(3.15) M = ir;(f)'Mo(t).

Then M = 0 iff f(z|6) and f(z|6,) have disjoint supports. Otherwise, there is a

unique to, 0 < t9 < 1, for which
(316) 0< M = Mo(to) = M1(to - 1) < 1.

Moreover, if we let

or M =0
(3.17) N= for
(In M)~1[In(1 — €) + min{coto, ca(to—1)}  otherwise,

then N > N, and the inequalities in (3.13) hold for all n > N.

PROOF OF THEOREM 3.1.

The case for which f(x|6o) and f(z|6;) have disjoint supports is immediate. Forn =
1, f;o (Ag)=1= 131 (A1) so that (3.13) holds. We suppose for the rest of this proof
that the supports of f(z|6y) and f(z|6;) overlap. The function g(z) = zt, z > 0, is
strictly concave on z >0if0 <t < 1. It is strictly convex if ¢ < 0 or ¢ > 1. Under
Assumption 3.2, Jensen’s inequality—as in Marshall and Olkin (1979, pg 454);

implies that

(3.18) Mo(t) < M(1) =1, when 0 <t < 1,
and that
(3.19) Mo(t) > Mj(1) =1, when t <Qort > 1.

An argument like Bahadur’s (1971, pg 3) shows that My(t) is strictly convex

for 0 <t <1. As Mp(0) = 1, there is a unique

(3.20) 0<to<1
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for which M = My(tp) < 1. Since we presuppose that f(x|6o) and f(z]0:) have
disjoint supports, then My(t) # 0 for finite t. Thus,

(3.21) 0 < M =Mty < 1.

Also,

Considering (3.18), (3.19) and (3.20),
inf Mo(t +1) = Mo[(to—1) +1],

so that
Let

1 [ f(Xil6) 1o
K_ln.[f(XiWO)] , fore=1,2,.--.

Then the Y;® are iid with common moment generating function Mj(t) under 6,
and M,(t) under 6. Further, T, = "%, ¥; has moment generating function M)
under 8o and M7 (t) under 6;. A well known inequality (see Chernoff, 1952) states

that if Z has moment generating function M(t) and c is any real number, then

fort >0

P{Z>c} < eM(3).
Consequently,
(3.23) I':o {Thn 2 a0} < %1>1(t; e MG (t).

Similarly, letting Z = ~T,,
FEATwsa}l = B{-T.2-a} < isfe™M](-t),
or equivalently,

(3.24) Pe1 {Th £a} < infe ™M} (1).

t<0
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From (3.21) and (3.23) it follows that
(3.25) E AT, <co} 2 1—eoM",
Similarly, from (3.22) and (3.24) it follows that
(3.26) FEAT.>ca} 2 1—eato-ym,
Since we showed in (3.21) that 0 < M < 1, then

| 1 —e @M > ¢ when n > N

and

1—ealo-Upm > . whenn > N.

It follows from (3.25) and (3.26) that the inequalities of (3.13) hold whenn > N. O

In Theorem 3.1, M measures the “similarity” of the densities f(z|6,) and f(z|6,).
We mentioned in Theorem 3.1 that M attains its minimum value M = 0 when
and only when these two densities are so different that they have disjoint support.
At the other extreme, M reaches its maximum value M = 1 when and only when

the two densities are not identifiable (are violating Assumption 3.2, which itself

led to (3.16) when M # 0).

Two Direct Approaches

The frequentist approach did not make full use of (3.23) and (3.24) to bound p,

in Theorem 3.1. Through (3.11), we could have bounded p, as follows:
(620 o 21— (migfle MO + (1 - m.)infle M)

However, this bound is difficult to compute and the resulting bound on N, can-

not be put in closed form. Further, for large enough n, the magnitude of the
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lower bound in (3.2.15) is determined by My (¢) and M7{(¢). These are the terms
minimized in Theorem 3.1.

The frequentist approach did not even make full use of the weaker (weaker
than (3.23) and (3.24)) bounds (3.25) and (3.26) in Theorem 3.1. Using (3.25)
and (3.26) in (3.11), we get

(3.28) prn 21— [7r,.e‘°°t° +(1- 7r.)e"°1(‘°‘1)] M™.
Consequently, for
029) N = (2 (In(t - 9 = In [r.em 4+ (1 = m.)eo-0)]

we have N, < N*.
For its theoretical interest, and its occasional utility, we present one further

way to obtain an upper bound on N,. Observe that

1/2

(330)  Mo(3) = Mi(-3) = [[f(l6o)f(alr)]” dA(z) = 1~ 1A,

where
(3.31) H = [ ((f(cl80)l? - [£(zl6:)]/2)" d(z)
is the Hellinger distance between f(z|6o) and f(z|0,). Usingt = 1/2 and t = —1/2

in the first and second infinums of (3.27), respectively, we get

(3.32) P 2 1= [medo +(1—m)ed] (1-1H)".
Consequently, for

333) N = [n(l- gf})]-l <ln(1 —¢) —In[m.e~3% + (1 - w.)eécl])

we have N, < N.
As M measured the similarity between the densities f(z|6) and f(z|6;), here

the Hellinger distance H measures the dissimilarity. H is 1 when and only when
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the two densities have disjoint support, and H is 0 when and only when the two
densities are not identifiable (Assumption 3.2 is violated).

It is straightforward to show that
(3.34) N*<N.

Since H is more easily calculated than M , N is more easily calculated than N
or N*. Any of these bounds N, N* or N can serve as a starting point from which
a backwards search can be made for N..

The next section presents the Gaussian case where X ~ A (6,1). We show

there that M =1 — 1H, so that

in this case.

3.3 An exponential family reduction.

Any simple-simple hypothesis problem is an exponential family problem since

the two densities can be written

(3.35) f(yln) = exp[C(m)T(y)+ D(n) + G(v)],
where

C;(n) _Jo ifg=0

1 ifgp=1,
=[£I

Ty =1 [f(yw)]’

D(n) = o0,
and

G(y) = In[f(y]0)].



45

Whether the exponential family form (3.35) is thus concocted or arises naturally
for some other functions C, T, D and G, we can make the following reductions
to canonical form. For fixed G and T, C(n) determines the density’s scalar D(n).
Since Assumption 3.2 states that the parameterization of f(yln) is identifiable,
then C(0) # C(1). Denoting C(0) by 85 and C(1) by 6;, w.l.o.g. we may assume
that 8y < 6;. The density now takes the form

exp(0T (y) + d(9) + G(v)],

where d() is the density’s scalar. Denoting T(y) by z, we get the canonical
exponential family form

(3.36) explfz + d(6) + S(z)],

where d(0) determines S(z). Our spaces become

©={Cm),C(m)} and X ={T(y)}.

It is well known for exponential families that our identifiability Assumption 3.2
requires that X’ contains at least two elements.

For this canonical form (3.36), we can write the essentials (3.14) and (3.16) for
our bounds N and N*:

(3.37) Mi(t) = exp{t[d(ﬁl) — d(60)] + d(6;) — d[; +.t(01 - oo)]} ,  1=0,1,

?;.28) to = [0 — )" {d"‘ [%@] - 00} ,
where

¢ = {2}
is the inverse function of d'(d) = £[d(6)]. Using (3.37) and (3.38), we get M
in (3.16):
(3.39) M = exp {r[d"}(r) - 6o] + d(6o) - dld=(n)]},
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where
() — (o)
6 -0,

Using (3.37), we get in (3.30):

1 {0+ 6
B40) 14 = o) = exp | LLEAC) g (B 0]

With these simplifications, we now present the Gaussian example.

3.4 The Gaussian distribution example.

Here we consider observations X; from a Gaussian distribution, with canonical
density

(3.41) f(z|8) = exp{ﬂa: —6%/2 - [c*/2 4+ (In \/27)]} :

where z € R, 8 = 65 or 6;. The standard normal density f (z[0) we denote ¢(z),
and its cumulative distribution [Z_ ¢(t) dt we denote ®(z). As a density of the

exponential form (3.36), the density (3.41) has

(3.42) d(8) = —6%/2.
So
(3.43) d~1(8) =d'(8) = -6.

For the derivation of a closed formula for p,, we introduce

(3.44) a = ‘91—'92,
2
C1
A4 - =
(3 5) b 01 —- 00 b
and
- _ Co
(3.46) c = P

where
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and

a=h (1 - WU)

as in (3.12). From their definitions,
(3.47) a>0 and b<e.

Let us now find p,. From (2.4),

T, = n(6; — o) [5_ 0"'2“91] .
From (3.11),

_ - 1 ¢ 8o + 0, .1 0o + 6,
Pn = TP, (X < a— + 5 >+(1—7r,..)Pg1 (X > R + 5 .
Hence

n = n T*’aab’cvn
(348) " Pl )

= mB(ayi — ¢/v/R) + (1 - m)[L — O(=av/m - bjy/m)].

Using the symmetry of ¢, we rewrite Prn as

pr = (L= 7)8(av+b/VR) + (1~ m)lL - (=av/i + e/ V).

Since p, has the same value for the ordered quintuple (7.,a,d,c,n) as for
(1 - m.,a,—c, —b,n), we may assume w.l.o.g. that ¢ > 0.

We now determine the bounds N, N*, and N. From (3.38), (3.39), (3.40),
(3.42) and (3.43),

_ 1. (61 — 6,)?
M—l'-—2H-exp[— 3 ,

and |

[

[==]

Il
[\ e
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Consequently, from (3.17),

N = ﬁ[ln(l —€)+ %min{cO, -—Cl}] ;

while from (3.29) and (3.33),

~

N*=N = W:zT)z[ln(l —€) — 111(7r,.e"%"o + (1 =m,)etx )] .

Table 3.1 presents several Gaussian examples. In the body of this table, p,
is computed using (3.48). Consider the first example, where the experimenter is
a member of the audience. When ¢ = 0.95, the experimenter should choose a
sample of size n = 5. Table 3.2 presents this sample size N, and its bounds N,
N*, N. In the second example, the priors 7, and =, are closer together, while
the parameters 6 and 6, are farther apart. Both of these changes contribute to
larger p, values. In the third example, the priors are further from each other
than in either of the first two examples, and these priors have values symmetrical
about 0.5. With the parameters 6, and 6, closer to each other than in either of
the first two examples, the value of p, is smaller for any sample size n. A larger
difference between the parameters 8, and 4, in the fourth example again results in
larger p, for any sample size n. Just one datum contributes a great amount to the
audience’s agreement here. |

The only difference between the second and the fifth examples is a smaller
difference between the parameters in the fifth example. As expected, at each
sample size n, p, is larger in the fifth than in the second example. However, a larger
sample size need not give a larger probability that all observers will correctly agree:
it need not give a larger p,! The experimenter would rather take no sample, p, =
0.800, than to let his audience see the data from a sample of size n = 40, p, = 0.793.
When € = 0.95, the experimenter should sample n = 266 observations so that Pn

is at least 0.95.
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In the sixth example, the parameters 6, and 6, are far enough apart that any
small sample makes little contribution to the audience’s agreement. The experi-
menter must plan to sample all of n = 29,028 observations so that his audience
will correctly agree with a probability as high as 0.95. With the priors 7, and
7, further apart in the seventh example, small samples contribute even less to
the audience’s agreement than in the sixth example. But with the parameters Bo
and #, further apart in the seventh example, large samples contribute more to the
audience’s agreement than in the sixth example. Thus, a sample of but 974 gets
Pn 2 0.95. The eighth example, like the fourth, presents an audience whose priors
have values symmetrical about 0.5.

The experimenter uses N, = 0 in the last example. In Table 3.2, the large
bounds N* and N for this last example are not germane since the experimenter
always considers whether po > € before considering sampling data, as discussed
in Chapter 2. Also observe that while py > ¢, the probability p, < € for n = 6
through n = 10,000 (when € = 0.90)!

This non-monotonicity of p, is reflected more simply in the probability that a
single Bayesian correctly chooses H;. By an argument like that which led to Pn

in (3.48), if a Bayesian v, has prior 7.,, then

Py, (m1 chooses Hy) = P, [Tn >In (iﬂ_)]

=1 —-Q(—a\/_— b/\/n),

where a and b are as in (3.44) and (3.45), respectively, with

(3.49)

(3.50) a = lInfmy,/(1—my,)]

in the expression for b. This probability (3.49) is smaller for a sample of size n = 1

than for n = 0 whenever b > a: whenever

(3.51) Ty < {1+exp [001——20—0)3]}—1



Table 3.1 p, for simple hypotheses, where X has a Gaussian distribution

S 1(.9 1(.9 .1 1 1 .45000 .0001 3775 .48
Ty 8(.2 .2(.8 9 9 2 .50025 .5500 | .6225 .49
Ta .8(.2 .2(.8 1 .1 2 1.00000 | 1.0000 any .01
181 — o) 2.0(2.0) | 19.0(19.0) 6 3.0 2 .02000 .2000 | 2.0000 .01

n .

— L

0 .000 8 .000 000 .800 .000 .000 .000 .990
1 .493 >.999 .000 779 .800 .000 .000 773 .990
2 755 015 946 .800 .000 .000 892 .988
3 873 . . .055 .985 .800 .000 .000 944 .980
4 .931 .109 .996 .800 .000 .000 .970 .968
5 .962 . 167 .999 .800 .000 .000 .983 954
6 979 224 >.999 .799 .000 .000 991 941
7 .988 . 277 .798 .000 .000 995 927
8 .993 328 . .798 .000 .000 997 914
9 .996 374 796 000 .000 .998 902
10 .998 417 . .795 .001 .000 999 .891
20 >.999 .699 786 .014 .000 >.999 | .813
30 .835 . 787 .038 .000 .769
40 . .906 793 .064 .000 . 740
50 .946 .803 089 .000 .720
100 . .996 .856 .183 .000 . 669
200 : >.999 ' 925 .285 .033 635
300 . 960 342 177 . 622
400 . 978 381 381 616
500 .988 411 .570 612
1000 . 999 .500 956 .611
5000 >.999 714 >.999 659
10,000 . 816 .705
100,000 .999 944

Table 3.2 N, and its bounds, where X has a Gaussian distribution

T, 1(.9 (.9 1] 1] 1 | .45000 | .0001 | .3775 48

e |82 2(.8 91 9| 2 | .50025 | .5500 | .6225 .49

e | .8(.2 2(.8 a1} 2| .2 | 100000 ]| 10000| any .01

161 = 60| || 2.0(2.0) | 19.0(19.0) | .6 [ 3.0| .2 | 0.02000 | .2000 | 2.0000 .01

€ .95 .95 95 | .95 | 95 95 | .95 .90 .90

Ne 5 1 52 | 3 {266 | 29,028 | 974 4 0
N*=N 9 1 91 | 4 | e600| 61,922 | 1521 6 182,657
N 9 1 o1 | 4 [819] 61,922 | 1521 6 187,409
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(using (3.44), (3.45), and (3.50)). A final comment on this single observer example
relates back to.our experimenter’s problem. Should 7, = 1 and the audience T’ con-
tain just one observer «y; whose prior satisfies (3.51), then pg > p;. While p,, need
not be an increasing function of n for a singleton audience I, Theorem B.1 in Ap-
pendix B says that p, must increase when that single observer is the experimenter

himself—if he has 0-1 loss.

To better investigate the monotonicity of p,, the use of (3.48) leads to

don
dn

(3.52) = m.(an + c) explac — ¢*/2n] + (1 — 7.)(an — b) exp[—ab — b?/2n].

The following theorem indicates when p,, is monotone.

THEOREM 3.2.  For Gaussian X, should p, < ppy1 then poim < payms1 fOT

every m 2 0.

PROOF OF THEOREM 3.2.

Consider ¢ > 0. The derivative (3.52) is positive iff

2 _ 12 _ _
exp a(b+c)—c b > an+b(1 7!")] ,

2n an +c¢ T

for which the left side is strictly increasing and the right side is strictly decreas-
ing. Consequently, once dp,/dn is positive it remains positive: p,, always increases
after it first increases. Recall that p, in (3.48) has the sa.me.va.lue if the ordered
quintuple (1 — ,,a, —c, —b,n) replaces (=.,a,b,c,n). Thus, our argument holds

forc< Qalso. 0O

Theorem 3.2 shows that the function p, can dip below €, p,_; > € > p,, but
once as n increases. Consequently, either N, = 0 or else p, > e for any n > N, > 0.
Accordingly, if po < € then the experimenter can find N, by decreasing n from N,

until he finds a sample size m such that pm < €. The experimenter’s choice for the
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sample size is then N, = m + 1. Any of N, N* or N could be used to start this
backward search for N.,.
Theorem 3.2 told when p, is monotone. The following theorem tells when Pn

is not monotone.

THEOREM 3.3 For Gaussian X, (i),(ii), and (iii) below are necessary conditions

that pp > ppy1 for somen > 0.

() (xy —0.5)(x, - 0.5) > 0,
so that the audience agrees a priori (b-c > 0);
(i) _ ] < ForTy 7, < 0.5 (with (i): bc>0)
> THeesey i T > 05 (with (i): be<0);
and
1 + min{,e ifr, <0.5
(ii) n < {ead  ifm,
1+ min{—-%,¢,} if v, > 0.5,
where

(=1 (2-5?)
2a(b+c)+21In[me /(1-ms)]

(%)l—j (—f)J otherwise,

for j =0,1. Moreover, when condition (i) holds, p, > pny1 for some nonnegative

if this is positive
€; =

integer n iff (ii) holds.

PROOF OF THEOREM 3.3.

(i) From (3.47), b < c. Should (i) fail then b < 0 < ¢. Accordingly, dp, Jdn >0
in (3.52).

(ii) Assume that (i) holds. Suppose first that ¢ > 0, then b > 0. As a re-
sult, po = 1 — m.. Because p, increases once it first does (Theorem 3.2), then p,

decreases for some n iff p; — pp < 0. From (3.48),

pr—po = mB(a—c)+(1-m)[l - B(—a—b)] - (1)

= 7T.0(a—-c)— (1 —m)P(—a—b).
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Thus, p, decreases for some n iff

®(—a - b)
®(a—c)+ B(—a—b)

T <
Suppose second that ¢ < 0, then b < 0. As a result, po = .. From (3.48),

Pr—po = mP(a—c)+(1-m)[l—P(~a—0b)]—m.
= —m(l-®a—=c)+ (1 -m)[1 - &(—a- b)].

Thus, p, decreases for some n iff

1 —®(—a—1b)
2—%(a—c)—PB(—a—-b)’

T >

(iii) Suppose that ¢ > 0. From the necessary condition (i), 0 < b < ¢. Since
the first term of (3.52) is positive, p, can decrease only if the second term is
negative: an —b < 0 or n < b/a. Also, Prn can decrease only if the magnitude
of the second term is larger than that of the first term. As 0 < b < ¢ implies

that |an + ¢| > |an — b|, necessarily
(3.53) T.exp(ac — c*/2n) < (1 —m,) exp(—ab — b%/2n).
That is,

n < (¢ -8 [2a(b+c)+2ln(1 T )]'1

— T

if this is positive. If it is negative, then 7 e < (1 — m.)e* so that (3.52) holds

for all n. The case ¢ < 0 is handled similarly. 0O

In (3.48), consider p, defined for real n € [0, +c0) instead of for the integer
sample sizes. Viewed this way, p, in (3.48) is continuous for n € [0, +00). When-
ever (i) of Theorem 3.3 holds, the proof of that theorem shows that the function

pn always decreases for some real n—possibly n € (0, 1).
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The experimenter can have a smaller probability at a larger sample size that
his audience will correctly agree (o, > pn, for m < n) Curiously, condition (i) of
Theorem 3.3 implies that this can occur when the audience agrees a priori. And
never when the audience disagrees a priori! Moreover, should one more observer,
with 7, = 0.5, be in the experimenter’s audience, then larger sample sizes give only
larger probabilities of correct agreement—py,, only increases. On the other hand,
at each sample size n the augmented audience I' (with a 7, = 0.5) has a smaller
probability of a correct agreement p, than the unaugmented audience. When Pn
is not monotone, the audience I' must agree a priori (Theorem 3.3(i)), yet po can
still be less than e. This occurs because
(a) the audience can agree to an incorrect hypothesis a priori. »

Specifically, it occurs because
(b) the experimenter has an a priori probability less than e for the hypothesis

agreed upon a priori by the audience.

3.5 The exponential distribution example.

This example will bring three new aspects to p,:
(a) As a function on the nonnegative reals, p, need not be continuous at n = 0,
(b) pn can be constant for several n,
" (c) pn can change its monotonicity twice.
Here, we consider observations X; having exponential distributions f(z]8). In

canonical form,

(3.54) f(z|6) = exp[zf + In(—0)],

forz >0, 6§ =8y o0r 61, and 9 < 0. Again, we may assume without loss of

generality that 6 < 8y, so that 0 < 6, /8o < 1. From the canonical form (3.54), we
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infer through (3.36) that

(3.55) d(8) = In(-9)
and
(3.56) d-1(8) =1/6.

We now find p,. Let

(3.57) 20n = max{0, (1—061/60) " co—nln(6:1/0)]},
(3.58) 21, = max{0, [(61/60)"" —1]}e; — nln(6; /60)]},
and

zZ tn—le—t
(3.59) I',(n) = dt, for Z >0,

o [I(n)
which is the incomplete gamma. function. We say that ¥ ~ Gamma(e, B) when

"the density of Y has the general form

ﬂaya—le-ﬁy

Since X; ~ Ezrponential(9), then

(3.60)  Xi~ Gamma(L,8]) and  |6] nX ~ Gamma(n,1).

From (3.4) and (3.54),

(3.61) To = (61 — 60)X +1n(6:/65)] .

From (3.11), (3.57), (3.58) and (3.61),

pn = mB (n |a;| X < z00)+(1-m)F, (n |6 X > 210), forn=1,2.-.
Because of (3.59) and (3.60), we can rewrite this

(3.62) pn = Ly (n)+ (1 -m)1-L, (n)], forn=1,2,....
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Table 3.3 p, for simple hypotheses, where X has an Exponential distribution

T .2 A ] BO0D 2ol 4999995 ;) 002 ] .45

Ty 9 9 9 6225 | .52 9 7 7 7 .49

}r. .2 9 .8 6 .99 1 1 1 7 .50

61/60 .5 .6 2 5 .01 .999 .99_J .999 .999 .99

0 0 0 .800 0 .990 0 0 1 0 5

1|} .G44 | .002 | .859 | .313 | .990 632 634 >.999 443 5

201 .102 | .005 | .904 | .492 | .999 .594 .597 >.999 416 .5

3|f 193 } .008 | .935 | .576 |>.999 877 .580 999 404 .5

41 .276 | .012 | 956 | .634 .567 570 .998 397 .500

5{ 347 | .018 | 970 | .678 .560 .564 .996 .392 .498

6 408 | .041 | .979 | .713 .554 .559 994 .388 492

71 462 | 079 | 985 | .743 .551 556 992 .386 .483

8l .510 | .123 | .990 | .768 .547 .553 990 .383 474

9| .552 | .169 { .993 | .790 .545 .550 987 381 .466

10| .590 | .213 | .995 .809 542 .548 .985 .380 458

20} .819 | .540 | >.999| .918 .530 .539 952 371 .408

30f 915 | .715 .961 .525 .535 921 .368 .383

40|} .958 | .817 981 522 .534 .893 .366 .368

50|t .979 | .880 .990 .520 533 .870 .364 357
100 || >.999| .983 > .999 .515 .533 .793 .361 341
200 >.999 : 512 .538 722 359 357
300 .511 .542 .686 .358 379
400 .511 547 664 357 .398
500 510 .551 .649 .357 413
1000 .510 .567 .610 357 464
5000 .516 .641 .561 .361 594
10,000 521 694 553 .365 663

100,000 .563 944 573 .396 941
1,000,000 692 >.999 .694 594 >.999

10,000,000 .943 943 .932

cl] 95 .05 95 05 95 . .90 .90 .95 .99
Ve 38 13 4 - 27 [ 10,810,034 0 0 11,945,995 | 110,439
N* 66 129 9 55 2 23,941,903 | 237,265 | 23,909,922 25,115,831 | 240,598
N 69 127 11 56 2 23,941,903 | 237,265 | 23,909,926 | 25,116,054 | 240,590
N 67 129 13 55 2 32,720,540} 270,762 | 27,327,132 27,327,132 245,225

While p,, in (3.48) depended on 6y and 6, only through the difference of location

parameters, [6; — o/, in the Gaussian case, p, in (3.62) depends on 6y and 8, only

through the ratio of the scale parameters, 6, /6o, in this case.

We now seek the bounds N, N* and N on N,. From (3.37), (3.38), (3.55)

and (3.56),

M

and
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Using both M and #; in (3.17) and in (3.29), we get N and N*, respectively.
From (3.40) and (3.55),

e -1
2 O + 6, o

Using 1 — 1H in (3.33), we get the bound N.

We present p, and the bounds on N, in Table 3.3. In the first five examples, p,,
is strictly increasing. With 7, = 1 in the sixth, seventh, and eighth examples of
Table 3.3, p, in (3.62) and thus in Table 3.3 has the same value if 7, has any
value m, > 7 . Although, in the sixth example pp = 1 if 7, < 7, < 0.5. In this
sixth example, whatever be the functional form of p, on (0, +c0), pe can separately
beOorlasm, >0.50r 7, <, <0.5, respectively. A forteriori, as a function on
the reals [0, +00), pn is not continuous at 0 from the right. Because of this, n = 0
begins one monotonicity change of p,. As a result, this sixth example presents
a ps with two changes of monotonicity. While the last section’s Gaussian example
had a p, both right continuous at n = 0 and limited to one monotonicity change,
our exponential distribution example need have neither property.

The sixth and seventh examples present two changes of monotonicity when = L
is near 0.5. The eighth example is identical to the sixth exéepting that 7, is a
little larger than 0.5. But one change of monotonicity results. The ninth example
is similar to the previous three, having 7. < 1 though. It presents two changes of
monotonicity.

While the Gaussian example was strictly monotone wherever it was monotone,
this exponential distribution example need not be. Consider the last example of
Table 3.3. In (3.57) and (3.58), 2o, and 23, are both 0 for n = 1,2,3. Conse-
quently, from (3.62), po = p1 = p2 = p3 = 0.5 exactly. For n < 3, whatever might.

be the sample z,,, every observer v € ' would choose but one hypothesis, Hy.
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Examples like the sixth show that backstepping n from bounds on N, un-
til pn < € may not produce N.. While this method produces a smaller bound
on N, than N*, N or N, p, must be compared with e—for every positive integer
n less than an N, bound—to be sure that N, has been found.

This exponential distribution example presented three features of p, not seen
in the Gaussian example. We now present a discrete example for which p, has
more monotonicity changes than seen in either the Gaussian or the exponential

distribution example.

3.6 A discrete distribution example.

Suppose that the sample space X of observations has but three
members: X' = {by,b;,b3}. Also, for § = 6§, suppose that the sample density is
specified by

(3.63) f(balfo) = f(b2l60) = f(bslfo) = 1/3,
and for 4 = 4,
(3.64) f(b1}61) = 0.8, f(b2]61) = 0.1, f(bsl61) = 0.1,
Consider
1'30 {Tn < co}

_ p S [t

B f;° {;1 [f(xilao)] < CO}
(3.65) = F {Z:ln [3f(zil6,)] < co} .

We seek to write this probability as an easily recognized distribution. Let

and
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y2 = In[3f(b]61)] = In[3f(bs/61)] = In(0.3).

Let Y be a binomial random variable for a sample of size n of Bernoulli random

variables, each with the distribution

L p=Bw=EB(X=b)=1/3
0 1-p=2F (y2)=F (X =borby)=2/3.

Since y2 < 0 < y3, (3.65) for & is equivalent to the binomial probability for Y

that Y has any value k, 0 < k < n, for which

(3.66) kyr+(n—k)y2 <  o.
- Letting
[]
denote the largest integer strictly smaller than r, (3.66) can be written
(3.67) k< do = l[wll .
1—Y2
Thus,
*do 1 k 9 n—k
3. P (T, = "1(z) (5) .
(569 v = 206 6)
Similarly,
~ (3.69) P(T.>c) = Y (Z) (0.8)%(0.2)~*,
k=dj
where
(3.70) d = — [[_fl—ﬂ]] .
' Y1—Y2

With (3.11), (3.68) and (3.69), we arrive at

(3.71) pn = r.% (:) G)k(§>n-k+ l1-m)3 (Z) (0.8)%(0.2)"*.

k=0 k=d,



60

Now to get the bounds for N,. From (3.14),
0.8]°/1 0.17°/1 0.1]%(1
ity = 53] () + ] G) + il G)

(3.72) Mo(t)

that is,

% [(2.4)" + 2(0.3)7] .

Through its derivative, we can show that Mp(t) is minimized at

(3.73) to = (n8)~ In[-2(In0.3) /(In2.4)] .
From (3.30), -
- (3.714) -5 = M(}) = (VI2+VZ9)/3.

Equations (3.16), (3.17), (3.72) and (3.73) specify the bound N. Equations (3.16),
(3:29), (3.72) and (3.73) specify the bound N*. Equations (3.33) and (3.74) specify
the bound N.

Table 3.4 presents several computations of pn- Ne and its bounds are given at
the bottom of this table.

An explanation about Table 3.4: when r, and 7, are both on the same side
of 0.5, the first three exa.mples have N, = 0. In these three examples, the proba-
bilities p,, of Table 3.4 are still correct when 7, = 7, =0or m. = 7, =1 (violating
Assumption 3.1) while the restrictions on 7, and 7, given in Table 3.4, are met.

The reader might have gathered from the Gaussian and the exponential dis-
tribution examples that, starting from n = 1, pn can change its monotonicity but
once. This conception is quickly routed by a glance at any Table 3.4 example. A
forteriori, in the third example p, changes its monotonicity for every n from n = 1
ton =8§.

If the sample space X’ had contained three distinct elements, by # by # by # by,

the computations of p, would have been much more difficult: the computation



Table 3.4 p, for simple hypotheses, where X has a discrete distribution

9
9

.95
0
.600
.400
718
574
.785
875
.802
.901
.843
919
874
920
.959
935
.966
947
972
.982
972
.985
977
.988
.980
.989
.993
.989
.994
.991
.995
.993
997
.998
.999

1.000
13
33
28
28

61
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of N would have been difficult. Yet, the bound N on N, could easily be obtained
and be used by the experimenter as a sample size satisfying his correct agreement

goals, ﬁn > e

3.7 A remark about the experimenter’s goal.

In its generality, our experimenter’s goal has been to have all observers choose
the same and the correct hypothesis. A special case arises when the parame--
terization satisfies 7, =1 — 7, so that ¢ =¢; in (3.11). Consider the specific
parameterization 7, =1 — 7, = 0.95 and € = 0.99 for exposition. We may then

provide this specific interpretation of the experimenter’s goal:

The experimenter seeks that an observer a priori choosing the correct
hypothesis with a probability of but 0.05 would a posteriori choose the

correct hypothesis.

The sample size N, attains this goal with a probability of at least 0.99. A posteriori,

when this goal is not attained for some sample g

~n?

then z_ leads to one of three

consequences:
(i) thesameincorrect decision is made whether the prior is 7, = 0.05 or 7, = 0.95,

(i) the decision is randomized when the prior is 7, = 0.05 or when the prior

is 7, = 0.95,

or else

¥

(iii) the decision is Hyp for the prior 7, = 0.95 but is H; for the prior 7, = 0.05.

Both the case (ii) and the case (iii) reveal a posteriori (through g_) that “the”

decision is not Hy or Hy, but an “equivocal” decision.
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An imperfect analogy can be made to classical hypothesis testing where a sam-

ple size N, is chosen so that
a=F, (choose H) =0.01 and f= F, (choose Ho) = 0.01.

After g, is observed, a classical decision does not reveal its inconclusive nature
as clearly as the experimenter’s class of Bayesian decisions (r, = 1 — 7, = 0.95)
should g, satisfy (ii) or (iii) above.

The interpretation in Section 2.5 that the experiment gives posterior Bayes
robustness with respect to the prior extends to composite hypotheses in the next

chapter. The interpretation in this section that the experiment can be viewed

through contrary-priors, r, and 7, here, does not extend.
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4. ONE-SIDED HYPOTHESIS TESTING

4.1 Introduction.

We now extend our hypotheses to the one-sided class of composite hypotheses.
Specifically, we consider the two-action problem of Chapter 2 when the parameter

spaces associated with Hy and H; are the composite parameter spaces
(4.1) Qo ={0<b} and ©O,={0>05b}, some b € R1,

respectively. The case where 7.,(0Qg) =0 forally € T, or 7,(0;) =1 for all v € T,
was precluded by Assumption 2.1 of Chapter 2. From (2.4) of Chapter 2, the
experimenter views that the Bayesian observers in his audience will choose the

same correct hypothesis with a probability of

(4.2) pn = z/ 0)7.(O)(2,) du(0)

=0

where

-@m.m=Ln/ﬂ O 0)d0) > [, F(eul0)m(0)du(0), el vin T},
for ¢ # j = 0,1. As in (2.6) there, the experimenter wants to take a sample of size
(4.4 N. = migin: o2 o).

In Chapter 5, we present an experimenter’s more general goal that the observers
will all choose the same correct hypothesis—and, in addition—that each observer

will meet his own posterior expected loss goals. In that chapter, Assumption 5.4
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is analogous to the obdurate assumption, (2.10) of Chapter 2, and is used to
guarantee a finite V.. That assumption reduces to Assumption 4.1 below, in this
chapter. It precludes priors too different, even allowing all parties to choose one
hypothesis a.s. if the experimenter chooses the same hypothesis (although this
trivial case itself is precluded through Assumption 2.1 so that conclusions will

hold for any prior .).

ASSUMPTION 4.1.  For each § > 0 there is a ks > 0 and a Borel set G o,
7.(G) < 8, for which

<™ c0 -G and all v,4' €T,
7!'./1(9)

and .
- / sup 7 (0) du(6) < oco.
G ~el _
Two other assumptions made in Chapter 5, Assurﬁption 5.5 and Assumption 5.6,

reduce to these:

ASSUMPTION 4.2. For each a € X,

Lt )
is a Baire function of §.

ASSUMPTION 4.3.  The parameterization is identifiable on ©.

These three assumptions guarantee, through Theorem 5.2, a finite N, in this chap-
ter’s inelaborate composite hypothesis problem. The Assumption 4.1 is on the
priors, while the Assumptions 4.2 and 4.3 are on the likelihood function f(z|9).
Assumption 4.1 implies that the experimenter can have non-zero mass 7.{b} on the

parameter value b when the observers also have non-zero masses Ty{b} for y € T

on b (m,{b} =1 if 7, {b} = 1).
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For its amenability as a whole family of distributions, we now consider the one-
sided hypothesis problem when sampling from a distribution in the exponential
family. For this family, Assumption 4.2 always holds, while Assumption 4.3 holds
whenever the sample space X' contains at least two points. Consequently, the
experimenter need only check the validity of Assumption 4.1 on the priors when

the likelihood is from an exponential family.

4.2 The exponential family.

In this section, we consider data Xz, k=1,---,n, arising from a distribution
in the exponential family. As in Section 3.3, the random variable X and the
parameter 6 can be transformed so that the sample density of X has the canonical
form

(4.5) f(z]6) = exp[8z + d(6) +8()], forzex, deoO.

As the discussion leading to (2.15) of Chapter 2 mentioned, a sample of size n allows
the reduction of the density in g, to a density in the one-dimensional sufficient

~

statistic T,:

(4.6) Fa(yl6) = exp[n(9y + d(0)) + Su(y)], forye X, 0O€0,

where A, denotes the space of sample mean values. Write the correéponding
cumulative distribution function for X, as | |

F#10) = [ fa(u10) dha(y),

(—00:7]

where An(y) is the dominating measure for f,(y|6) corresponding to the dominating
measure A(Z, ).
Define for y € T

(+.7) hiyiny) = [ et () gu(s),
(=o0,8]
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(+.8) L(yinyy) = [ el (0)qu(s),
(b,+00)

(4.9) hiyiny) = [ elC-owiOlr (g) 4u(o),
(—o00,8]

and

(4.10) Ly;n,v) = / enl0=Du+d®) (9 4y(6) |
(5,+00)

With these definitions, we can represent the posterior probability of Hj by

(4.11) mo(HolZa) = Liyine) /sy moy) + Tlyimy )]
(4.12) Ty(HolZa) = Li(yin,y) /[hi(ysn,7) + h(yin, 7))

The integral [; decreases strictly from 400 to 0 as y goes from —oo to +oo. The
integral I; increases strictly from 0 to 400 as y goes from —oo to +o00. Accord-
ingly, my(Ho|Z») in (4.12) goes from 1 to 0 as y goes from —oo to +co0. Conse-

quently, there is a unique 2, for which
(4.13) _ Ty (Ho|2ny) = 0.5.

When z,, is in A, the range of X,, then Zny can be interpreted as the sample

mean that makes b the posterior median for observer ~.

Let
(4.14) 2, = _1yxg‘ Zney
and
(4.15) 2., = SUD Zpy .

~vel

~ Equation (4.13) allows us to reduce Ag and A; in (4.3) to functions of the sample
mean:

(4.16) Ap = (=00, 2,,)
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and

(4.17) Ay = (2,,,+0).

Furthermore, we can write 5, in (2.22) as

5 = / _w Fa@al0)u(8) dMn (T) du(0)

(4.18) (meot -
v /: Fn(Eal)7.(8) dAn () diu(8)

(b400)
—pn in (4.2) when I is “closed.”

With these simplifications of ©g, ©;, A¢ and A;, we now outline a numerical
program to find p, and N.. Assume that T is finite, possibly by reducing I to two
extreme observers as in Section 2.3. Only d(6), =, (8) with v € T, and 7x(0) need
be known, but we also assume that the cumulative distributions F (al8), 74(—o0, d]
with ¥ € I, and 7.(—o0, a], for “a” in the appropriate domains, are at hand. Here

is the numerical program.

(i) With an algorithm for univariate numerical integration, construct a procedure

for finding I and I in ({.7) and ({.8).

(i) With an algorithm for the zero of a function, construct a procedure for the

zero of “m.,(Ho|Z,) —0.5” in T,.

Here 7, ( Ho|Z) uses step (i) by way of equation (4.11), and n is fixed. Since 7y (Ho|T)
is strictly monotone in T,, an efficient algorithm can be used. This step (ii) will

produce z,, for all v € I

(ili) With an algorithm for univariate numerical integration, construct a procedure

for

(419) pn = [ Flarl0m(@)du®) + [ [1- F(z,10)]7.(6) du(0).
(00,8} (by+00) :



69

(iv) With an algorithm for the zero of a function, construct a procedure for a zero

of pn — € in n.

Since p, — € may have several zeros, a less efficient algorithm must be used here
than what can be used in step (ii).

Each step of this program relies on the previous step. The resulting sample
size in step (iv) is a bound on N,. A smallest bound on N, can be found by using

steps (i) through (iii) to compute j, from n = 0 until some n = m for which

Pm = € the resulting m is NV, when T is closed (m is another bound on N,
when T' is not closed). |
A computer program in Appendix C implements this numerical program when

there are two extreme priors. That computer program requires that the following

functions be given as subroutines:
L. d(9), the scaling term for the exponential family density.
2. Fu(yl0), the cumulative distribution function for the exponential family.
3. my(0) for all ¥ € I, and ,(6), the prior densities.

4. my((—00,0]) for all v € T, and m.((—o0,8]), the cumulative distribution

functions for the priors.

- The posterior distribution is not required.
When the priors 7, v € T, are conjugate priors to the likelihood f (z|6), then
steps (i) and (ii) of the numerical program on page 68 can be replaced by the single

step:

i-if) Wi € known posterior distribution m,(0|Z,), construct a procedure for the
i-ii) With the k posterior distribution 7.,(8|T,), truct a proced th
“inverse” of the conditional cumulative distribution function To(Ho|2ny) =

0.5.
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Done for each v € T, this step produces the z,,, which make b a posterior median.
When f(z|) is the Gaussian density, this modified step simply states the Zny = Tn

for which the posterior mean is b.

4.3 Bounds on N..

Still considering sample data X from a member of the exponential family, we
present two theorems which give bounds on N,. These bounds, N, will satisfy the
stronger result

Pn € when n > N.

We will make use of the scaling factor d(f) in (4.5) and its derivatives d'(8), d"(6).

It is well known that —d’'(6) is the mean and —d”(#) is the variance.

THEOREM 4.1.  Assume that w.{b} < €. Then there ezists a 6o > 0 and a 6, > 0
for which m.(b—80,b+6,) <1 —¢€ and (b— 60,0+ 6) C O. Let

(4.20) ~ Co = (=00, —d'(b— b))
and
(4.21) Cy = (=d'(b+6),+00).

For each v € T, define (there exist) three sample sizes Nosy, Nisy and Ny for which
(a) /e Fal=d'(b=do) | O]m-(6) du(6) > /e Fal—d'(6=60) | 6]7,(0) du(8) for n > Nosy,
1

(b) /e Fal—d(b+61) | 6]7(8) du(6) < /c_) al=d'(b+8) | 0]m(0) du(6)  for n 2 Mgy,

and

@) [, [, F+(@l0)m.(0) dhn(y) du(t)
t [ ] A0 B du(e) 2 ¢ forn > N,.
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Define
Nos = sgp Nos, Nys = sgp Nisy, and Nes = max{Nos, Nis, Na} .
Assume that Nos and Nys are finite—they are when T is a finite audience. Then
pn > € forn > N.

Steps (i) and (ii) of the numerical program on page 68 to find z,, to a high
precision are replaced in Theorem 4.1 by steps (a) and (b) to find Nosy and Nyg,
to a low precision (rounded up to an integer). However, this theorem does demand
that a 8o and a §; be supplied, somewhat arbitrarily. The larger § and &y, the
smaller Nos and N5, respectively. At the same time, the larger is N;. N.s could be
minimized over §, and ;. In many problems, Theorem 4.1 allows that § = §; = §,
from which N,s could be minimized at a slightly larger minimum.

Below, Corollary 4.2 simplifies conditions (a) and (b). This corollary gives
conditions under which the inequalities in (a) and (b) of Theorem 4.1 need only
be met at n = Ngs, and n = Nys,, respectively. Those inequalities are then met
for all greater n. Corollary 4.3 simplifies condition (c).

For the following Corollary 4.2, we introduce some notation. Denote by g(9)

the exponential family likelihood at z = —d’ (b— 6o) without the datum term S(z):
9(8) = exp{fl—d(b— &) +d(0)}.

With this, define

_ [ [¢®]"
Gair) = |, [%0] w010

and

Gim) = [, [%]nwww).
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Notice that Go and G, are implicitly functions of the observer 4. For an ob-

server v € I, the inequality in condition (a) of Theorem 4.1 may be written

(4.22) L, s@rm@)d@) > [ [g(O)r,(6)au®),

or equivalently

(4.23) Go(n) > Gy(n).

COROLLARY 4.2.  Suppose that the inequality in condition (a) of Theorem 4.1
holds at n = Nysy. Then it holds for all n > Nos, if any of the following three

conditions holds.

(al) The measure u(8) is uniform on its support (eg, Lebesque measure or counting
measure) while both the ezponential family likelihood function fi(x|6) and the
prior 7.,(0) are symmetrical in § about some points.

(a2) Either Go(n) < Go(n + 1) for some n < Nosy, or else Go(n) > 1 for
some n < Nogy.

(a3) When there is a 8 < b— & for which g(8) = g(b), it is unique. Label this 8
as by and define ©, = (b,,b]. The condition is as follows. The value b, exists,

and for n = Nos.,

L@@ > [ (o0)r0)d0).

A similar set of conditions implies the inequality (b) of Theorem 4.1 for all n >
N]_&y. '

In the condition (a3), usually b, exists for all §o > 0 for which b — 8, € ©. For &
set small enough, b, always exists.
The following Corollary 4.3 simplifies condition (c) of Theorem 4.1. It simplifies

a two-dimensional integral problem on © x X’ into a one-dimensional problem on X.
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This is done at the cost of a possibly larger V,. Plus coincidentally larger Nys or Ny4

should 8 or §; be smaller in Corollary 4.3 than Theorem 4.1 demands.

COROLLARY 4.3. Let 3 {one exists) be any real number for which

7.{b}

1l—e¢

< B <1.
Let (o and (; (they ezist) be any real numbers for which (o > 0, (1 > 0, and
(4.24) T.(0s) < B(1 —¢),
where
eb = (b_CO,b+Cl)'
Let 6o and 6, be any real numbers for which 0 < 8, < Co and 0 < 6; < (;. Then,
letting A = X — A, there is an N, for which
(4.25) B(Colo=b-() < (1-B)(1—€) whenn> N,
and
(4.26) E(Clla=b+c1) < (1-8)(1—€¢  whenn>N,.

Furthermore, (c) of Theorem 4.1 holds for this N,.

PROOF OF THEOREM 4.1.
First, we prove that Nosyy N1sy, and N, exist.
(a) Let
9(9) = exp{(6 - b)[-d'(b — bo)] + d(9)}

and

wO) = 90) ) [ g(6)n.(6) du(s).

(5—60,b]
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The inequality in (a) is equivalent to

| B m(6)du(6) > [ (RO r(6) du(6).

(S} @1

Since —d"(0) > 0 for every § € O, then g(9) is unimodal with its mode at 8 = 5+6,.
Since m.(b — 8o,b) > 0, there is a 8y, 0 < &, < 8, for which 7. (b — &, b -- 65) > 0.

This together with the unimodality of g(#) implies that

inf  h(6) > sup k().
6€(b—0,b—5y) 6€0,

Consequently,

L BOT @ @) = [ b)) 0) dio)

(b=60,b—54)

increases in n to +o00 while

o, [0 7+(0) du(®)

decreases in n to 0. So, the inequality in (a) holds for n > Ngys,, some Nosy 2> 1.
(b) An argument just like the one above shows the existence of N,
| (c) Corollary 4.3 implies the existence of N;.
Next, we prove that p, > ¢ for n 2 Nes.
(1) For the moment, assume that T, € Cy: T, < —d'(b — 6y). When 9 < (>)b,
then
b~d'(b~80) =Ta] 2(L) 8]-d'(b—60) - T,

or equivalently,

(427) 6%a+d(0) +b[-d'(b—60) =F| (L) H[—d'(b— 60)] +d(6).

Consequently,

(4.28) / eXp{n[a—n +d(8)] +nb[~d(b - &) - 7] }m(a) du(6)
= 0 exp{n(a [~2(b— )] + d(&))}m,(&) du(8).
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Assumption (a) implies that this is larger than

/ 1 exp{n(a[_d'(b — &)+ d(o))}w.,(o) du(8)  forn> Ny
Using (4.27) with 6 > b instead of 8 < b, this is no smaller than
(4.29) /é , exp{n (67 + d(6)] + nb[~d' (b &) - 7, }m(a) du(®) forn> Ny
Our resulting inequality between (4.28) and (4.29) reduces to
/;o et dOlr (0) du(6) > /e el tdOlr (0) du(8) for n > Nis.

Thus, if T, € Co, then T, € A, for n > N,s.
(2) The same argument shows that if Z, € Cy, then T, € A, for n > N (the
- inequalities in (4.27) are reversed and assumption (b) is used).

Summarizing, for n > N,

P22 [ [ AO0) ) d®)+ [ [ H6I0m0) i) i) >

by assumption (c). O

PROOF OF COROLLARY 4.2.
(al). Let Ogf = (—o0,b — 280) and g = [b — 26, b]. Let the symmetry of 7, be
about §,. Define

Gl = [, [ w040,

Gonm) = [ [—j%}"m,(a) &(0),

for which Gor(n) + Gor(n) = Go(n). Define

Gor(n) = Gor(n) — Gor(n — 1)
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Gi(n) = Gi(n) — Gi(n —1).
With these definitions, we may write the condition (4.22) as

Gor(n) + Gor(n)
G]_ (TI,)

(4.30)

Since the mode of §[—d'(b — )] + d(0) is at 6 = b — &, the symmetry of f(z]9),

ergo g(0), is about 8 = b — §. The log concavity of g(d) implies that

(4.31) 9l(b—6o) — &) = g[(b— b)) + &3]
< gl(b—8) —&] = gl(b—bo) + &) < g(b—6o)

if 0 < €3 < &3, a forteriori that

g(8) = g(b) on Ogr
and

(4.32) g(0) < g(b) on Oy and O,.

Consequently, Gog(n) is strictly increasing in n.
Case 1. 6, > b;ie, 6, € 0.

Consider § < b — 26y, ie, 6 € Opr. The symmetry of g(§) and 74 () imply that

(433) g"(6) = g"{(b~6) +[(6-8) — 6]} = g"{b+[(b~26,) — 0]}

and

(4.34) T (0) = Ty [0y + (8 — 9)].

As 0y > b > b~ &, then 20, — 9 > 2b — 26, — 6. Moreover, with the symmetry

of m., about 4,,

7"‘/_(0) = [0, + (6y—=0)] < T {0+ [(b— 260) — 0]} if b+ [(b—2b0) — d] > 6,



7

and

m(0) < m{b+[(B—28) — 0} if b+ [(b—26) — 6] <,
Thus,
(4.35) 74(8) < m{b+[(b—265) — 6]}

For each 6 < b — 26, (4.32) with the equality (4.33), and the ineqﬁality (4.35)
imply that
9(6) G
< S0 [t (b)] it

g{b+[(b—26) — 61}
o2 ] oy b+ [(b— 265) - 4]}

Since b + [(b — 280) — 4] is a translation mapping § < b — 26y one-to-one and

onto § > b, then
< =Gor(n+1) = Gor(n)—Gor(n+1) < Gi(n)=Gi(n+1) = —Gy(n+1).

We assume in Corollary 4.2 that (4.30) holds for n = Nos.,. Inductively, assume it

holds for some n > Ngs,. Then

Gor(n) + Gor(n + 1) + Gog(n)
Gi(n) + Gor(n + 1)
Gor(n) + Gor(n + 1) + Gor(n) GOL(n + 1) + Gor(n)
Gi(n) + Gi(n + 1) Gi(n+1) )

1<

With this and the increasing character of Gor(n),

Gor(n + 1) 4+ Gor(n + 1)

1 <

That is, the condition (4.23) is met for every n > Nos..
Case 2. 6, < b;ie, 6, € O,.
For § < b, the symmetry of g(8) about b — 6, implies that 9(0) > glb+ (b - 6)],
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and the symmetry of x, about 6., implies that 7.,(8) > m[b+ (b — 0)]. Since the
translation b + (b — 6) maps @, onto O, then (4.22) holds for every n > 0.
(a2). Let H, be any nonnegative function and m any nonnegative measure. The

following difference, when finite, may be expressed

(4.36) / H™(2) dm(z) — / H™(z) dm(z)
o / H™(2)[H(z) — 1] dm(z) |
= /{ ey, T () = 1] dm(z) + /{ oy M H() = 1] dm(z).

Here, the first term is strictly increasing (decreasing in absolute value) in n, and
the second term is strictly increasing in n. As a result, once the value in (4.36) is

positive, it remains positive for all larger n. Reworded, once

/ H"(z) dm(z)

increases, it increases for all larger n (being infinite once it first is, also). As a
special case, if Go(n) < Go(n + 1) for some n < Ny, then Go(n) < Go(n +1)
for every n > Nys,y. Also, since g(6) is log-concave with its mode at 6 = b — do,
then Gy(n) is decreasing in n. Consequently, if Go(n) < Go(n + 1) for some n <
Nos, then (4.23) holds for all n > Nosn-

Suppose that Go(n) > 1 for some n < Nys,. Then Go(n) > 1 for all n > Nos
—an application of Liapounov’s inequality. As Gi(n) < 1 for all n, if (4.23)
holds at n = Ngs, then it holds for all n > Noss-

(a3). By its definition, b, is the 8 satisfying

O[—d'(b— &) +d(8) = b{—d'(b— 60)] + d(b).

Since b, # b, b, equivalently satisfies

(4.37) &b 8) = ﬂ’l)){#.
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That is, the points (b, d(b)) and (8, d(6)) form a secant line whose slope is the same
as that of the tangent line at b — 6o, the derivative d'(b— ). Since d(8) is concave,
the righf side of (4.37) is increasing in 6, making b, unique if it exists.

From the definition of Go(n) and condition (a3),

43) G 2 [ [%rm(ﬂ)dﬂ(f’) > [ [%]n%(ﬂ)du(@

at n = Npgsy. Since the middle integral here increases in n and the last integral
decreases in n, the inequality (4.38) holds for all n > Nosy. Consequently, so does
the inequality (4.23). O

PROOF OF COROLLARY 4.3.
First, we prove the existence of 3, {; and (;. Theorem 4.1 assumed that m.{b} <
1 — e. Consequently, there is a 8 for which 0 < 8 < 1 and =,{b} < B(1 — e).

Furthermore, there exist {, and {; for which
m(©8) = mu(b—Co,b+ 1) < B(l—¢).
Also, for any 8y satisfying 0 < &, < (o,

B;(éo e b—Co)
= K (-Xn > —d'(b— &)

0=b—@)
B(Xut d(b=0) 2 ~d(b—8) + (- Go)

0=b—(0).

Since —d'(f) is strictly increasing in 6, then —d'(b — &) + d'(b—-{) > 0. An

application of Tchebyshev’s inequality leads to

_— —d"(b— (o)
B(Colo=b-¢) < n[—d'(b = &) + d'(b— ()2

Thus, for some Ny > 1, (4.25) holds when n > Np. Similarly, for some N; > 1,
(4.26) holds when n > N;. Let N = max{No, M; }.
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Now to show that (c) of Theorem 4.1 holds. For any random variable Y whose
distribution has a monotone increasing likelihood ratio—as random variables from

a canonical exponential family do—
P(Y >al6;) < PY> al6s)
for any a € R! and 8, < 45 € ©. Consequently,

/eo /Co Fa(y]0)T.(8) d)n(y) dp(8) + /e 1 /C 1 Fa(y10)ma(8) dAn(y) dp(6)
> [ B(Co|0=b-)m(6) du(8) + [ B(c]6=b+¢)m(6) du(s)

©9-6, ©1-8,
+ / B, (Co l 8 =b— (o) m(6) du(6)
0NO,
¢ [ B(G:|0=b+0)n0) due) - n(on)].

91N6,

Using (4.25) and (4.26), this is no smaller than
L= =801 - 9]r(6) du®) - r.(04) when n 2 Vs
Using (4.24), this is no smaller than
[1-(1—&)(1—e)] —B(l-¢€) = ¢ whenﬁZNz. o

The following theorem gives an alternative to Theorem 4.1 for bounding N,. This
theorem uses a Tchebyshev type bound to reduce the integral on © x X in (4.18)
to an integral on ©. |

For the following theorem, we introduce some new notation. With Assump-

tion 4.1 guaranteeing that 7., v € I', have the same support, define

b = sup{G: T(0,0) >0, forany € I‘}

and



81

b, = inf{&: 746,6) > 0, for any € F} .

Often, as when . is continuous, b_ = by = b. Assumption 2.1 of Chapter 2

guarantees that b_ and b, exist. Define

9. = inf{0: 0 € O}
and

04 sup{d: 0 € ©}.

Usually © is open, so usually §_ and 6, are not in ©. These definitions satisfy
0_ < b < b, < 6,.
Define

r_ =inf{z: z € X}
and

r4 = sup{z: z € X}.

The function —d’(0) is a continuous 1-1 function mapping (_,8,) onto (z_,z,),

see Brown (1986, pg 74). So, z. < —d'(8) < z,. Define

—d"Yy) ifye(z_,zy)
(4.39) D(y)=1 6_ ify<z_

0+ . ify2$+,

~ where, as before, d'~1(y) = {%d(a)}-l(y). D(y) is a non-decreasing continuous

function of y—an increasing function for y € (r_,z4). Define
(4'40) ' 0, = [D(an), D(va )] ’

where z,, is defined in (4.14), and z,, is defined in (4.15).
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THEOREM 4.4. Let € > 0. Assume that n,(0_,8] > 0, v € T, and that
7y(6,0+) > 0, v € T [This assumption holds when the ezponential family is

regular—O is open—because of the obdurate Assumption 2.1 in Chapter 2]. As-

sume that

Tulbo,by] <1 —€.
Then
@) 1=po < [ O 0 u0)

- ©9—0n nL
- —=d"(9)
+ " /] 2”*(0) d (6) + W*(en)-
o _/e _ —d"(6) +nlz,, + d(0)] K

Furthermore, there is a positive integer N for which the bound in (4.41) is less

than 1 — € at n = N, ie, for which p, > e.

PROOF OF THEOREM 4.4.

First, we show that

(4.42) —d'(b) £ lim z., < —d'(by),
where the z,, are as defined in (4.13). Define

(4.43) H.(0) = exp{fzn, +d(0)}.

Suppose that (4.42) is not true. Then for some § > 0 and some countably infinite

set M of positive integers,

Zny < =d'(b) =6, forne M,
or else

Zny > —=d'(by) + 6, forn € M.
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case 1. zp, < —d'(b.) =6, for n € M.

Let r = —d'(b_) — §, so that this case assumes z,, <7, n € M. If Zny < Z_, then

d | ,
E[IogHm(O)] =z +d(0) € zp—2z_ < 0,

so the mode of H,,(6) is “at”
(4.44) _ 0 =0_=D(zny).
If 2.y > 24, then
08 Hur(8)] = 2y 4 2(0) 2 20y =20 > 0,
so the mode of H,,(8) is “at”
(4.45) 0 =0, = D(zny).

These two cases, (4.44) and (4.45), plus the concavity of d(9) imply that the
mode of Hny(0) is “at” § = D(zn,y). Since D(y) is increasing on (z-,z4) and
z_ < —d'(b.) < z4, then D(r) < b_ < b. Since the mode of H,.y is at 8 = D(z,y),
for those 6 such that

| D(2ny) < D(r) < 0 < b,

the function Hy,(9) is no smaller than H,.(5):

H.,(9)
Hor (b)

>1, for D(r) < 0<b, neM.

As an immediate consequence,

(4.46) /e o [Z:—'ﬁ%] 7(8) du(6) > 7,(D(r),8] >0,  forn € M.

Since the mode of H,,(f) is at § = D(zy,), for those 6 such that

D(zny) < D(r)<b< 9,
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the function H,,(b) is smaller than H,.():

H.(6)
—_— 0 M .
o (8) <1, for0e©,, nei

As an immediate consequence, for n sufficiently large

447 = {(D(r),b]} > /@ 1 [%:%} 7 (0) du(8),  forn € M.

Together, (4.46) and (4.47) imply that for n sufficiently large,

/;O[Hm]"rq(ﬂ) du(0) # /e [Hul"m4(6) du(6),  neM.

This contradicts the definition of z,, in (4.13). Thus, this case 1 is not possible.
case 2. zpy > —d'(by) + 6, for n € M.

The argument of case 1 is easily adapted to show that this case is not possible
either. Together, case 1 and case 2 imply that the bounds in (4.42) must be

correct.

Now to find a lower bound on p,. From (4.18),

(48) 1-p0 = [ o P(Y,, +d(8) > 2, +d(0) | 6)7:'..(0)_ du(9)
+ [ 1 P(Y,, +d(0) < z,, +d(6) ] a) 7.(6) du(8).

A version of the Tchebyshev inequality (Cramer(1946, pg 256)) states that for any

random variable Y with first moment y and standard deviation o,

2

o
(4.49) PY-u>a) < p when a > 0.
Equivalently,
2
o
(4.50) PY-u<a) < o when @ < 0.

The value z,,, + d'(6) in (4.48) is positive on the set

{o_ <8< —d'-l(a)} = 0,—0,.
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The value z,,, + d'(0) in (4.48) is negative on the set
{-d7'n) <b<0,} = 0,-0,.

Applying the Tchebyshev inequality to (4.48),

—d"(6)
—d"(0) + n[z,, + d'(9)]

(4.51) 1-p5, < /
©9—0Oq

0
* el./e,. ZTO) + nleny 7 A@F D) WO) + 7(8n).

From (4.42) and the continuity of D(.),

7u(8) dp(h)

lim 7.(0,) < m[b_,by] < 1—c¢.

n—r+4o0o

Consequently, there is an N for which
l—py S 1—-p8 < 1-c¢

in (4.51). O

4.4 The Gaussian distribution example.

Here we consider sample data X from a Gaussian distribution. Transformed to

canonical form, X has the density f(z|6,1), where

(4.52) f(z|0,0%) = exp {j—f L + [—% ~ ln(\/Q_WU)]} ,

onz€R', forfeR, o>0.

Denote the cumulative distribution function of f by F(z|8, 02). The density f (z]6,1)

has the scaling term

(4.53) d(0) = _%02.

The sample mean X, has the density

(4.54) f(z|8,1/n).
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Assume the observers’ priors 7, ¥ € T, are the conjugate priors, with parame-

ters u, and 7,, having the Gaussian densities

(455) (Ot 70) = SOl 2),

where { is as defined in (4.52). The experimenter’s prior is 7.(8]|u.,7.), where “x”
replaces “y” in (4.55). These functions d(0), F(x|6,1/n), f(8]uy,72), and F(8|p., 72)
enable the ‘use of the computer program for p, in Appendix C.

As mentioned on page 69, with conjugate priors, z,, can be found more effi-
ciently through another method than through steps (i) and (ii) of the numerical

program for p,. We use the more efficient method now. The posterior density is

(4.56) Ty (01Za) = £(0 | 1y(Tn), 02(Z0)) ,
where
2
- = nry  _
/‘-y(mn) = 1+n7_‘$/‘7+ 1 +n7‘3$n’
and
2
r
— — ‘Y
‘7‘7(""71) =17 n’r_? .

The specification for 2, is

7y (Ho | fa(200) 09(20)) = F (5] (), 0%(2my) = 0.5.
- Transforming X into
Y = [X = iy ()l ()
Zn~ is specified by
F([b— py(2my)]/04(229)[0,1) = 0.5.
Since F'(-|0,1) is the standard normal distribution function, its median occurs at 0.

Consequently, z,, is specified by

[6 — py(20)] /04 (209) = 0O
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or
2
(4.57) tny = b EDT)
i nt2 nr2

Using (4.18), we can write

b Zng 0o p+oo
o= [ [ 500, 1m) at (6, 72) dot [ /+ £(216,1/n) dt f(Olun,72) db.

Changing the variables through the transformations
u = v/n(t —9) and n=(0—p)/m,

we get

(4.58) Pn = /_Z:/_Zf(UIO,l) du f(nl0,1) dy

+ /L+°° /L+°° F(u]0,1) du F(n|0,1) dy,

where

Li = (b—p)/m,
L2 = \/7_7'[211.1, - (T*T’ =+ ﬂ.)] 3

and
Ly = VAlsy — (g +p)].
Consider the following reparameterization:

- —b
b=0, [.=p.—b, ﬂ‘7=#7

The two ordered sets, (b, ftu; Tu, finy, Ty) and (B, fu, Tay fiys 7 ), v € T, give the same
values for L, Lq, and L3 (z,, and z,, are functions of these ordered sets). Without
losing generality, we assume that b = 0 and 7, = 1, ¥ € I'. From (4.57), this

assumption makes

(4.59) Zny = —Hy/n
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and
(460) 2o = —.uL/n )
where
po=infp, and oy = SUD o -

This gives p, the same form as the general form (4.58) but using

(4.61) Ly = —puf7,
- _»- b |
(4.62) L, = _(p_+r,,q)\/r‘z + vk
and
r & -
- KB
(4.63) Ly = n(u-+m7)\/7z+ Jrl

We now find a bound on N, through Theorem 4.1. From (4.53), —d'() = 4.
Let 6o = 61 = 6 in Theorem 4.20, so that § > 0 must satisfy 7.(—8, §)<1l—e We

will now show that one such 6 is

.1 —€
—_ : -1 2 1\ 2
(4.64) &6 = mig F [F(OI;L.,T,_)+( 1) Ve p,..,'r;} , any K >1
(K >1if g =0). If uu. <0, then
Tu(=6,6) < 2m.(=6,0)
= 2[F(0lpa,72) — F(=6|ptu72)]
< 2[FOlw ) = F {F7 [FOle,2) = 525 e 77] | 2]
_ l—e ' '
- K

So, when g, < 0, mu(—~6,8) < 1 —e. A similar argument shows this same inequality
when p, > 0.
Here are the three needed component sample sizes for Theorem 4.1.

(a) Part (a) of Theorem 4.1 requires that

[ £=510,1/m) 01, 1) d0 > [* F(=810,1/n) (611, 1) do.
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Writing this in the posterior distribution,

1 n 1
F(O‘l+n“7_l+n6’1+n

) > 05,

which occurs iff

1 n
= ) 0,
1+n’u' l+n <
or
(4.65) n > i‘51=N05.,.

With inequality (n > p,/6) instead of equality in (4.65), our conclusion from
Theorem 4.1 will be n > N, instead of n > N.s.

(b) By a similar argument, part (b) of Theorem 4.1 requires that
n > —'uT; = ng,‘-y .
(c) Let
) al
ha(al,a2) = / F[v/a(~8 — pa = 7.6) | 0,1] £(810,1) df
o0 '
+ [ {1 ~ P[Va(6 - p - 7.0) | 0, 1]}f(e|o,1) do.
The condition (c) of Theorem 4.1,
0 -6 ,
| £, 1/m) £l 72) dy
[T o ) Ol dy e 2 e forn > N
0 s ’ #*y Tx = = 4V2y

may be written

P (=) Tuy —pin]Ta) > € for n > N,.

Since

hn(—ou*/TM _/L:-/Tx) > h'n. <_'u* - 67 ks 6)

T T
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and h,.(=%'6, :&;_ﬂ) is monotone increasing in n, the condition

(466) hn (“/L* — 5, THs + 6) > € at n = Ng

Tu T -

suffices for condition (c) of Theorem 4.1.

Theorem 4.1 concludes that any n larger than

= By AL
Neﬁ—max{67 6,N2}

is a bound on X..

Recall that 6 depends on a pre-specified K in (4.64). With this § determined
in (4.64) and N; determined in (4.66), we designate the above bound N on N, by

(4.67) Nesx .

Here, ¢ and K receive explicit values, but “§” is included only as a mnemonic
that K determines §. For example, N g5 51.5.

We now find another bound on N, through Theorem 4.4. From (4.53), d'(9) =
—6 and d”(9) = —1. From (4.39) and (4.40), D(y) = y and ©, = (2,,, 2,,)- Using

these items in Theorem 4.4,

—IJU/n.. 1
— Pn < ) 2
oo 1 —pg/n
O ps, 72) dO + Blpa, 72) df.
-/—uL/n1+n(—pL/n—0)2f( s 7) s f(Olpas7s)

Substituting t = —0 — p,,/n in the first integral and ¢ =  + x, /n in the second

integral,
| +e0
(4.68) 1 —p, < / 7 +1nt2f(t | —f — ,uU/n,Tf) dt
0
+oo . —py [n
+ / 1+nt2f(t|/h+:u'z,/n’7-*2) dt + / f(9|lu*’7—3) do.
0

—py /n
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Let
/‘Ll = U« + &
n
and
Ey
M2 = pa + n

Bound each of the first two integrals in (4.68) by 2K, K > 1, integrals: inte-
grals integrated on the 2K equal lengthed subintervals that constitute the interval
(#i = 37w, g +37.), © = 2,1, respectively. Plus a small probability for the rest of

the positive reals (the tails of the experimenter’s prior in (4.68)). Since

(4.69) / L_ & = %tan‘l(\/ﬁt),

1 + nt2

the following bound results from (4.68).

(4.70)  1—p,
. 2 K-1

< Y {%ﬁ[tan'l(\/r_ﬂf,—j) —tan‘l(\/ﬁU.J)]\/_ I{U;V;; < 0}

=1 j=-K

+ P [t |0,1] - F [Butl=lim 10,1] } [1+n(min{|U;], IWJ'I}V]}I{Uijo > 0}

+2F(3|01)+F( 1) - F(-2 0,1);
where
Ui = (-1)* 1w+ %7‘.
and
Vi = (=)™ + 3—(%1)7'. fort=1,2; j=-2,-1,0,1.

We will use K = 2. A computer algorithm for the zero of a function can find an n
for which the bound on 1 — p, in (4.70) is 1 — e. We will use NV to denote the

smallest such solution, a bound on N..
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An explicit, though crude, bound on 1 — p, uses the indefinite integral (4.69)
on all of (0,0) in (4.68). A resulting bound is

1 1 1
4.71 l-p, < |—= —(u,, — —_—,
( ) Prn = \/ﬁﬂ' + n(/‘r, /‘L) \/‘2—7‘_7_*

From this, a crude bound on N, using the quadratic formula, is

2rs+ 1+ +4rs+1

<
(4.72) N. < - ,

where

and

Table 4.1 presents p, and bounds on N, in six examples. In the first example the
experimenter’s prior is dispa.ra-te from any observer’s prior. The second example’s
more diverse audience requires a sample size with two extra data to achieve the
same level of agreement, p,. The first datum is not nearly as useful as in the first
example. The third example presents an experimenter with his prior mean in the
middle of the audience’s prior means. In the fourth example, the experimenter
would use Ngs = 0, and would not want some larger sample sizes (eg, n = 4). The
fifth example presents an experimenter having a prior with small variance. The
additive contribution to p, of an extra datum is much greater for n between 1000
and 5000 than for n less than 1000. The same could not have been said if ., = 0.
In the sixth example, the audience agrees for every n. The sample size affects only
the correctness of the audience’s decision. The bottom of this table presents N,
and three bounds on it. Notice that N, sx generally performs best when u, /Tu 18
far from b = 0. The bound N = 1 in the sixth example is the smallest solution

using (4.70)—the next solution is much larger.



Table 4.1 p, for composite hypotheses, where X has a Gaussian distribution

B p) ) 2 T.7 | -150 5
it 4 10 2 10 2 -5
™ -6 -6 0 1.7 .1 -.05
T 1 1 1 1 .03 .01
n _._‘____4
0 .000 .000 .000 .955 .000 1.000
1 921 .002 151 952 .000 1.000
2 999 793 395 .949 .000 1.000
3 1.000 990 537 .948 .000 .999
4 1.000 .999 .623 .948 .000 .995
5 1.000 | 1.000 .680 948 .000 991
6 1.000 | 1.000 721 .949 .000 985
7 1.000 | 1.000 751 .949 .000 978
8 1.000 | 1.000 775 951 .000 972
9 1.000 | 1.000 794 .952 .000 .965
10 1.000 | 1.000 .809 953 .000 .959
20 1.000 | 1.000 .884 .965 .000 910
30 1.000 | 1.000 913 973 .000 882
40 1.000 | 1.000 928 977 .000 .865
50 1.000 | 1.000 938 .980 .000 .855
100 1.000 | 1.000 .960 .988 .000 .840
200 1.000 | 1.000 973 992 .000 .853
300 1.000 | 1.000 979 994 .000 872
400 1.000 | 1.000 .982 .995 .000 .890
500 1.000 | 1.000 984 .996 .000 .905
1000 1.000 | 1.000 .989 997 .126 .951
5000 1.000 | 1.000 995 .999 .983 .998
10,000 1.000 | 1.000 | 1.000 999 997 1.000 .
100,000 1.000 | 1.000 | 1.000 1.000 1.000 1.000
Ngs 2 3 71 0 3459 0
Nos,s1.5 2 3 366 65 4114 | 17,720
Ngs 63 2 3 96 122 | 5221 | 9620
N 3 5 749 1051 28,914 1

93
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4.5 The gamma distribution example.

Here we consider sample data X from a Gamma(c, 3) distribution. In canonical

form, this designates the density

(_a)aza—leh’

I

onz>0, fora>0, 4<0.

Since 6 < 0 in (4.73), we will assume that b < 0 in (4.1)—otherwise samples from
the gamma distribution will not help to decide between Hy and H; (Assumption 4.3
would not hold). We can rewrite (4.73)

(4.74) f(z|e,8) = exp{ea: + [aIn(-08)] + [(a —1llnz - ln(l"(a))]} ,

onz>0, fora>0, 6<0.

For this gamma density, the scaling term is
(4.75) d() = aln(-6).

From (4.74), the sample mean X, has the density

(_na)nazna—lenéz

['(ra)

(4.76) f(z | na,nd) =

For the numerical program on page 68, we convert the gamma distribution
to the chi-square distribution, which has readily available computer algorithms.
Signify the chi-square distribution by xZ when it has k degrees-of-freedom. Denote
by %Z(-) the cumulative distribution function of the x2. Letting ¥/2 = —néX,,
the density of Y is

alyla) o« yrolev/?,

the x%,, distribution. We see that the cumulative distribution for X,, is

P(X,. < A) = P(Y < -2n6A), for A > 0,
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or
(4.77) Fo(A|na,nd) = %2, (—2n0A), for A>0.
Assume the prior 7., is the conjugate prior, with parameters ¢, > 0 and §, > 0,

having the gamma density (replace “y” by “x” for the experimenter)

6—5"(-9)(“_1)65‘79

L(¢y) ’

Letting —¢/2 = 6,0, the density of ¢ is

(4.78) 7, (0] ¢(y,6,) = on <0, for¢, >0, 6&,>0.

£(c‘7"'1)e_5/2
IN(SP

the x’;’“ density. From this we can write the cumulative prior distribution of 4 as

(4-79) ga(€ | Crveby) =

P < B)= P(¢ > -26,B), for B<0
or

(4.80) 7y (=00, Bl|¢y,67) = 1—x3 (~26,B),

for B0, (>0, 6,>0.

With (4.76) and (4.78), the posterior distribution is
_ . na _nézn (¢y-1) y
73(0 ] Zni anrsy) o [(~0)"emomn] [(—0)T ]

the Gamma(na + ¢y, nZ, + 6,) in canonical form. Letting £/2 = —(nZ, +6,)0, the
density of £ is

936 | a6y) o (=€) TV emer2

the xg(m +¢,) distribution. From this we can write the cumulative posterior distri-
bution of 8 as

P9 < B) = P(¢ > —2[nz, +6,]B),
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or
(481)  my((—o0,B] | Zn; 0,Ci) = 1= %3(narc,)(—2n2a + 6,1B) .

The point Z, = z,,

for which the posterior distribution of § has median b

is that Z, for which =, ((—oo, b] l Zn; a,(,,,&,) = 0.5. Denoting the median of
the xg(m +¢,) distribution by bo.s, then

' 1
(4.82) Zpy = —=— (% + 6.,) .

n

This equation (4.82) satisfies (i-ii) in the numerical integration program on
i)age 69. Togethexj, (4.77), (4.78) for “4”=“+", and (4.82) can be used in steps (i-ii),
(iii) and (iv) to find p, and N.. Less efficiently, (4.75), (4.77), (4.78) for “y”=%x",
and (4.80) can be used in steps (i) through (iv) on page 68 of the numerical
program to find p, and N,. Because of its generality, this last program is included
in Appendix C as a computer program for the gamma distribution example.

Table 4.2 presents several examples with T' = {m;, 7;}. In the first example, ,
concentrates on g, 7, on O, while 7. gives moderate probability to both O,
and ©;. Notice the large absolute contribution to p, by including a fifth datum
in the sample. In the second example, 7, is the same as the first example 7, m;
concentrates on g instead of ©,, and . shifts some probability from ©q to ©,.
Thus, p, is larger in the second example than in the first example for small n.
" Since 7; and w, concentrate on ©q in the second example while 7, puts much
of its mass on O, p, is smaller for many larger samples in the second example
than in the first example. In the third example, 7, gives a little over half its
probability to ©,, 7; concentrates on ©g, and , is the prior of the audience
member with prior 7;. A sample of but n = 1 contributes substantially to the
audience’s agreement. The probability of correct agreement, p,, is not monotone

in the next three examples. In the fourth example, 7] and , concentrate on 0,
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Table 4.2 p, for composite hypotheses, where X has a Gamma distribution

3 1 T 1 ) | 1
e || 025 | 1 1 | 025 | 025 1
61 1 1 08 | 08 | 88 5
S f| 1 1 03 | 03 { 0.9 2
el 50 50 1 03 | 0.5 1
G| 03 | 13 | 1 03 | 0.5 1
IR 1 3 08 | 25 | 25 | 0.5
¢x 2 2 1 05 | 05 1

0 .000 { .199 | .000 | 975 | .975 .393
1 .000 | .202 | .686 | .975 975 .393
2 .000 | .208 | .773 | .812 | .975 374
3 .000 | .216 | .815 | .850 | .954 | .367
4 .000 | .225 | .840 | .881 .930 | .3686
5 232 | 236 | .858 | 901 | .930 | .428
6 345 | 247 | 871 | 914 | 933 | .574
7 413 | .259 | 881 | 924 | .936 | .667
8 459 | .271 | .889 | .932 .938 | .726
9 492 | .284 | .896 | .937 | .941 .766
10 517 | 296 | 902 | 942 | .943 | .795
20 622 | 418 | 932 | .965 955 901
30 .658 | .515 | 945 | .973 | .959 | .930
40 .680 | .588 | .952 | .978 | .962 944
50 695 | 644 | 958 | .981 .964 952
100 745 | 793 | 970 | .987 | .975 .970
200 .804 | .888 | 979 | .991 .985 .980
300 .841 | 923 | 983 | 993 | .988 | .984
400 866 | 941 | .985 | .994 991 987
500 .884 1 .952 | .987 | .994 | .992 .988
1000 930 { 974 | 991 | .996 | .995 992
5000 982 | 993 | 996 | .998 | .998 .996
10,000 989 | 995 | 997 | .999 | .999 | .997
1V g5 1504 | 479 37 0 0 48

while 7 gives a little over half its probability to ©;. Similar to the fourth example,
the fifth example has the same ., but 7, concentrates even more on ©; while )
shifts some préba.bility to ©;. Thus, the non-monotonicity of p, is not as severe.
In the sixth example, 7; and 7, concentrate on 0, whiie 7. gives a little more than
half its probability to ©¢. Thus, p, is smaller in this example than the previous

two examples.

4.6 High p, for each pair of observers does not imply high p, for all of
L.

In the simple hypotheses problem of Chapter 3, every audience I’ had two
extreme observers 7, and 7,. This need not be true for the composite hypotheses

of this chapter. The following is a possible consequence.
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Let the audience I' have m members with priors 7,, v = 1, 2, ..., m. Let 1
denote one of the (";‘) combinations of k members, 1 < k < m, from among all the
members .{1, 2,...,m}. Specifically, 7, represents the vector of selected integers
in increasing order: (7(1),7(2),---,7(.:)) where y1) < Y(2) < +++ < 'y(,’?); eg, 1,
could be (2,5,15,m — 1) or (1,2,5,m). Let sz denote the sub-audience with the
priors {m,('_), 1=1,2,..., (’,’:)}, depending on the specific combination 7, Let

N,), denote N, for the combination Y.+ Then, for k < m, it can be the case that
~k .

N, > ma.x{l\ly 2 . is one of the (',:‘) combinations}.
~k

For example, when k£ = 2 and m = 3, it can be the case that
Ng > max{N(m), N(1,3), N(2’3)} .

So, finding N, cannot always be reduced to finding N,), for sub-audiences 1",), .
Unless, as mentioned in Section 2.3, there are two extreme observers &y and §;.
‘There were two such observers in the Gaussian example above, but not in the

Gamma example.
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5. SATISFYING ADDITIONAL GOALS INVOLVING
OBSERVERS’ POSTERIOR LOSSES

5.1 Composite hypotheses.

We now consider an experimenter who wants all observers to choose the correct
hypothesis, plus each observer to have some low posterior expected loss for that
hypothesis. Our context is largely that of Chapter 2 for two-action problems, and
our notation often the same.

An experimenter has an audience I' of observers y. Each observer will choose
either the hypothesis Hy or the hypothesis H;, denoted by action a, @ = ag or @ =
ay, respectively (aq and a; are implicitly functions of 4). Only one of Hy and H;
is in fact true. When Hp is true, a parameter 8 is from the set ©y. When H is
true, this parameter 6 is from the set ©;. The parameter space is designated by
O =06U @1‘, assumed a subset of R'. Each observer v has a prior probability
on O, my(0), with respect to a dominating o-finite measure u(#). Additionally, he
has a loss for his choice of action aj, j =0, 1, when 8 is the true parameter:
L.(a;,9).

To aid the observers in their choices, the experimenter provides his audience
with data g, = (x1,;,...,2,) from a sample of size n. Ea.éh datum z; comes
from the density f(z|0) with the same, though unknown, parameter §. These
densities are defined with respect to a dominating o-finite measure A(z) on the

sample space X C R!. For the whole sample of size n, we designate the likelihood
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bt

function

19) H f(:l9)

=1

defined on the product space X™ with respect to the dominating product mea-
sure A(g,) = [Ti; Ai(=:).

From the sample gz, each observer v forms his posterior density for 6,

(5.1) 0z = ()T (2 10m (),
where
(5.2) B = [ F(Z.10)m:(0) du(0).

With this posterior density dominated by u(6), we designate the ppsterior proba-
bility of A C O by

(53) m(8lg,) = [ 7 (0lg,) du(6).

With the posterior density (5.1), observer + also forms the posterior expected loss

for the choice of action a;:

(5.4) Liajlz) = [ Lo(a;,0)my(0lz,) du(8)  forj =0, 1.

If Hy is true, observer v will decide correctly when

(5.5) ly(aolz,) < ly(a1]g,) -

If H, is true, observer v will decide correctly when this inequality is reversed. For
our experimenter’s planning, samples for whiéh randomization—equality in (5.5)—
does not occur are sought.

Observer 4 wishes that his posterior expected loss be small if he chooses ac-
tion a;:

(5.6)  Llalz,) < By,
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for B, € R'. Our experimenter wishes not just that each observer v choose the
correct action, but also that each observer v “satisfy,” (5.6), the observer’s own

goals. Combining (5.5) and (5.6), when Hy is true the experimenter wishes that
(5.7 I(aol,) < L(ailg,) and  lyaolg,) < Ry.

When H; is true the experimenter wishes that

(58) L(ailg,) < bdolg,) and  L(ailg,) < R,.
Let
(5‘9) BO"I = {fa\«:n:I‘Y(aolzn)<l‘7(a1|£n)}7
(510) Bl‘Y = {gn:l‘Y(allgn) <I'y(a0I§n)}7
(5.11) Doy = {g, : l(aolg,) < Ry},
(5.12) Dyy = {z,:L(alzg,) <R},
(5.13) Ey = () Boy () Do,

~erl’ ~€rl’
and
(5.14) Ey = () By [) Div-

~er ~er

When Hy is true fhe experimenter wishes that g, € E,. When H; is true the
experimenter wishes that g, € E;.

Ais for the experimenter, we denote the experimenter’s prior b§ 7.(0), and his
posterior by 7.(8|z,). Thus, that each observer v be satisfied and choose the

correct hypothesis, the experimenter assesses the probability

(5.15) Z /e z,10)7.(8) dX\(z, ) du(8).

]—0 £ EJ

The experimenter wants to choose a sample size n for which

(5.16) Yo > e



for some 0 < € < 1 specified by him.
So that every observer might make the correct decision—(5.16) is not precluded—

we assume, as in Appendix A,

ASSUMPTION 5.1.  Ezcepting a set B C O, n(B) =0, forally €'

L,(a1,8) — L,(ae,8) >0 if 0 € O
and

L,,(ao,G) - Lq(a1,0) >0 zf0 € @1.

So that every observer v can be satisfied, (5.6), with the correct decision—(5.16)

is not precluded—we assume

ASSUMPTION 5.2. Ezcepting a set B C O, n.(B) = 0, for j =0, 1 and
alyeT:
L.(a;,0)—-R, <0 if 0 € 9.

We now make some definitions which will facilitate expressing the posterior
loss criteria for an observer ¥ € T, (5.7) and (5.8), as posterior probability criteria.

The result will be a problem having the same form as the problem of Chapter 2.

Let
(5.17) Ooy = {0:Ly(a0,9) < Ry}
and
(518) : @17 = {0 : L,y(al,ﬂ) < Ry} .

By Assumption 5.2,

(5.19) © C O,

and
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(5.20) 0, C Oy.

For each 4 € T, define three new priors on ©:

(521)  Toy(8) = G5 |Ly(ao,0) — Byl my(0)

where .
oy = [ 1L+(ao,8) = RyJmy(8) du(6),

(5.22)  my(8) = i} |[Ly(a1,6) — Ry|my(6)

where
ey = [ |Ls(a1,6) = By|my(0) du(6),

and

&' my(8) [Ly(a1,6) — Ly(a0,0)]  if 6 € O

(5.23) #(0) =
&7175(0)[L4(a0,0) — Ly(a1,0)] 0 € O,

where

& = [ 7(O)[L(01,0) = Lo(ao,0)] ds(6) + [ 7,(0)[Ly(a0,60) — L(as, )] du).
o,

©9

From (5.17), (5.21) and Assumption 5.2, we may write the condition
7oy(O0y|Z,) > 0.5

as the condition

J (B~ Lao, 0] m:(0)5(2,10)du(0) > [ [Lr(a0,0) = By) s (6)(2,16) du(0).

Gor ©—=80

Equivalently,

J, Zlao, 01, (0)F(2,16) du(8) < Ry [ 7:(0)f(z,10) du(6)

that is,

ly(aolg,) < Ry.
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Thus, from (5.11),

(5.24) Doy = {g, : moy(O0y|g,) > 0.5}.
Similarly, from (5.12), (5.19), (5.22) and Assumption 5.2
(5.25) Dy = {2, : Tin(@n]z,) > 05,
from (5.9), (5.23) and Assumption 5.1

(526)  Boy = {2,:%(0lz.) > 05},

and from (5.10), (5.23) and Assumption 5.1

(5.27) ' B, = {gz, :%,(01]|g,) > 0.5}.
Define
Vor = Vou(Holg,) = min{moy(O0rlg,), #.(Golg 2D}
Vi, = W,(Hilg,) = min{7r1.y(917|§n), 71(01 r?.n)},
(528) ‘/0 = %(Hol%n) = ll’lfVo.,,
~€r
and
(5.29) Vi = Vi(Hhlg,) = infW,.
~er

From the definitions of Eo and E; in (5.13) and (5.14); and from (5.24), (5.25),
(5.26) and (5.27), then

(5.30) Ej = {z,: Viy>05, allye r}

and

(5.31) E; 2 E = {g.:V;>05} forbothj=0,1.
Defining

(5.32) Z L, (a0 (0) a2, du),
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then
Pn < P
If T is “closed,” then
E; = E;
and
Yo = Yn.

Thus, through the simplification of E; in (5.30), ¥, in (5.15) is a function of the
probabilities V5, and V},, themselves functions of 7g,, 71, and #,. Consequently,
these simplifications of 1, allow the calculation of v, to be calculated instead as pn
in (2.4) of Chapter 2, with E; as 4; in (2.3), i = 1,2. In addition, V; and V;
in (5.28) and (5.29) allow the calculation of s in (5.32) to be calculated instead
as pn .in (2.22). This reformulation of (5.16) as (2.5) has tripled the number of
priors; e, tripled the size of I'. At the same time, this reformulation allows the use
of 0-1 losses, and it subsumes the observers’ posterior loss goals.

With this reformulation, we now add a few more assumptions which will guar-
antee a finite n satisfying (5.16). So that no observer precludes the correct decision

through his prior, we assume

ASSUMPTION 5.3.  The support of every m,(9), v € T, contains the support of
7.(0).

That is, for every v € T,
{a: 7.,(8) du(6) > o} > {9: 7.(8) du(6) > o}.

So that all the observers are correctly satisfied at a finite n—(5.16) is attainable

for the whole of I' at once—we make the following assumption which disallows a
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factor of the prior and a factor of the loss to multiply to an extreme value for too

many 6.

ASSUMPTION 5.4.  For each § > 0 there is a ks > 0 and a Borel set G5 C ©
for which ﬁ',..(G’g) < § and
() ks < moy(6)/moy(0) for8 € © — Gs and v,v' €T,

and ‘ |

/ sup 7o, (9) du(f) < oo
Gs ver
(i) ks < my(0)/71y(6)  for6 €O —Gsand v, €T,
and
/ sup 71,(8) du(d) < oo
Gs vel :
(iii) ks < #y(6)/7y(0) for8 € © —Gs and v,7 €T,
and
/ sup %,(0) du(8) < oo.
Gs vel’
For this assumption, we make the following observations. First, since we al-
low v = 4/ in (i), (ii), and (iii), then 0 < ks < 1. Second, this assumption
does not disallow that 7.,,(@g) = 0 or 1 for some 4/ € I'. But it does demand
that 7,(@g) = 0 or 1, respectively, for all v € T and for 7.(0,) then. Accord-
ingly, n = 0 satisfies (5.16) then. Third, for some problems (notably, when © has
- finitely many elements) the integrals on Gs in (i), (ii), and (iii) are necessarily finite
for any G. Fourth, from assumptions 5.1 and 5.2, and from definitions (5.21), (5.22),
and (5.23); if [ is finite and Assumption 5.3 holds, then Assumption 5.4 holds
perfunctorily. Fifth, since 7.(Gs) can be made arbitrarily small, Assumption 5.4

implies Assumption 5.3. In order that a Bayes rule will be consistent in its choice of

hypothesis, we make the following assumptions about the sampling distributions:

ASSUMPTION 5.5. PG(X < z) 1s a Baire function of § for each fired z € X. .
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ASSUMPTION 5.6. The parameterization is identifiable; ie, for each pair of
parameters 0 # 0’ in © ihere exists a set AC X for which E(A) # _Pe'(A)'

We now prove that the posterior distribution asymptotically concentrates around
the parameter. The proof follows a proof by Schwartz (1965, Theorem 3.2). We re-
quire only assumptions 5.5 and 5.6—no assumptions are made about the moments
of the prior. We use the notation A'* for the Cartesian product of countably

infinite X" spaces, and we denote an element of X by Zoo-

LEMMA 5.1.  Make assumptions 5.5 and 5.6. Let 7 be any prior measure on
O, and let M be any Borel set for which M C ©. Then there is a set A C 0,
#(A) =0, for which |

Pg{gw: lim #(Ml;gn)=I(0€M)}=1, when 0 €O — A
=400

PROOF OF LEMMA 5.1.
Let the space = © x X, let B be the o-field generated by the Borel sets of O,
and let I be the o-field generated by the m-rectangles of {X™, m = L2,...}
Let ¢ be the measure on B x U determined by # and {F, all6e€®}. Forweq,
define '

¢ = (W) = ((0,2,) = ¢(6) = I(6 M),
and define

Pn = Balw) = Bu(2s) = E({|Z)-

Since E|¢| < 1, then {f,} forms a martingale sequence. By the martingale con-

vergence theorem,

P — E(Clzs,)  as.(§).
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Assumptions 5.5 and 5.6 imply (see Theorem 3.1 in Schwartz) the existence of

some [{-measurable function h on X such that

6=nh(z,) a.s.(B)

~OO

for cach 8 € ©.

Let

¢ = {w=(02.) h(ze) =4}
and

Dy = {~°°- h(goo)=0}
Then

1= [BD)d®) = [ [ aB(z.)d6) = £0).
That is,
6=n(z,) a.s.(§).

So,

E(((@) ] 2w) = B((W) | A(B0) 2) = E((@) |8, 2,)
0

implying that
lim Bn(w) = ((w) a.s.(§).

n—+400

Let

¢ = {wiha(w) > (W)}
and

Do = {2 Bulga) = 100 € M)}
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Then
1= 40) = [ [ dB(re)d#(0) = [ F(Ds)di(0).
so that
B(Ds)=1  as.(7).
That is,

Pe{goo: #HM|g,) — I(6 € M)} =1 as(f). O

We now show, for some sample size n, that all observers can satisfy their goals
while choosing the correct hypothesis, with a high probability e anyway—(5.16) is

attainable.

THEOREM 5.2. Under assumptions 5.1, 5.2, 5.4, 5.5 and 5.6,

lim ¥, =1.

n—-40o

PROOF OF THEOREM 5.2.
Let 6 > 0. From Assumption 5.4, there is a set G5 C © for which =,(Gs) < 8, and

there is a ks > 0 satisfying (i), (ii) and (iii) there. Define, for some specific ¥’ € T,

4

g k2mo,(6) on Oy — G

7('(9) = 9 g"17r0,,'(0) on @, — Gs

g~ Yks sup 7o, (6) on Gs,
~ver

\

where

9=k [ mor@du®) + [ wop(@)du(0) + [supmor(s)du(s),
©9-Gj 9:-Gs Gs 7

which is finite by Assumption 5.4(i). For any v € T,

T0v(Q0 | £,) 2= Toy(G0 — Gslz,,).
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From Assumption 5.4(i),

(53)  7o(@0—-Gilz,) = gi'ks [ 7on(6)f(2,10)du(d),
Q-G

where

no=k [ 1o Of(2.10)dp®) + k5 [ wo(6)F(2aI0) du(o)
©o~Gs 01-G;

+ [ supmo,(6)£(2,10) du(o).
& ~yel
Since the right hand term of (5.33) is just #(©¢ — Gs|z,), we now have
(5.34) Toy(Q0lZ,) = (00— Gslz,).
By Lemma 5.1 (here we use assumptions 5.5 and 5.6), if 6y € ©9 — G5 then
(535) nli'ﬂ_noo 7?(@0'—- Galgn) =1

a.s.( f;o x 1), a forteriori a..s.(]'?,o X m.) since Assumption 5.4 implies Assumption 5.3.

Similarly, there is a # for which
(5.36) 7(Oolg,) = #(@o—Gslzg,) "=5°1  as. (B, x ).

So, By in (5.31) satisfies (implicitly using Assumptions 5.1 and 5.2 for the formation
of (5.31))

(5.37) Eo 2 Fo 2 Eo,
where
Ey = {gn: min {#(@o ~ Gs|g,), #(Qo — Gslg,)} > 0.5}.

Combining (5.35), (5.36) and (5.37), we have that

(538)  lim [ [ (g |0)m.(0)dN(g,) du(8) = 7.(G0—Gi).
Q9-Gs Ep



111

A parallel argument shows that

(539)  lim - [ [ f(2.l0)7.(6) dA(z,) du(6) = 7.(O1 - Go).

nN~—400
©,-Gs E,

Together with (5.38) and (5.39), 7.(Gs) < 6 in Assumption 5.4 implies that
Yo21-68  ifn >N,
for some sN > 0. Since § was arbitrary, our theorem holds:

lim ¢¥,=1. 0O

n—+00
5.2 Simple hypotheses.

Here we consider the special case of simple hypotheses, Hy:0 = 63 and Hy: 0 =

01, as in Chapter 3. Let

T, = Tu(z,) = m[ E,,n:z:;]

as in (3.4). We will use the simplified notation
L.i; = L,(a;,9;) with 7,7 = 0,1
for the losses. And we will use the simplified notation
Ty = Ty(Ho) = 1—m,\(Hy)

and

Te = Tu(Ho) = 1—m.(H)

for the priors.

Assumption 5.1 implies that for all y € T

L710 > LA/OO and La,ol > La,n .
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Assumption 5.2 implies that for all y € T’

L—yOO < R-, and L-,u < Ry .

Occasionally we will indicate that one of the following two conditions holds:
Condition C,1. Oy, = Og; e, Lyo1 > R,.
Condition C,2. O,y = Oy; te, Ly10 > R,.

We can write the following sets more simply as

L'yOI - L'yll }
(Lyo1 = Loyna) + (Ly10 — Lyoo)

: Tp <In [L"‘°‘L’°° ial ”

Lyoy — y1 1l —my

Ly —L 11
0 T < “Y! Y }
( Ol n) (L"rOl - ‘711) + (L"/IO - L‘YOO)

: T, >1In [L”IO—L”O(’ L] ]}

L‘yOl L’yll 1- Ty

{
(=
(=
Doy = {2 m(0ilz o> gt
E
(=

B = {2 m(0lz,) >

5]

Bl-y =

IH

L'yOI - L"/OO

{a: To <In[fazkae 211 if Condition C,1 holds

otherwise

and
—L
D= &t mallll, LR:o - 21111}
vy Y

{€a: > [fuesfam [l if Condition C,2 holds
A" otherwise.

With these sets, the experimenter’s probability ¥, in (5.15) may be written for

simple hypotheses as
(5.40) ¥n = mB, (Eo)+(1-m)B, (Ey),

where

Eo = () Boy () Do,
~€er ~er ‘
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" and

E1 = ﬂ Bl‘y ﬂ Dl-.,.
~v€r ~€r
With E; in (5.30), the simplification of 1, in (5.15) to a form of p, in Chapter 2
occurred through (5.21), (5.22) and (5.23). We now give this simplification for the

simple hypotheses case. If Condition C,1 holds, (5.21) gives

Toy = 7oy(Oo)
(5.41) - &’ - L.yoo)gl'}—j”'*'_ I]I;zz)iv&l(l - 7)
(5.42) = [1 +1 ;f” 1201—Lﬁl]'1
(5.43) = Tyt my(l-m) (R, _(Iz;)izoi)ﬁifflfil(ﬁ’lyl— )’
otherwise 7o, = 1. If Condition C,2 holds, (5.22) gives
Tiy = 715(O1y)
(5.44) T oo - Ryljrfio(;jll?qu)(l — 7)
as) = [eizm s =1 |
(5.46) = (=) lf'}l{: ,;ﬁl(;y(? ;lf;(li)_ )’

otherwise 71, = 0. From (5.23)

Ty = y(Ho)

(Lyi0 — Looo)m,

5.47 ~= ‘
(547) (Ly10 = Lyoo) Ty + (Lyor — Ly1a)(1 = 7)

1 — T L 01 — L 11 -1
5.48 3 1 + Y Sy (04 ]
(549 [ Ty Lyio ~ Lyoo
(5-49) = Wy 4 7&7(1 — 77) (L~/10 - L"/OO) - (L‘YOI —_ L"/ll)

(Lyio = Lyoo)my + (L‘YOI = Lyn)(L—my) "
Used in Ey and E, of (5.30),

(5.50) E; = {g,:Viy>05, allye T},

where
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(5.51) Vo, = min{7o,(6o|g,), #+(0o]g )}
and
(5.52) Vio = min{l - m,(dog,), 1 - #(dolg,)} -
Let
T, = ‘iyglf:{nﬁn{ro,,,i‘r,,}}
and

T, = sup{max {7r1.,,7r,,}}
~er

Then
‘/0 = 7rL (GOIEE“)
and

=1 (4 Z,)-

Observe that the inclusion of #, in the definition of 7, and 7, makes x, < 7,. V,
and V; define £; = {_:V; > 0. 5} in (5.31).
Define an audience [* indexed by ¥. Let each 5 have but one of the priors 7.,
T1y OT 7., and let
U {7ro.,, 717,7?.,} = U Ty

7€l Yel
Then

Vel Yel'
As mentioned on page 105, our reformulation tripled the size of the audience T

7w, = inf 7r,7} and T, = sup 77}

to I'. When mo, < T1ys Foy < Ty, OF .y < T, then the single observer v, with
prior 7., in a singleton audience I for ¥n is represented by many observers ¥, with
priors mo,, 71, and #,. These priors span an interval [r,,r,] with =, < Ty, In a

multitudinous audience T for the simpler p,,.
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The above has reduced the experimenter’s probability ¥, in (5.40) to
Pn =1Pn
using

Ay = Ep = {Vo.,>0.5, 3.11761"}

and

A = E = {vh>o.5, all'yEF},
The above has also reduced ¥n to0

ﬁn =¢'n

Ay = By = {Vo>0.5} = {T,,<1n<' s )}
l—m,

- - T

A1=E1={V1>05}={Tn>ln( Z )}
l—-m,

as in Chapter 3, with the audience I'. The audience has been reduced to two

using

and

members, 7, and 7.

When conditions C,1 and C,2 fail, then 7o, =1 and 7y, = 0, respectively, by
definition. When these two conditions fail for every ~, then V; and V; of (5.51)
and (5.52) are the same as in Chapter 3. Thus

‘ ﬁn=¢n

in both formula and meaning. The observers have satisfied their posterior ex-
pected loss requirements a.s. for any sample size. Now, 1, is the probability that
all observers v in I' and the induced extreme observers of T' choose the correct

hypothesis.
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High posterior probability for observers

A special case of the goal 1, > ¢ in (5.16) asks that
(5.53) (Hilz,) > 6, for i = 0,1 andally€eT,

with some § > 0, usually § > 0.5. That is, the observers believe the decision (the
correct one) with a high probability. One condition of the sets E; in (5.50) was
that

7ro.,(00|ggn) > 0.5 and 7l'1.,(00l£n) < 0.5.
Through (5.42) and (5.45), these two inequalities can be written

L‘yOI — L'VOO

L‘yOl - Ry

7r7(00|§n) >

and
Lyio— Loy

) Ry - L'yll
when conditions C,1 and C.2 hold. Consequently, the goal %, > ¢ then in-

7r‘7(90l§n) <

cludes (5.53) (plus the choice of a correct decision) when

L‘yOl — L'yOO L‘ylo — L‘yll
—_— ] -1 for all v € T..
Ly - R, R, = Ly e
That is, when
R, = Ly — Lot ; Loco = L’le:_iL"u forally el

while conditions C,1 and C,2 hold.
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6. ESTIMATION

When a statistical inference is to be an estimate, the observers v € T cannot
agree about the exact value of the parameter §. An alternative goal does result
in what can be called “correct agreement.” The notation in this chapter will
be largely the same as that in Chapter 2. An audience I' of observers v each
have priors 7,(f) and loss functions L,(a,8). Of particular interest will be the
observers’ actions “a” which estimate by using the posterior expected value
[ 07,(8lz,) du(0); eg, when the observers have the squared error loss function. As
before, an experimenter “+” with his own prior 7.(6) will present to the audience
the results g, of an experiment from the likelihood function f(z|9).

So that the observers do not prevent themselves from agreeing, assume that

their priors are mutually absolutely continuous:
T & Mo for all v,4" € T.

Denote by Ec( ) an expectation with respect to the constant ¢ or the distribution ¢;
eg, |

Erosn(L(@,0) = [ [ L(a(z,), ) f(2,10)7.(6) du(0) dM(g,).
Denote by m¢(z,) the marginal distribution with parameters or distributions (.

For example,
W) = [ (2 10)m.(6) du(0).

The observers will be considered to agree when their estimates 4., are all within

some prespecified § > 0 of each other: Ié., - HA.,'| < & for all 4,4 € T. That
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is, when the observers’ confidence intervals, of width 6/2 on either side of their
posterior means 9:,, intersect. Consider that the observers correctly agree when
their estimates é., are all within § of the parameter value 6; specifically, when the

experimental results g_ are in the set

(6.1) A9={g,,,:|é.,-e|<5 forally € T} .

The experimenter chooses the sample size n for e-correct agreement, using the
above § > 0 and some prespecified €, 0 < € < 1, so that the probability of correct

agreement
6.2) m=[ [ F(2a|0).(0) dN(z,) du(®) > .
Tchebyshev’s inequality implies that

Er (6, - 0)
52

. (P-6]>0) <
for one observer. Although
1—pa=P_ (supw}—el >6) ,
" \ver

the last term is not necessarily bounded by

Er, s((0, ~ 6)°]
6.3 D, = . .
©3) W@

Still, Dy in (6.3) is often more tractable than p, in (6.2). Jackson, Novick and
DeKeyrel (1980) considered quantities like D, but with 8, replaced by the mean
of the denéity

[, 01z, ma(z,) dA(g,).
They labeled the mean “u,.,” for this density “by.5(8)” when I has but one member.

We show in the following Theorem 6.1 conditions which lead D, to converge to 0

for large n.
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THEOREM 6.1. Assume

) [ 18P 7.(6) du(6) < oo,

(ii) sup sup / / 10,2 £(,,10)7.(6) du(8) dA(z,) < oo
n20 yel'

(elaborated upon in Corollary 6.2), and

(i) 8, is a consistent estimator of 8.

Then D, s ol

PROOF OF THEOREM 6.1.

supsup [ [ 10— 0,f(z,10)7.(6) du(8) dN(z,)

n>0 yel' X
< 3 H (3 .
< 8 [ 16Pm.(0) Au(8) +8supsup [ [ 16, (2,10)r.(0) du(6) dA(x,
< o0

by conditions (i) and (ii). Consequently, (8 — 4,)? is uniformly integrable for ¥
and n. Uniform integrability and condition (iii) imply [essentially, Chow and Te-

icher (1978, page 98)] that

n = SUp / / 0,)2F(%,10)m4(8) du(6) dX\(z,) "= 0. 1O

~er

Schwartz (1965) gives several conditions under which Bayes estimators are con-
sistent. In particular, under weak conditions (see Lemma 5.1 in this thesis), the

posterior mean estimator

b, = [ 0m,(0lz,) du(o)

is consistent.
The following Corollary 6.2 gives criteria under which condition (ii) of The-

orem 6.1 holds. For this corollary, make the usual defisiition that a probability
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distribution w3 is stochastically larger than (or equal to) my, written <* m,

when

B (6>¢) <PB,(6>t) forallteR'.
Say that g is no larger than ¥, when
. < ¥4, which signifies z; < y; for all: =1,2,...n

Also, say that 7, forms a non-decreasing monotone likelihood ratio (see page 33)

with m;, when 7y < m2. Similarly, say that m2(g, ) forms a nondecreasing monotone

likelihood ratio with mi(g,) when my(z,) < ma(g,); ie, m—zgfn% is nondecreasing

in .. The following facts will be used without elaboration.

FACT 6.1. Ifm SSt 72 and ¢(0) > 0 is a non-decreasing function, then
J #(0)ms(60) du(®)y < [ 4(0)ma(6) du(o).
Similarly, if mi(g,) < ma(g,) and é(g,) >0 is a nondecreasing function, then
S B (2)INE,) < [ (2 )malz,)dNz,)-

FACT 6.2. If f(z|0) forms a non-décreasz'ng monotone likelihood ratio family

in z and 8, and m, S“ 72, then
() = [ F(2alO)m(6) du(0) < [ F(2,10)72(0) du(6) = ma(,)
FACT 6.3. Ifm < my, then n(6g,) < m(8|g,) for any z, €A™

FACT 6.4.  If f(z|0) forms a non-decreasing monotone likelihood ratio family

in ¢ and 8, and $(6) > 0 is a non-decreasing function, then (for any prior )

Jo #0r(@lz,) du(o)

is non-decreasing in T, .
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Similar relations hold when < is replaced with >, <" is replaced with ** >, or

“non-decreasing” is replaced with “non-increasing.”

COROLLARY 6.2. Assume that

(iv) there exist densities Tyt relative to p(h) for v € T', for which
(a) my; forms a non-decreasing monotone likelihood ratio with Tl Ty = Mgy,

(b) my is stochastically larger than (or equal to) w.: . <* Tt)
that

(v) there exist densities ., relative to p(8) for v € T, for which
(a) 7, forms a non-increasing monotone likelihood ratio with Tyl Moy > Ty,

b) m., is stochastically smaller than (or equal to) .: Ty} < Tu)
i
that
. 3 . 3
() sup [ 10Pr du(6) <00 and sup [ 16P 1 du(9) < oo,
and that

(vii) f(2|0) forms either a non-increasing or a non-decreasing monotone likelihood

ratio family.
Then, when the observers’ estimates of 9 are the posterior means
b, = [ 0701z, du(6)  foryeT,

condition (ii) of Theorem 6.1 holds:

supsup [ [ 16, f(,16)7.(6) du(6) dA(z,) < oo.

n>0 vel
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Condition (iv) is met for an observer 4 in I' when there is some M > 0 for which

the following forms a density:

0 ford < M
Ky [ sup ﬁ(@')} m,(0) for 6> M,

ML <o Ty

Ty (0) =

where K.} is a normalizing constant.
Condition (v) is met for an observer v in I’ when there is some M > 0 for which

the following forms a density:

0 for@ > -M
1!2”(0) =

K.,l[ inf 1’—*(0')] 7,(8) for 6 < —M,

8<0'S-M .

where K., is a normalizing constant.
In many problems, a r.,(6) and 7. form monotone likelihood ratios in the tails
of ©. Condition (iv) holds for an observer v when either 72(9) increases, or exclu-

sively f:(a) increases, for all # > M and some M > 0. Just let

) 0 when 6 < M
Typ0) =
K, 7y(0) when 6 > M, for some normalizing constant K.,

. ﬁ .
if 72(0) increases, or

) 0 when § < M
Tarlv) =
K, 7.(6) when § > M, for some normalizing constant K.,

if £+(0) increases. Similarly, condition (v) holds when either ™2(0) increases, or
exclusively f_'y-(&) increases, for all § < —M and some M > 0. When (iv) and (v)

are both satisfied this way for all v € I, condition (vi) simplifies to

sup /e 1637,(8) du(8) < o0 and /e 16137..(6) du(6) < oo.
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PROOF OF COROLLARY 6.2.
For this proof consider that f(z|f) forms a non-decreasing monotone likelihood ra-
tio family: the non-increasing case having a parallel proof. Since 97 is the posterior

mean,

E(0F) = [ [ 16P(2.10)7.(0) du®) dX(g,)
< E([ InPr(rlz.) dutn))
= E([ 7 nPmrlzy) dutn) + E ([ ora(als,) dutn))
E (/o+°° InlPr(nle,) du(n)) +E (/_(; n° 7 (nlE,) du(n)) ,

using Fact 6.3 and Fact 6.1; iv(a), v(a) and vii
/,. [/0+°° InPPrye(nl,) dﬂ(’l)] my(2,) dA(g,)
+/ n [/_(; [P (nlg,) du(n)] ma(,) dA(,) ,
using Fact 6.2, Fact 6.4 and Fact 6.1; iv(b), v(b) and vii
= /0+°° [n1°m1 (n) () + /_ : Iy (n) dp(n) .

IA

IA

Taking the supremum over n and 7 in the above inequality, condition (vi) implies
that

sup sup Elé.,|3 < sup/ 1627 du(8) + sup/ 16°7y, dp(8) < co. O
n>0 ~el’ ~el VO ~vel' /©

6.1 Gaussian estimation example.

Consider that each datum X;, ¢ = 1,2,...n, comes from a Gaussian density
with mean § and variance 0% X; ~ N(0, 0%). The observers v in I are presumed to

have the conjugate prior densities 7.,(8) ~ N(4,, 72). Similarly, the experimenter’s

2

prior is presumed to be m.(d) ~ A (u.,72). The observers’ posteriors have the
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consequent posterior densities

2 TLT2 0.27.2
7r,,(0l5)~./\/'( 2 +——2—7 2

7 T
o +n72"" " o2 4 nr2 "o? 4+ nr?

), fory € .

The subset of X, in terms of Z, which would give correct agreement is then
Ay
= {f:

r
(sup [(0 — oy = 8) 5 + (0 - 5)] , inf [(0 — g+ 8) S5 + (0 + 5)]>
~yer v ~yer 5

if the “sup” is smaller than the “inf” endpoint

o? nt2

—7F — 11 r
02+n73u7+02+nr3x 0,<6 for all v € }

/] otherwise

' e — 8=z — 6E] iut 1o 2 52
(igg[(a Hoy = ) Foz 5,],;161{,[(9 u7+5)7;,—3+5a])

(6.4) = | if the “sup” is smaller than the “inf” endpoint

) otherwise,
\

if we change variables by the transformation y= ﬁ; (simultaneously changing

the likelihood function to the standard normal). Now,

+oo 1 _12 1 __L(g_“ )2
n = —_—2 e 7 dt df.
p /;oo /Ag \/271"9 27r7'.e

While the width of Ay does not depend on 6, it does depend on n. Also, the v

or sequence of vy determining the “sup” or “nf” endpoints in (6.4) do change
with 8. Consequently, T’ cannot be reduced (compactified) to an audience of but

two observers.

2
We may assume that o = 1. When ¢ # 1, transform the parameters to T,$ = J—;’-

and § = g where the actual parameter values are the barred values &, § and 7,.

Table 6.1 presents some values of p, for various values of the parameters when the

audience contains two observers, I' = {1, 2}.



Table 6.1 p, for estimation, where X is a Gaussian random variable

6

M1
M2
7.
T
T2

Te

© W N9 O U W N

U o W N e
o O O o o

100
200
300
400
500
1000
5000
10,000
100,000

0.10
10
1.7
1.7

0.0000
0.0000
0.0000
1769
.3169
4292
.5205
5953
.6572
7087
9364
9847
9961
9990
1.0000

1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

—
S
(=]
o
(o]
o
e
(e ]
=]
(=]
o
e
o
o
[
o

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
.0073
0769
1409
1998
4332
7040
8400
9116
9504
9969
1.0000
1.0000
1.0000

.05 .05
0 0
0 0
0 0
1 .1
1 1
.00316 1
)
1.0000 | .3847
.9996 | .3864
9966 | .3882
9898 | .3899
9799 | .3916
9681 | .3933
9553 | .3950
9422 | .3967
9292 | .3983
9165 | .4000
8192 | .4161
7639 | 4314
71310 | .4459
7107 | .4597
.6824 | .5205
7110 | 6135
L7517 | .6827
7886 | .7364
.8202 | .7793
9180 | .9027
9997 | .9996
1.0000 | 1.0000
1.0000 | 1.0000
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Appendix A: The zerc-one loss provides a canonical form for two-action

decision problems.

Suppose that each observer « has a loss function L, (a, §) defined over the action
space A = {ao, a1} and the parameter space ©. Recall that a; is the action “decide
that H; is true”, 1 = 0,1. It is reasonable to assume that for each observer the loss
for a correct action is no greater than the loss for an incorrect action. Thus, we

make the following assumption.

ASSUMPTION A.1. Forally €T,
L‘Y(alaa) - L‘Y(ao, 0) 20, Zfo € GO;
Ly(ao,0) — Ly(a1,0) 20, if6 € Oy

Since the observers are Bayesians, each observer chooses the action that mini-

mizes his or her posterior expected loss given the data z,. Let

(A1) b(alg,) = [ Ly(a,0)m3"(2,) (2, 10)m:(0) du(6) ,  for @ = ao,ay,
where

mo(2,) = [ F(416)m(6) du(0),
as in (2.2). Then, observer v will choose action ag without randomization if and
only if
(A.2) ' (aolg,) < y(a1]g,) ,

and will choose action a; without randomization if and only if
(A.3) L(aolg,) > L(ailg,) -

If I, (ao|z, ) = l,(a1]|z, ), observer ¥ may randomize between the actions ag, a; with

arbitrary probabilities (possibly depending on g, ).
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Note that

(A8 Lz = X [ Ll 0ms (@) (2 0)m(0) du6).

1=0

Hence, inequality (A.2) holds if and only if
(A.5) L (nlas,0) = La(o0, 01 (2, 16)7(6) du(®)
> [ Ea(a0,0) = Ln(ar, O} (2, 0)7(6) du(0)

and ineQuality (A.3) holds if and only if the inequality is reversed (“>” is replaced
by “<” in (A.5)).

Define
(A.6) #.(0) = eymy(8)[L+(a1,8) — La(a0,9)] , 'Tf 9 € o
ey®4(8)[L+(a0,0) — Ly(a1, )], iffe€06,
where
(A7) ' = [ wO)[Ea(as,0) = Ly(ao,0)] d(6)

+ [ 72(0)[La(a0,6) = Lo(as, )] du(®)

For #,(0) to be well-defined, we must make the assumption:
ASSUMPTION A.2. Forallyel, 0< ¢y <oo.

If Assumption A.2 holds, then it follows from Assumption A.1 and (A.6) that #,(0)
defines a probability distribution over ©, ally € T'.
Define

o) = [ F(2a10)F:(0) du(6),

and

fo(Holg,) = [n(2,)]” [ F(al0)7(6) du0),
H(Hilz,) = [in(z)]” [ f(2I0F(6) du©)

= ]' —%W(Holzn)‘
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It is easily seen that inequality (A.5) holds if and only if
i Holg,) < Fy(Hilz,) = 1—#y(Holz,),
Which in turn holds if and only if
#,(Holz,) > 0.5.

Similarly, the reverse of inequality (A.5) holds if and only if #y(Hy) > 0.5 . (Fi-
nally, the two sides of (A.5) are equal if and only if #,(Ho) = #,(H;) = 0.5.)
Thus, we have shown that each observer v acts as if he or she had a prior distri-
bution #.,(8) over @‘, and a zero-one loss function (2.1).

We have already indicated why Assumption A.1 is reasonable. Assumption A.2
is also reasonable sin;e if this a,ssumption fails to hold, observer v will not be .
influenced by the data in making a decision. To see this, first note that if Cy = 00,

then the right side of (A.7) equals 0. Thus, by Assumption A.1,

Ly(a1,0) — Ly(ao,8) =0, ifr,(6)#0 and 0 € Oy,
Ly(ao,0) — Ly(a1,0) =0, ifm(0)#0 and 6 € O,

and (see (A.5)) regardless of the data g

~n

it will be the case that l,(ao|g,) =
l(ai|z,). Consequently, observer v will always randomize between ao'a.nd ai, no
matter what sample g, is observed.

On the other hand, suppose that ¢, = 0. In this case, the right side of (A.7) is

infinite. Thus, either

(A.8) /@oﬂq(9)[Lq(a1,9)'— L.(a0,8)] du(8) = oo

or

(A.9) J, 7(O){Ln(0,0) = Ly(ar, 0)] dus(0) = oo
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or both (A.8) and (A.9) hold. If (A.8) holds, but (A.9) does not hold, then it is
easily seen that the Bayes risk of action a; for observer « is infinite,n = 0,1,---, so
that observer v will always choose action aq. Similarly, if (A.9) holds but not (A.8),
observer v always (for all n) chooses action a;. Finally, if both (A.8) and (A.9)
hold, the Bayes risks for both action g and action a; are infinite, so that observer ~
will always randomize between actions ag and a;. In all these cases, observer v can
ignore any data that is obtained. Thus, we see that Assumptiqn A.2 is necessary

to justify the taking of data.
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Appendix B: The decision of the experimenter himself in two-action

decision problems.

Suppose that the experimenter is interested in his own decision, not just his
audience’s decisions. Then he would include himself in I'. Here, we present a lower
bound on the resulting p, — as a function of I' with the experimenter.

We assume — till later in this appendix — that the experimenter has 0—1 loss.

For the experimenter, denote the marginal density for a sample g, by

m(z,) = [ £(2al0)m(0) (@),

as in (2.2). For a set A C &™,

P‘(A)=/Am.(zn)d/\(gn) ifne{l,2,...}.

Let

A

Pn = Pn when I' = {experimenter}.

That is, p% is the experimenter’s probability that he himself chooses the correct
.hybothesis. We first present for p% a lower bound that follows from well known

Bayes risk results.

THEOREM B.1. For everyn > 0,

Prn < Prp
and

pn = po>05 if Ta # 0.5
(py =0 ifr. =0.5).
PROOF OF THEOREM B.1.

We can write

P = 1= [ [ [ Lla(200)s 07012, I ) (20 A (O)dA (2, )N ()
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where a(Z, ) is the Bayes action minimizing the interior integral, and the loss L
is 0—1 loss. Since a(Z, ) uses g, 1o minimize the interior integral, if we replace
it by the non-minimizing a(g,) then the interior integral is measurable g, — the
value p results. Thus, p; < pria- This is just a statement that the Bayes risk

decreases in n, as is well known.

For the second statement in this theorem,
oy = mJI(m.>0.5)+ (1 = ma)I(ma < 0.5),

From this follows
>0.5 if7x #0.5

po is
=0 ifr =05 0O

In order that the audience T has two extreme priors, we assume for the rest of this

appendix the assumptions of Section 2.4 — Assumption 2.2 and Assumption 2.3

— and

ASSUMPTION B.1. For the audience I+* = T U {experimenter},
ot = {m, 7r,,,> with v € I‘}
forms a monotone likelihood likelihood ratio family.
With Assumption 2.3, this implies that
e < 61 < b0, §, < me < &g, OT 61 < 6o < T

The next theorem presents a lower bound on p’ different from the bound in
Theorem B.1. The class T, from which p, is determined, need not contain the

experimenter.

THEOREM B.2.  For every sample size n 2 0,

i = pa—PUE),



where

E = {g, m(Oolg,)=05}.
When T is “closed,” this becomes
pn = pn—P(E).

PROOF OF THEOREM B.2.
From (2.23),

b= 2 [ [ Fal0)m.(0) dX(s,) du(0)

=0

= 2 [ m(Odg.)ma(z,) dX(z,)

1=0

forn € {0,1,2,...}. From (2.24),
Ay = {6:(B0lg,) > 0.5}

z‘il = {51(@0]%,) < 05} .

Let
Ao = {60(@0'2;'") < 05} .

Since 61(0o|Z,) > éo(Oo|z,, ), then

Consequently,

BL) 4n < [ m(Olz)m(2,) dA(z,) + [, m(O1]z)m.(z,) dA(z,)

case 1. m, < &,.

We can rewrite (B.1) as

134

oo <t = [ mOolgma(e) iNE) + [ m(@ilz)ma(z,) Dz,
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where

Bo = {2a:6(00lz,) < 0.5 <7(Cclz,)
and

B = {z,,:ao(eoiz,,) <0-5Sm(@o|%n>}~

Since m.(Qo|Z,) > 7«(©1]g,) on Bo, then

b < pat |- [ m(@ilz)ma(z,) Nz,) +
[, (@il )ma() dN(z)] + [ (05m-(2) dA(za)
= p;+0.5/Em,. z,) dMg,)-

case 2. ™, > b,.

We can rewrite (B.1) as

PR AN N ER AR IEXCAENLCREICH|§

where

Bo = {2, : 60(Oolg,) > 0.5 > m.(OolZ,)}

and

Bl = %n : 50(®°I£n) Z 05 > ﬂ.*(eoign)} *
Since 7.(01]z,) > 7+(O0o|g,) on B, then
pn < PRt [/B Tu(Qo| 2, )ma(Z,) dA(Z,) —

[, w(@olz,ma(z,) dN(z,)] + [(03)m-(2.) dA(z.)

= p;+o.5/Em,. z.) d\(g,) -

Combining case 1 and case 2,

fa S P [ mal(,) dNg2)

= p+P(E). T
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Using Theorem B.1 and Theorem B.2, when n > N, (a forteriori, pn = €)and T

is “closed” then

(B.2) i > max{0.5f(7r. £0.5), e— P.(E)} .
Using that P(BUC) > P(B)+ P(C) —1 for any sets B and G,
(B3)  pa 2 ma.x{e +0.5I(r. £0.5) =1, 26—[L+ P.(E)]}

for the audience I+* when n > N.. If f(z|6o) and f (z]6:) are continuous, then for

the audience [, pp > 0.9 when n > Ngs.

The Experimenter’s Bayes Risk for the Audience’s Actions

So far, we have assumed that the experimenter has 0—1 loss. This was necessary
for both Theorem B.1 and Theorem B.2. The reductions of Appendix A do not
extend to the experimenter for his decision. However, those reductions do extend
to the experimenter for a goal somewhat different than p, > €.

For the remainder of this appendix, let @ represent the “fictitious” action

4

ap if g, € Ao
)@ if z, € A
"\ itz f Ao and 0€ 0,
ao if g, & Ao, A1 and 0 € O1.

L

This is the action (possibly the wrong action) of every observer when every observer
makes the same decision. It is the wrong action when observers make different

decisions. Let

L.(a,0)

be the experimenter’s loss for action “a” when the parameter is §. There are two

perspectives on L,:
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1) L.(a,6) is the experimenter’s loss of his personal decision, a; if m(H;|lz ) >
p p £n

0.5 — viewed from the inside as an audience member.

(i) L.(d,0) is the experimenter’s loss for “the” decision & of the audience —
viewed from the outside as a judge of the observers’ decisions. While each
observer na.turally- makes his own decision, often a decision in fact must be
the same for all observers. For example, when a board must decide whether
to build a factory. So, the action & could be forced upon the experimenter,

either as an observer himself, or while unrepresented in the audience.

Both of these perspectives (i) and (ii) are in use when the experimenter is a member
of the audience I. The second perspective we use to define a new goal.
Consider the problem for which the experimenter’s goal is not that Pn = € but

instead that the experimenter’s Bayes risk for the audience’s actions

By A = [ ] LGOS0 D) du0) < ¢

for some ¢ € R'. We now assume the assumptions of the last appendix, ie, Assump-
tion A.1 and Assumption A.2, for the observers 7 € I and for the experimenter
(ie, ¥ = *, while not implying that the experimenter is in the audience).

As we wrote p, in (2.4), we can write

o= [, oot [, 2.00] +
/e, [/A Lu(a1,0) + /,I L*(ao,a)}}f(znlﬂ)m((’) dX(g,) du(0)
= {/@ /. [£+(a0,0) — L.(ar, 0] +
/91 /A [Lu(a1,6) ~ L.(ao, H)J}f(gn 0)7.(6) d\(g,,) du(8) + W,

where

W= o fo bt + [ ] L00,8)] 2, 0)m.00) (s, ) (o)
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= [, 20+ [ 200.0)] 0)auto).
With #.(8) defined in (A.6) and c, defined in (A.7),
An = _C:lﬁn"l‘w,

where

= 3 [ o0 ixz,) duo).

=0

So, the experimenter’s goal (B.4) can be written
(B.5) pn 2 (W —0).

The problem (B.4) has thus been reduced to 0—1 loss.
The goal (B.4) is feasible — the right term of (B.5) is less than 1 — when the

a priori expected loss of the correct decision is less than (:

[/eo L.(ao,6) +/(91 L.(al,a)] m.(0) du(d) < ¢.

The results of Theorem B.1 and Theorem B.2 apply to the experimenter’s
modified goal (B.4) through the reduction to pn in place of p, for those theo-
rems. This requires the assumptions of Section 2. 4, the last appendix, and this
appendix. (Assumption B.1 requires that IT*+* modified for the 0—1 loss reduction
~ to {#.,%y, 7 € T'} be a monotone likelihood ratio family.)

In summary, this appendix has found bounds on p}; in Theorem B.2. These
bounds implied the bounds on prn for v € T** in (B.3). The goal that the exper-
imenter’s Bayes risk for the audience’s actions be small, (B.4), reduced to (B.5)
with 0—1 loss for all observers and the experimenter. This goal allowed the bounds

on p; and p, with ¥ € I'** to be applicable after reduction to 0—1 loss.
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Appendix C: A computer program for one-sided hypothesis testing.

o0 00 0 000060000000 00006a0

[

program COMPOUN(input, output, tapeS=input, tape6=output)

This program computes the probability that all parties choose the same,
correct, hypothesis for a list of sample sizes to be read in.

The hypotheses are composite hypotheses.

This program will accept any continuous prior distributions, not just
conjugate priors. This program is not written for efficiency,

but for its possible readability. Capital letters are used only fer
readability -- most fortran compilers convert all small letters

to capital letters. Four subroutines must be supplied by the user:
1. CONCAVE, the scaling function d(theta) for the canonical form

of the exponential family sample distribution.

2. LIKCUMU, the cumulative distribution of the sample mean.

3. LNPRIOR, the logarithm of the prior densities.

4. PRICUMU, the cumulative distribution of the prior distribution.

The parameters for 3 and 4 are supplied at the beginning of this
progranm, being sent to subroutines by common statements as needed.
Parameters must be supplied for a first observer, a second observer,
and an experimenter. As supplied below, these four subroutines solve
the gamma distribution example with conjugate priors.

Wherever the user might make changes is shown by a box of
"SSSSS85SSSS." Except that the parameters themselves --- here, alpha,
delta, and zeta --- must be changed for different exponential family
distributions.

¢ IITIIIIIIIIIIIIIITIIIIIIIITIIITTIIITIIIIIIIIIIIIIIIITIIIIITIIIIITIIIITIIIIIIIIIIL
common COMMON COMMON COMMON COMMON COMMON COMmMON COmMMON COMMON COMMON COMMOn

common b,alpha,delta,zeta

common n,priorL,priorH,ZL,ZH,REpctle,w,factden,maxdens
real b,alpha,delta,zeta

real n,priorL,priorH,ZL,ZH,REpctle,w,factden,maxdens

common common COmMmMON COMMON cCommon COmMMmMONn COomMmon COommon common common common

[~
[+

real H,PRBJNT1,PRBJINT2

real deltal,delta2,zetal,zeta2,deltast,zetast

real prioriL,prioriH,prior2L,prior2H,pristL,pristH
real pcntile,AA,BB,Zl,Z2,integr1,integr2,rho
integer itmax,ier

EXTERNAL H,PRBJNT1,PRBJINT2

The following parameter values must be changed.

€ S555SSSS555S5SSSS55555555SSSSSSSSSS3SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

b = -1.0 S
alpha = 1.0 S
deltal = 1.0 S
delta2 = 1.0 S
zetal = 50.0 S
zeta2 = 13.0 S
deltast = 3.0 S
zetast = 2.0 S

€ SS555S5S55555555S55555SS55SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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(£ T 2 B + B ¢ }

The following are the parameters of the first observer,

used thru the common statement.
SS5S555S55S55555S5S5S5S5SS5555SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

delta = deltat S

zeta = zetal : S
55558555585555S5SS55S55S55SSS55SSSS5S5585SS55555555SS5SSSSSSSSSSSSSSSSS

pentile = 0.0001

CALL SUPPORT(pentile,prioril)

pentile = 0.9999

CALL SUPPORT(pcntile,prioriH)

The following are the parameters of the second observer,

used thru the common statement.
S855S58SSS5SSS5S5S555S5S5S5SSS5S55555555555SSSSSSSSSSSSSSSSSSSSSSSSSSSS

delta = delta2 S

Zeta = zetal S
555555555555S5555S55555555S5S5555SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSs

pcatile = 0.0001

CALL SUPPORT(pentile,prior2L)

pentile = 0.9999

CALL SUPPORT(pcntile,prior2H)

The following are the parameters of the experimenter,

used thru the common statement.
5S55S5555555855S55555S5555555S5S5555555S5S555S55SSSSSSSSSSSSSSSSSSSSSSS

delta = deltast S

Zeta = zetast S
5585555555 SS55555555S5555S555S5555S55SSS5555S55SSSSSSSSSSSSSSSSSSSSSSSSS

pentile = 0.0001

CALL SUPPORT(pcntile,pristlL)

pentile = 0.9999

CALL SUPPORT(pentile,pristH)

priorL = AMINi(priorilL,prior2L,pristL)

priorH = AMAX1(prioriH,prior2H,pristH)

print#*, ‘prioril = f,priorilL, ‘prioriH = ¢,prioriH

print*, ‘prior2L = ¢,prior2L, ‘prior2H = ¢,prior2H

print#*, ‘pristL = ¢,pristl, ‘pristH = ¢,pristH

print#*, ‘priorL = ‘,priorL, ‘priorH = ‘,priorH

5 READ(5,100,end=30) n
100 FORMAT(F10.0)
The following assumes that to give the posterior median of b, the

sample mean is between AA and BB. Wider limits are more time consuming.

5S555555555555555555S5555S5555555S55S5S55SSSS5SSSSSSSSSSSSSSSSSSSSSSSSS
delta = deltatl
Zeta = zetal
WARNING: the following are set to very narrow values
AA = 1.0E-1
BB = 1.0E2
S55S555555555555555555555555SSS5SSSSSSSSSSSSSSSS555SS5SS555SSSSSSSSSSSS

nnunununu
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itmax = 300
c The zero of the function H is produced by ZBRENT as BB.

CALL ZBRENT(E,0.0,6,4A,BB, itmax,ier)

IF (ier .EQ. 130) THEN

Print*, ‘H has the same value at A and at B —~-- a larger
< range must be provided®

ENDIF
Z1 = BB

I

I

I

I

I

I

I

I

I

I
S58S555555555555555S55SSSSSSSS555555SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS I
delta = delta2 I
zeta = zetal I
c WARNING: the following are set to very narrow values I
AA = 1.0E-1 I
BB = 1.0E2 I
S58S55555555555555555SS5SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS I
itmax = 300 I
CALL ZBRENT(H,0.0,8,AA,BB,itmax,ier) I
IF (ier .EQ. 130) THEN I
print*, ‘H has the same value at AA and at BB ---- a larger I
c , range must be provided® I
ENDIF I
22 = BB I
ZL = AMIN1(21,22) I
ZH = AMAX1(21,Z2) ‘ I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

(4]
ununununumwn

[¢]

print, ‘2L = ¢,ZL, ‘ZH = ¢,ZH

The above values,ZL and ZH, are the sample means giving b as the median
of the posterior distributions for two different observers, at sample
size n.

- The following assumes a continuous sample density, or
that the Z‘s giving median b for the sample distribution
are not at the mass points of that distribution.
The following DCADRE program is an IMSL integration routine.
qqqqqﬁqqquQ§eqchq<§qqqq§q§<<qeeeQQQ§qqqqqqqq<Qqqqﬁqqsssssssssssssssss
delta = deltast S
zeta = zetast S
c SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
integrl = DCADRE(PRBJNTi,priorL.b,0.000i,0.000i,error,ier)
integr2 = DCADRE(PRBJNT2,b,priorH,0.0001,0.0001,error.ier)
rho = integri + integr2
write(*,301) ‘n = ‘,n, ¢ rho = ‘,rho
301 format(A3,F11.1,47,F10.6)
GOTO 5
30 continue
stop '
end
c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
c

O 000000000
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Cc

< IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
real FUNCTION CONCAVE(theta)

c This is the scaling function d(theta) for the exponential

c family sampling distribution.

common cCommon common COmmOn COMMON COMMON COMMON COmMMON COMMORN common common
common b,alpha,delta,zeta
common n,priorL.priorH,ZL,ZH.REpctle,w,factden,maxdens
real b,alpha,delta,zeta
real n,priorL.priorH,ZL,ZH,REpctle,w,factden,maxdens

common Common COommon COmmOn COmMON COMMON COMMON COMMOR COMMON common common
real theta

c SSq<<qq<§§<q<qq<q<qq<SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
CONCAVE = alpha * alog(-theta) S

c qqqQ<qqqqqqcqqqae<<q§qqqqqqqq=<qqqqqqeqqqqqqqqqnggqqq<qq<<qqq<<<qqssss
return
end

< IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
[

c

c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
real FUNCTION LIKCUMU(xcumu,theta)

c This function, corresponding to CONCAVE, gives the cumulative

c distribution function for the sample distribution.

common cCommon cCommon COmmON COMMOR COMMON COMMON COmMMOR common common common
common b,alpha,delta,zeta '
common n,priorL,priorH,ZL.ZH.REpctle.v,tactden,maxdena
real b,alpha,delta,zata
real n,priorL,priorH.ZL,ZH,REpctle,v,factden,maxdens

common common COMRON COMMON COMmMON COMMON COMMON COmMOn common common common
real xcumu,theta

c S§§<Qq<<<§QQQQqq<§<<§<§<<<<<<§<<<SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

integer ieri s

real df1,chicumu S

dfi = 2#n*alpha S
chicumu = -2*n*theta*xcumu S

c Unless 0.5 < df1 < 200,000 then the following cumulative S
c chi-square distribution pProgram MDCH will give error 129 S
< (error 129 can also occur if chicumu is less than zero). S
S

CALL MDCH(chicumu,df1,LIKCUMU,ier1)
c sssqeeqqqqeqqqqﬁeqe<<QQ<<4<§<==<<qq<<ﬁsssssssssssssssssssssssssssssssss

return :

end
c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
[+

I
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I

I
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c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
real FUNCTION LNPRIOR(theta) I

c This function gives the logarithm of the density of the Prior. I
c Note that the parameters delta and theta for this distribution are I
c supplied to every subroutine through the common statements. I
c A prior different from the gamma prior would use other Parameters, with I
c their inclusion in the common statements in the place of delta and Zeta. I
common Common Common COmmon COmmMON COmmOn common common common common common = I
common b,alpha,delta,zeta I
common n,priorL,priorH,ZL,ZH,REpctle,w,factden,maxdens I

real b,alpha,delta,zeta I

real n.priorL,priorH,ZL,ZH,REpctle,w.tactden.maxdens I
common COmmOn COmmMOR COMMOR COMMON COMMON Common common common Common common @I
Treal theta I

¢ ssss<<§<<<q<qqq<<<qq<qq<qqqqqqqqqqqqqqqqsssssssssssssssssssssssssssssss I
I

I

I

I

I

I

I

I

I

LNPRIOR = zeta*alog(delta) + (zeta-1)*alog(-theta) +
c delta*theta - ALGAMA(zeta)
c SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
return
end
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

real ALGAMA S

c ALGAMA is an IMSL routine for the logarithm of the S
< gamma function. S
S

S

0O 0 0 a

IIIIfIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
real FUNCTION PRICUMU(thacumu)
This functien, corresponding to LNPRIOR, gives the cumulative
distribution function for the prior.
It is implicitly a function of parameters appearing in the
common statements.
common common common common common common common common common common common
common b,alpha,delta,zeta
common n,priorL,priorH,ZL,ZH,REpctle,w,factden,maxdens
real b,alpha,delta,zeta
real n,priorL.priorH,ZL.ZH.REpctle,w,factden,maxdens
common common common common common common common common common common common
real thacumu
c SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
integer ier2
real df2,chicumu,cumuchi
df2 = 2+%z2eta
Chicumu = -2 * delta*thacumu
c Unless 0.5 < df2 < 200,000 then the following cumulative
chi-square distribution Program MDCH will give error 129
c (error 129 can also occur if chicumu is less than zero).
CALL MDCH(chicumu,df2,cumuchi,ier2)
PRICUMU = 1 - cumuchi
c SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

O o0 0o

(4]
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return I
end I
c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
c
c .
c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
real FUNCTION LNDENSJ(theta) I
c This function is the logarithm of the product of the likelihood I
c and the prior density, adjusted by the term factden. I
common COmMmOnR COmMmMOR COMMON COMMON COMMON COMMON COmMmMOR COMMON common common I
common b,alpha,delta,zeta I
common n,priorL.priorH,ZL,ZH.REpctle,w,factden,maxdens I
real b,alpha,delta,zeta I
real n.priorL,priorH,ZL,ZH,REpctle.w.factden,maxdens I
common common COmMmOn COmMMON COMMOR COMMOR COMMON COMMON COMMON common common I
real CONCAVE,LNPRIOR I
real theta . I
real temp I
c "factden" is a scaling factor (term) to prevent LNDENSJ from having too I
c small or too large values. "factden" is determined via "maxdens." I
LNDENSJ = n*(theta*w + CONCAVE(theta)) + LNPRIOR(theta) - factden I
temp = amaxi(maxdens,LNDENSJ) I
maxdens = temp I
return I
end I
c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
c
c
c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
real FUNCTION densjnt(theta) ) I
c This function is the product of the likelihood and the prior I
c density --- adjusted by the factor exp(factden). I
common common common COMmON Common cCommon COMMON COMMON COMMON common common I
common b,alpha,delta,zeta I
common n,priorL,priorH,ZL,ZH,REpctle,w,factden,maxdens I
real b,alpha,delta,zeta I
real n.priorL,priozH,ZL.ZH,REpctle,w.factden,maxdens I
common common COMMON COmEON COMMOR COMMON COMMON COMMON COMMON common common I
real LNDENSJ I
real theta I
DENSJNT = exp(LNDENSJ(theta)) I
return I
end I
c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
c
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c
< IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

real FUNCTION MPRICUM(thacumu) I
< This function is needed for the following subroutine, SUPPORT, I
c which finds the zero ---not of Pricumu--- but of "pricumu - pentile." I
commen common COmMOR COMmON COMMON COMMON COMMON COMMON COMMOR COMMmOIN common I
common b,alpha,delta,zeta I
common n.priorL,priorH,ZL,ZH.REpctle,w,factden,maxdens I
real b,alpha,delta,zeta I
real n,priorL,priorH,ZL,ZH,REpctle,w,factden,maxdens I
common Common COmMmMON COMMON COmmMOn common common common common common common @I
real PRICUMU I
real thacumu I
MPRICUM = PRICUMU(thacumu) - REpctle I
return I
end I
c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

c
c

c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

SUBROUTINE SUPPORT(pcntile,priored) I

c This subroutine finds the endpoints of a distribution having I

c probability 0.9998 between them. I

common common common COmmOR COMMON COMmMON COMMON COMMON COMMON COMMOR COmMmON I

common b,alpha,delta,zeta I

common n,priorL.priorH.ZL,ZH.REpctle,w,factden,maxdens I

real b,alpha,delta,zeta I

real n,priorL,priorH,ZL,ZH,REpctle,w,tactden.maxdens I

common common COmmOn COmMMON COMMON COMMON COMMOR COMMON COMMOR COMMOn common I

real MPRICUM,PRICUMU I

real pcntile,priored I

real AA,BB I

integer itmax,ier I

EXTERNAL MPRICUM,PRICUMU I

REpctle = pentile I

c The following assumes that the parameter theta is between AA and BB. I

< The zero of the function Mpricum is output by ZBRENT as BB. I

c SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS I

AA = -1.0E15 ’ 5 I

BB = -1.0E-15 S I

c SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS I

itmax = 300 I

CALL ZBRENT(MPRICUM,0.0,9,AA,BB,itmax,ier) I

IF (ier .EQ. 130) THEN I

print*, ‘MPRICUM has the same value at AA and at BB ==-- a larger I

c range must be provided*® I

ENDIF I

Priored = BB I

return I

end I

c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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Cc

c .
¢ IIITIIIIIIIIIIIIITIITIIITTIIXTIITINIIIITITIIITIIITIITITIIIITITINIIITIIITIITIINIIIIIL

real FUNCTION H(y) I
common common COommon common COmmon COMMON COMmMOn Common Common common common I
common b,alpha,delta,zeta I
common n,priorL,p:iorE,ZL,ZH,REpctle[w,factden,maxdens I

real b,alpha,delta,zeta I

real n,priorL,priorH,ZL,ZH,REpctle,w,factden,maxdens I
COmmon common COmmON COmMMON COMmMON COMMON COMMONn COmMMON COMmMOn common common I
real DCADRE,LNDENSJ,DENSJINT I

real y,integri,integr2,error,temp I
EXTERNAL LNDENSJ,DENSJNT I
integer ier I

v=y I
factden = 0.0 I
maxdens = ~1.0E30 I

c I
< The next DCADRE program is used only to get the scaling factor I
c “factden.” DCADRE is an IMSL integration routine. I
temp = DCADRE(LNDENSJ,priorL,priorH,1.0E-3,0.0,error,ier) I
factden = maxdens I

ier = 0 I

c I
integri = DCADRE(DENSJNT,priorL,b,1.0E~5,0.0, error,ier) I

IF (ier .NE. 0) THEN I
print*, ’error on integrali---estimated absolute error is 2, I

c error I
ENDIF I

ier = 0 I

c I
integr2 = DCADRE(DENSJINT,b,priorH,1.0E~-5,0.0,error,ier) I

IF (ier .NE. 0) THEN I
print*, ’error on integral2~---estimated absolute error is ’, I

c error I
ENDIF I

c I
H = integri / (integrl + integr2) - 0.5 1
return I

end I

c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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c
c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
real FUNCTION PRBJINT1(theta)
c This function gives the Product of the cumulative sample distribution
c and the prior density.
common common common common COMMON COMMON COMMON COMMON COoMmMOn common common
common b,alpha,delta,zeta
common n,priorL.priorH,ZL,ZH,REpctle,w,tactden,maxdens
real b,alpha,delta,zeta
real n,priorL.priorH,ZL,ZH,REpctle,w,factden,maxdens
COmmOn COMmMOnR COMMON COMMON COMMON common common common cCommon common common
real LIKCUMU,LNPRIOR
real xcumu,theta
xcumu = ZL
PRBJNT1 = LIKCUMU(xcumu,theta) *
c exp(LNPRIOR(theta))
return
end
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

HHHHHHHHHHHHHHHHH
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c
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
real FUNCTION PRBINT2(theta)

c This function gives the Product of "1 - cumulative sample distribution”
c and the prior density.
common common CoOmMmMOn COMmMON common common common common common common common

common b,alpha,delta,zeta

common n,priorL,priorH,ZL,ZH,REpctle,w,factden,maxdens

real b,alpha,delta,zeta -

real n.priorL,priorH,ZL,ZH,REpctle,w.tactden,maxdens
common Common COommOn COmmMOn common common common common common common common

real LIKCUMU,LNPRIOR

real xcumu,theta

xcumu = ZH

PRBINT2 = (1 - LIKCUMU(xcumu, theta)) *

c exp(LNPRIOR(theta))

return

end
c IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

(4]
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