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ABSTRACT
Let A be the set of probability measures A on [0,1]. Let M, = {(c1,...,¢n) | A € A}
where ¢cx = ¢i()\) = fol zFd)\, k = 1,2,... are the ordinary moments, and assign to the
moment space M, the uniform probability measure P,. We show that, as n — oo, the
fixed section (cy, ..., ck) properly normalized is asymptotically normally distributed. That
is, v/nl(c1,...,cx) = (c},...,c%)] converges to MVN(0, L) where ¢? correspond to the arc—
sin law A¢ on [0,1]. Properties of the £ x k matrix ¥ are given as well as some further

discussion.

1. Introduction and Main Theorem

The set of probability measures on [0,1] is denoted as A, let further
M, = {(c1,...,¢n) | XA € A}, (1.1)

where ¢ = cx(A) = fol z¥A(dz), k = 0,1,2,...; (co = 1). This so—called moment space
M, is the convex hull of the curve {(z,z%,...,2"):0 < z < 1} in R,, and is a very small
compact subset of the unit cube [0, 1]™. For instance, it is known that

L(k)C(k)

Vo= Vol M, = [[ Bk, %) =[] (k) (1.2)

k=1 k=1

see Karlin and Studden 1966, p. 129, Theorem 6.2; (another proof is given below). Thus

Vi is roughly of size 2—"2, more precisely, log V,, ® —n?log2 as n — oo.
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Our investigations stem from an attempt to understand more fully the shape and
structure of M,, by looking, in some sense, at a typical point of M,,. Let P, be the uniform
probability measure on M,, i.e., dP, = dz/V, is n—dimensional Lebesgue measure on M,,
normalized by the volume of M,,. In this way (e1,...,¢n) € M, can now be viewed as a

random vector. The symbol E, will indicate expected values relative to P,,.

For example, M; is determined by the inequalities c? < ¢3 < ¢; <1 and has volume
Vo = % thus dP, = 6dcidc; on M,. The marginal densities of c1, ¢z are 6(c; — ¢2), 0 <
¢ < 1, and 6(\/cz — ¢2), 0 < ¢z < 1, respectively. The means are Es[c;] = 1/2 and
Eslce] = 2/5 and the squared correlation is 35/38. General closed form expressions even

for, say, the means F,[c;] seem difficult to obtain.

The so—called center (cf,...,c%) of the moment space M, is given by

! 2k 1
0 — k dr = 2‘2"’( ) R -——=ask . 1.3
ci /0 z” fo(z)dz L T as k — oo (1.3)

Here, fo(z) = n~'z~1/2(1 — 2)"1/2, 0 < z < 1, is the density of the arc—sin probability
measure Ag on [0,1]. The word “center” will become clearer below. Qur main result is the

following.

Theorem 1.1. As n — oo, the distribution of /n[(cy,.. oyex) —(e],...,cd)] relative to
P,, converges to a multivariate normal distribution MVN (0,Z%). Here, T} = %AkA; with
Ay as the lower triangular k x k matrix defined by

. 21
aij =2_21+1 (Z _Z]) if 1 S] S i;

=0 if § > i

(1.4)

thus a;; = 27241, In particular, if ¢; is governed by P, and n — oo then ¢ — cg in

probability.

By A = (a;;; 1 <1, j < 00) we will denote the corresponding infinite lower triangular
matrix, having A as its left upper k x k submatrix. The proof of the theorem is, in
essence, quite simple and, at the same time, illuminating. The boundary of M,, has P,-
measure zero and thus can be ignored. Note that (c1,...,c,). € int M, implies that

(e1,...,¢k) € int My, for all k < n.
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It will be convenient to employ the canonical coordinates pr(k=1,2,...) introduced
by Skibinsky (1967). For each k = 1,...,n, the k—th canonical coordinate Pk of a moment
point (c1,...,¢,) € int M, is well-defined, satisfies 0 < p; < 1, and depends only on
€1,...,Ck. The associated function p; = fi(cy,..., ct) is independent of n. Conversely, ci

is fully determined by py,...,p;.

Given (c1,...,ck—1) € My_q, let cf = c;:'(cl,...,ck_l) and ¢ = ¢ (e1,...,ck-1),
respectively, denote the largest and smallest possible value of cr which is compatible with
(c15-++,¢k-1,¢k) € My. Thus, ¢t < ¢t < ¢f when (c1,...,¢ck) € My. In particular,
cf =0; ¢f =1and ¢ =c; ¢ = ¢1. As is easily seen, (c15...,¢ck) € int My if and only

if ¢ <c¢j <c3-"(j =1,...,k). Put
A = Ax(er,...,cpm1) = c;c"(cl,...,ck_l) —c;(e1y...,ch—1).

Here, Ag > 0 for all (c1,...,ck—1) € int Mz_,. For k = 1,...,n, the k—th canonical

coordinate (or moment) of a moment point (¢1,-+.,¢n) € int M, is defined by
Cr — c,: —
Pk = T thus ¢ = ¢ (cy, ... yCk—1) + Ag(er,. .. » Ck—1 )Pk - (1.5)
E Tk

Note that 0 < px < 1. It follows by induction that, for all £ > 1, there is a 1:1 corre-
spondence between points (c1,...,c;) € int My and points (p1,...,pi) € (0,1)*. Thus
) c;c" and Ag = c;cF — ¢, can also be regarded as functions of py, ... » Pk—1; these functions
happen to be polynomial, (as is clear from (8.6) or (3.19)). Similarly, ¢; is a polynomial in
P1,...,pk which is linear in the variable p; with coefficient Ar, (see (1.5)). The canonical
moments py for the Beta(a, 8) distribution on [0,1] are given in Skibinsky (1969) p. 1759.
The above arc-sin distribution A corresponds to a = B = 1/2 and has canonical moments
pl = 1/2 for all k > 1. This partially explains why the corresponding moment point

(c,...,c2) may be regarded to be the center of M. Here, the c} are as in (1.3).

Remark. The canonical coordinates pr admit a more general interpretation and as

such are quite robust. Namely, consider any non-degenerate compact interval [a,b] and
J

let {W;(2)}, be a given system of polynomials of the form Wi(z) = ) djmz™ with

. m=0
djj > 0. For example, W;(z) = z7. Next consider all moment sequences {w;}%2, of the
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form w; = [ W;(z)A(dz) (j = 1,2,...) with X as a probability measure on [a,b]. Given the
moments wy,. .., Wn—1, let w;, wl denote the smallest and largest possible value of wp,.
Provided A,, = wi — w; > 0, define p, = (wp — wj)/Ap; thus 0 < p, < 1. As is easily
seen, the resulting sequence {p,} of (generalized) canonical coordinates is independent of
the particular choice of the system of polynomials {Wj(z)}. In addition, as was already
observed by Skibinsky (1969) p.1763 Theorem 5, if the probability measure A on [a,b] is
linearly transformed (with positive slope) to a measure y on another interval [, 8] then

) and p have exactly the same canonical coordinates pn(n > 1). Here, u(F) = Mg~ F)
where g(z) = a + (8 — a)(z — a)/(b — a).

Let us return to the above (Hausdorff) sequences {c,} of the special form ¢, =
[ z™A(dz), with X as a probability measure on [0,1]. Using (1.5), one finds that
3ck

=0 if j > k;
Bp, J
k—1 (1.6)
=Ak=c}:—c,:=Hprq,.ifj=k;
r=1

Here and from now on, ¢, = 1 — p,. The latter elegant formula for A; was established by
Skibinsky (1967). A different proof is given below, see (3.4). It follows from (1.6) that

S der _ 17
rqr)" 1.7
3(p1,---,pn) Hapk H(p @) (1.7)

Transforming the integral V,, = | M, dc1 ... den to an integral over (0,1)" relative to the pj,
we see that formula (1.2) above is an immediate consequence of (1.7). Both (1.2) and (1.7)

are special cases of the following result, (namely, with m = 0 and m = n — 1, respectively).

Theorem 1.2. Let 0 < m < n and (¢1,...,¢m) € int My,. Then the set My(cy,...,¢m)

of all (¢m41,.--,cn) such that (ci1,...,¢s) € M, has (n — m)-dimensional volume
n-m TT D(E)C(E)
Vol M,(c1y...,6m) = H(pr r) H I‘(2k) (1.8)

The latter is maximal when p, = 1/2 (r = 1,...,m). Note that, under P, the conditional
distribution of (¢m+1,- - - ,€n) given (c1, . . . , €m) is the uniform distribution dem41 . . . de, /Vol

M,(c1y--. ¢m) on My(c1,... ¢m).



In the sequel, for each fixed n, when we assign to M, the uniform distribution P,,
functions on M, such as ci,...,ck or p1,...,pr (k < n) can be regarded as random

variables. But note that the resulting joint distribution will depend on n.

Proof. Prescribing (c1,...,¢m) € int My, is the same as prescribing the parameters
0 < pr < I(r =1,...,m). Further note, using (1.6), that
3(cm+1, ey Cn) it n—-m pant, n— r
= H HprQr = H(prQr) H (prqr)

a(pm+1’ ot ,Pn) s=m+1r=1 r=m+1
The volume on hand is equal to the integral of dc,,41 ... dcy, over My(c1y...,¢m). Trans-
forming that integral to an integral with respect to the variables pp41,...,pn over the

unit cube (0,1)"~™, one obtains (1.8).

Theorem 1.3. The uniform probability measure P, on M, is equivalent to the first n
canonical coordinates py,...,p, being independent random variables in such a way that

Pk has a symmetric Beta(ay, ay) distribution with ax =n—k+1, k=1,...,n.

Proof. Simply transform the integral

Enf(p1y...,pn) = /M fp1,...ypr)der...den [V,

where f is arbitrary, to the variables pi,...,pn, again using (1.7).
The symmetric distribution Beta(a, a) (o > 0) has mean 1/2 and variance 1/(8a +4).

Hence, for k=1,...,n, lettinga=n—k +1,

n2

as n — oo. Moreover, as is well known and easily seen, \/n [pr — 1/2] — N(0, 1/8) in
distribution, under P, as n — oco. Two proofs of the following central Lemma are given in

Section 3.

Lemma 1.4. The first order Taylor expansion of cx = ck(pi,...,pr) about the center

(p},.-.,p}) with p% = 1/2 is given by

k k
1 ' 1
— A0 sl — =2
ck = cp + 2”?:1 akm(Pm 2) +0 (mil | Pm 2| ) . | (1.10)
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Here, the ain, are as in (1.4). In particular ai,, = 2-2¥+1 (ki’:n ifm <k

Proof of Theorem 1.1. Let k be fixed and j,m = 1,...,k. With n > k and relative
to P, as the underlying measure, consider the random variables X,; = /n (¢; — c?)
and Znm = 24/n(pm — 1/2). Here, Z,1,..., Zny are independent, for each fixed n, while

Zam — N(0,1/2) when m is fixed and n — co. Writing (1.10) as

k k
1 :
Xnj =Y GjmZnm+0 (W > ng) . (G=1,...,k),
m=1

m=1

Theorem 1.1 becomes an immediate consequence.

2. Further Discussion

Let ¥ be the infinite symmetric matrix ¥ = (i) = %AA’ having ¥; = %A;‘,A;c as
its left upper k x k submatrix. Recall that £} is the covariance matrix of the asymptotic
MVN(0, Zx) distribution as n — oo of v/n [(c1,...,¢k) — (c},...,c2)], when the latter is
governed by the uniform measure P, on M,. Thus asymptotically, as n — oo, the ¢; have

means c] + o(1) and covariances (o;;/n)(1 + o(1)). Let further

pij = 0ij[\/7ii05;.

Thus p;; is the limiting value as n — oo of the correlation coefficient under P, between
the moments c; and ¢;. The following result is proved in Section 4.

Lemma 2.1. One has

0ij = ¢y — cicd, (2.1)

where the ¢} are as in (1.3). Hence, oij = 0 as 4,5 — oco. If s is fixed then p, 54, — 0 as

r — oo. If r is fixed then p, .4, — 1 as s — co. More generally, for any fixed § € [0,1],

4K \1/4

pij — ((_m) when 4,5 — oo; j/i — K. (2.2)

Let k£ > 1 be fixed. It is natural to inquire into the diagonalization of the symmetric

k x k matrix ¥) and corresponding linear transformations of (c;, ... ,¢k). In view of the
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usual Gram-Schmidt orthogonalization procedure, it suffices to determine the essentially
unique linear combinations t; = bijer + ... + b (1 < ¢ < k) with bj; # 0 that are
asymptotically uncorrelated, under P, as n — oo. Equivalently, letting b;» = 0 when
m > i, we want By = (bim; i,m = 1,...,k) to be a non-singular lower triangular k X k
matrix such that Dy = BiX kac is diagonal. Adding suitable constants b;,, one can further

achieve that

ti= Y bimem (i=1,...,k; co=1) (2.3)
m=0

are asymptotically uncorrelated and of mean 0. Equivalently, letting tp = ¢o = 1, we want

to,t1,. ..,tr to be asymptotically orthogonal, under P, as n — oo.

The above diagonalization process happens to be intimately connected with the usual
Chebyshev polynomials. Namely, consider the probability space Qp consisting of the in-
terval [0, 1] together with the arc-sin measure Ap as the underlying probability measure.
The functions z — z' on y can then be regarded as random variables Z;. We see from

(1.3) that EZ; = ¢! and EZ;Z; = ¢}, ;. Therefore,
Cov(Z;,Z;) = o;j for all ¢, j > 1, (2.4)

with o;; exactly as in (2.1). Hence, the means and covariances, of v/n(c; — N =1,...,k)

under P,, coincide asymptotically (as n — co) with the means and covariances of Z; —

¢} (i =1,...,k). Thus the above diagonalization is equivalent to finding k + 1 linear

combinations of the form T,-# = i:o bimZm (1 = 0,1,...,k), with b;; # 0; boo = 1, that
m=

are orthogonal as random variables on 9. But that simply means that the corresponding

polynomials ‘
THz) = Y bimz™, (i=0,1,2,...), (2.5)
m=0

one of each degree, are orthogonal with respect to the arc-sin measure Ag. Choosing the
leading coefficient b;; appropriately, we may as well assume that the T;*(z) are precisely the
Chebyshev polynomials, adapted to the interval [0, 1]. And then the resulting coefficients

bim are independent of k, (where k > max(z,m)).

The functions cos i6 (i = 0,1,2,...) are clearly orthogonal with respect to the uniform .

measure on [0,7]. Letting y = cos 6, cos i§ = T;(y) one arrives at the system {Ti(y)}2,
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of ordinary Chebyshev polynomials, orthogonal with respect to the measure dy/+/1 — y?
on (—1,1). Letting ¢ = (1+4y)/2 = (14 cos §)/2 = (cos 6/2)?, leads to the desired system

T*(z) = Ty(2z — 1), (i =0,1,...) (2.6)

as in (2.5) of orthogonal polynomials with respect to the measure Ag on (0, 1). Here, T*(z)
is of exact degree 7, while Tjf(z) = 1. The coefficients in (2.5) are given by b;p = (—1)* and

bim = (<1t 2t (T )

m t—m

. fitm (2.7)
= (=1)i*tm g2m_* ( ) if1<m<i

t+m\e—m
Thus b;; = 22~1 if { > 1. Further, from now on, b;, = 0 if m > i. Formula (2.7) easily
follows from the known result that T,,(2z — 1) = (=1)"F(—n,n; %, z), see Abramowitz
and Stegun (1965) p. 795 and Henrici (1977) p. 176. For the sake of completeness, an

independent proof of (2.7) is included in Section 4. Further note that

/0 T3 () ho(dz) = /0 " (cos je)z‘fr—a =3 (2.8)

Theorem 2.2. Consider the linear combinations

ti = Z bimCm = Z bim(em — %), (1=1,2,...;5¢0 =1). (2.9)

m=1
Here the bi, are as in (2.5) and (2.7). Then, for any fixed ¥ > 1 and n — oo, the
distribution of v/n (%1,...,%x) relative to P, converges in distribution to the multivariate

normal distribution MVN(0, %I k). Here, Iy denotes the k X k identity matrix.

Proof. The second equality sign in (2.9) follows from ¢y = ¢J = 1 and

1 1
= Z bimcl, = / T*(z)ho(dz) = 0if i > 1. (2.10)
m=0 0

In view of Theorem 1.1, it suffices to show that By Xz B}, = %I k- In some sense this already
follows from the previous discussion. As a direct proof, if 1 <z, 7 < k then

k &k

1
1_;
3 bl — ) = 305 bkt = / T (2)T} (2)a(d2) = 561.

r=0 s=0 =0 s=0
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Here, we used (2.5), (2.8), (2.10) as well as the orthogonality of the T*(z) with respect to
Ao. Note that ¢, ; — c?c? = 0 when either i = 0 or j = 0. In view of (2.1), it follows that

BySiB} = LI,

Theorem 2.3. The lower triangular matrices A = (aj;; ¢,j > 1) and B = (b;j;i,5 > 1)

are each others inverse. Similarly for Ax and By, (any k > 1). Moreover, for m > 1,

™ =0 + Z amr T (2); (2.11)
r=1

COROLLARY 2.4. We have for all m, r > 1 that

1
1
/ ST (@)ho(ds) = Sam. 2.12)
0
Moreover,
Cm = + Zamrtr. (2.13)
r=1

Here, the t, are as in (2.3) thus t, = [ T¥(z)\(dz).

We will present several proofs. Note that (2.12) is an immediate consequence of (2.8),
(2.11) and the orthogonality of the T}*(z) with respect to Ag. Further, (2.13) follows from
(2.11) from an integration relative to any A € A having the moments ¢y = 1, ¢y,...,cm.
Choosing A = Xg, one has ¢y, = ¢ (m > 0) and ¢, = 0, (r > 1; ¢ = 1). This explains
the constant term ¢, in (2.11), (2.13). Finally observe that (2.11) is actually equivalent to
A, B being each others inverse, as can be seen by substituting formula (2.5) for the T*(z)

into (2.11), and equating coefficients.

A first proof of Theorem 2.3 amounts to a direct verification of (2.11), see Section 4.
A second proof is to directly verify the property AB = I, see Section 4. As still another
demonstration, recall that, in the above proof of Theorem 2.2, we already established that
BYB' = -;—I where ¥ = %AA’. Hence, the lower triangular matrix C = BA satisfies
CC' = I, in particular, the rows of C are mutually orthogonal. Also using that c; =

aiibi; = (2721+1)(22"-1) = 1, we conclude that C must be the identity matrix.
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3. Proof of Lemma 1.4.

We will present two different proofs. The first one exploits an important relation
between the Hausdorff moment problem and a certain random walk. This relation, which
one of us plans to discuss in more detail in a subsequent paper, is implicit in the work of

Karlin and McGregor (1959).

Let {X,}32, be a stationary discrete time Markov chain (also called random walk)

on the nonnegative integers Z4 which is determined by the transition probabilities
PXpt1=j|Xa=d)=p Hj=i-1;
=q fj=i41 (3.1)
=0, otherwise.

Here, ¢; = 1 — p;. Further 0 < p; < 1 for ¢ > 1, while py = 0; go = 1. The corresponding
n-step probabilities are denoted as P,-J-n) = P(X, =j | Xo =1). It was shown by Karlin
and McGregor (1959) p. 69 that there exists a necessarily unique probability measure A of
infinite support on [0,1] such that

1
P@™ = P(X30 =0 Xo =0) = /0 z"A(dz), for all n > 0. (3.2)

In other words,

¢n =P (n=0,1,...) (3.3)

always defines a Hausdorff moment sequence having ¢y = 1; (¢1,...,¢5) € int M, for all
n > 1. In fact, (3.2) establishes a 1:1 correspondence between all such Hausdorff moment
sequences {c,} on the one hand and all random walks {X,} on the other hand, each
random walk being determined as above by a sequence {p,}32, of canonical coordinates,

0<p, <l

Consider a random walk {X,} as above and define ¢, as in (3.3). Conditional on
Xo = 0, the conditional probability ¢ = Pég k), (to be back in state 0 after 2k steps, not
necessarily for the first time), obviously depends only on the parameters p, ..., ps. Fixing
C1,...,Ck 18 equivalent to fixing p1,...,pr. Hence, for given ¢1,...,cn—1, the smallest and .

largest possible value c;; and ¢ of ¢, = P(f(",’") is realized by choosing p, = 0 or p, =1,
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respectively. In fact, c;; represents the (common) part of the return probability ¢, = Pég ")
arising from paths of length 2n (from 0 back to 0 in 2n steps) which never reach state n,
and thus have their probability as a function of pi,...,pn—1, independent of p,. Similarly,
¢t — c7 is equal to the probability ¢1¢2 . .. gn-1PnPn—1 ... p1 of the single path which leads
from 0 to 0 in 2n steps which does reach state n. Maximizing ¢, given pi,...,pn—1, that

is, choosing p, = 1, this reduces to
n—1
Api=ct —¢, =q1¢2.. . qu-1Pn—1Pn—2...P1 = H prqr > 0. (3.4)
r=1

Finally note that ¢, = 53") = ¢, + pn(ct — c;). Comparing the latter with (1.5), we
conclude that, for all n > 1, the random walk parameter p, coincides with the n-th

canonical coordinate of the moment point (c1,...,¢n) € int (My).

First proof of Lemma 1.4. Let {c.}3%, be a Hausdorff moment sequence and

{p-}2, be the associated sequence of canonical coordinates. Let r > 1 be fixed and

_[@ 1 _[98 pem
Cn(r) - [3171- Cn] . - [61)1- POO ]0 . (35)

The subscript zero here indicates that py = p) = 1/2, for all k > 1. We want to show that
Cn(r) = 2an, with a,, as in (1.4). In the present proof, we exploit the above random walk

interpretation. Hence,

2
Cn = P(fon) = Zp;n‘pg” R ME (3.6)

where we sum over all paths = (z0,1,...,%25) With zx —zx—1 = £1(k =1,...,2n) and
such that z¢g = 0; 3, = 0; (thus c, is a polynomial of degree 2n —1 in terms of py,...,pn).
Further, for each such path, m;(; > 1) and nj(j > 0), respectively, will denote the number
of transitions zx_; — zx(k = 1,...,2n) of type j — j — 1 and j — j + 1, respectively.
Differentiating the latter sum with respect to p, causes an extra factor %rf- — %:—. ((tting

afterwards px = -;- for all £ > 1, we find that
Cr(r) = 2E((my — np)o(X2a) | Xo = 0). (8.7)

where Iy(z) is the indicator function on the set {0}. Here, and from now on in the present

proof, {X,} will be the simple random walk on Z, having 1-step probabilities pr = qx = z
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for all k > 1, (while pg = 0; go = 1). Moreover, since the path {Xy, X1,...,X2,} is random

so are the associated transition numbers m; and n;.

Let further {¥,,}52, be the classical random walk on Z = {0,+1,+2,...} with inde-
pendent increments such that P(Y, — Y,_; = —1) = P(Y, — Y,_1 = +1) = }. For each
s€Z,let

Dy(s) = E[(ms — ns)Io(Y2r) | Yo = 0. (3.8)

Here, m, and n,, respectively, denote the (random) number of transitions Y3—; — Yi(k =

1,...,2n) of the form s — s — 1 and s — s + 1, respectively.

Identifying the states j and —j (for all j), the process {Y,} reduces precisely to the
above simple random walk {X,}. And it easily follows from (3.7) that

1
ECn(r) = Dp(r) — Dyp(—r) = 2Dy (7). (3.9)
We further claim that
Dp(r) =P(Y2,=0; Yy =r forsome 0 <k <2n | Yy =0). (3.10)

After all, consider any fixed path y = (yo,y1,...,¥2n) With yx —yr—1 = £1(k =1,...,2n)
and yo = 0; y2r, = 0. Since r > 1 such a path y can contribute to D,(r) only when y = r
for some 0 < k < n. Let k; and k; be the minimal and maximal such index k. Thus,
0 < k1 £ k2 < 2n and further yx, = yx, = 7} Yk,—1 = Yk,41 = 7 — 1. Given such a path
y, consider the associated (partially reflected) path y* obtained from y by replacing y; by
Yr = 2r — y; for all by < k < k3, (leaving the other coordinates y; unchanged). Thus
(y*)* =y, while y* =y if and only if k; = ks.

For each fixed index k with k; < k < k3, a possible contribution +1 to the value
(m, — n,)(y*) (for the reflected path y*), due to a pair yx = r, yr41 = r £ 1, is exactly
opposite in sign to the corresponding contribution to the value (m, — n,)(y) (for the
original path y). Hence, since y and y* have the same probability 272" one may as well
ignore all such contributions, in which case there only remains the single contribution +1
to (m, —n, )(y) due to the single pair yx, = r; yi,4+1 = r — 1. This completes the proof of
. (3.10).
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It now follows from (3.9), (3.10) and (1.4) that
Cn(r) =4D,(r) =4P(Y2, =2r | Y =0) = 4<n2—7-7’r) 272" = 9q,,,.

Here, we also used the standard André reflection principle. Namely, associate to each path
y as above, of length 2n which begins and ends at 0 and meets state r at least once, the
path y* having y; = 2r — yx when k > k; while y; = yi, otherwise. This sets up a 1:1
correspondence with the set of paths y* of length 2n which begin at 0 and end at 2r. This

completes the proof of Lemma 1.4.

Second proof of Lemma 1.4. Skibinsky (1968); (1969) showed that the mapping
from the canonical moments p; to the power moments ¢; is given by the following formulae.
Here g¢; =1 —pi(: > 1), (i = pigi—1(¢ 2> 1) thus {; = p;. Define S;; = 0 unless 0 <7 < j.
Further S;;(0 < i < j) is recursively defined by Sy; = 1(j > 0) and

Sij = Si,j—1 + (—it15i-1,; if 1 < i < g (3.11)

Thus the case j = i reduces to Sj = (15i—1,;. The moments ¢, themselves are finally

given by ¢, = Spn(n > 0). Note that S;; is independent of the p, with r > j.
For j and n as integers and n > 0, define
Q;?:z-n(Z) if n = |j| +2m with m = 0,1,2,..., (3.12)
and Q7 = 0 in all other cases. Note from (1.4) that a,, = 2Q37. As is easily seen,
QF = %(Q?__ll + Q?_:ll and Q2 ; = Q7 thus Qf = n-l (3.13)

Let further S}; denote the value S;; in the special case that pr =  for all k > 1. Using
(3.13), it follows from (3.11) by induction that

0 _ oj—ipt+s
S8 = 277 Qi

if0<:<y. (3.14)
For instance S = Q% = in_l = (1.5’?_1;,- with (3 = p1 =1/2.

Let r > 1 be fixed, and introduce

9 S,‘jlpk=1/2fork21.

Usj = 20791
J apr
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Thus U;; = 0 unless 0 < ¢ < j and r < j. Moreover, Up; = 0 since So; = 1. We want to
show that [ Bp cn]o = 2a,,. In view of ¢, = Spn and agr = 2Q§;‘, this is equivalent to

Unn = 2Q2%". More generally, we will show that, for all 0 <: < 5.

Uij = Q. 4a, fj—i>r>1; 3.15)

4 o
= Q;-_JH_Z, + Q’t‘;“r fo<j—i<r.

For instance Uy = 2Q3%% and U;_y; Qg’r'_,'_ll QA (r>2);Uisy,i = =Q¥lifr=1.

Differentiating the recursion formula (3.11) with respect to pr at pr =1 /2 (all k£ > 1)
and using (3.14), one finds that the U;; satisfy the recursion relation

1 0.0 ... .
(U,] 1+ Uic;) = 2 :,_111 ifj—i=r;
— +§Q:-+j_1 fj—i=r—1; (3160)

=0 otherwise,

as long as 1 <4 < j. The case j = i is of the form
Uii = Uiy, +62QF7. (3.16b)

The recursion (3.16) and boundary condition Upj = 0 together completely determine the
U;;. Using (3.13), one easily verifies that Ui;(0 <i < j ) as defined by the right hand side
of (3.15), does indeed satisfy (3.16) and Up; = 0. This establishes (3.15) and completes

the second proof of Lemma 1.4.

Remarks. Formula (3.11) for the S;j, which furnishes a recursive calculation of
¢n = Spn from the canonical coordinates p;, also follows from a simple random walk

argument. In fact, the S;; have the simple probabilistic interpretation (3.18) below.

Namely, let {X,} be the random walk on Z; described by (3.1), with the p; as
the usual canonical coordinates. We know that ¢, = P(fzn) for all n > 0. Clearly,

P = P(Xy = j | Xo =0) satisfy P =6 and
Pé;:) = Pé" I)Qk 1+ Pé k+1)Pk+1, (3.17)

n21; k20; g-1 = 0). This allows us to calculate the P(;:) in a recursive manner. For

instance, ¢, = P(zn) P(Zn . Since P(k) =0if n < k, (3.17) is trivially satisfied when
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n < k. Also note that Po(l,:) = qoq1-..-qk—1- All terms in (3.17) vanish unless n = k + 2¢
with 7 € Z,, in which case n =¢ 4+ j; k= j — ¢ with 0 < ¢ < j as integers. It follows from
(8.17) that the S;; defined by

1 (i+4)
Sii = P for0<:1 <, 3.18
YT qige-.-gi—ic 0T I (3.18)

(g0 = 1) satisfy the recursion relation (3.11). Moreover, So; = Pé,’:)/qoql e qr—1 = 1, for
all k > 0. Finally, ¢, = P§™ = Spa.

In view of the interpretation (3.18) of the S;;, formula (3.15) can also be regarded as
an explicit formula for the quantities [%PO(;’)] S’ equivalently, as an explicit formula for

E[(m; — n. ) (X, = j) | Xo = 0], with m,, n, as in (3.7).

Theorem 2 in Skibinsky (1968) also has a simple probabilistic proof. It states that

n—2i

= Y (Sin-i)? H (e (3.19)

0<i<n/2

In fact, paying attention to the value X, = k (say),

n n 1 n
cn=P(Xen=0|Xo=0)=Y PGPY =" ;;(Po(k))z. (3.20)
k k

Here; Tk = qoq1---Qk—1/P1P2 ---Pk,(mg = 1). We also used the well known relation

W,P(") PJ(, ), (all ¢, 7,n; see for instance Karlin and McGregor (1959) p. 68). Not-

ing that P( ") vanishes unless k = n — 2i with 0 < i < n/2, and using (3.18), one easily
verifies that (3.19), (3.20) are equivalent.

4. Further proofs
Proof of Lemma 2.1. Let 7,j > 1. From & = 14A' and ai, = 0 for r > k, one has

1 min(z,7) . . min(i,5) % 2]
%ij = 3 Z airajy = 27221 Z < B r> (] -~ r)

r=1 r=1

min(i,5) 2 2
= —-C?Cg + Z 22 (Z _ r)2—2] (] N 7-) = —C?Cg' + c?—l-j,

r=—min(%,j)
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proving (2.1). After all, the latter sum is equal to the coefficient of z*7 in the expansion

z\2¢ z\2J
of (442)” (14)".

Recall that ¢} ~ 1/vrk as k — oo. Hence, o;; = cgj — (c‘;-)2 ~ (275)~1/? and

oij = ¢y —cle) = (1 - )(7§)~1/? as j — oo. Thus, for i fixed and j — oo,

PR
SN N

In particular ps s4r — 0 as r — co. If both ¢ and j tend to infinity then

~ D; j~Y4, where D; = (7/2)"Y4(1 — &)(0:) /2.

Oij = c?+j(1 - C?cg/cgﬂ-) ~ c(i)+j ~ 1[4/ + )

1/2
Here we used that c?c‘}/c?H = [-11; (% + -;—)] — 0. Hence, if 7, 7 — o0 in such a way that
j/i — K then
455 1M ( 4K /e
. N ———— _ ———————————
LTy (& + 12
Proof of (2.7). We want to prove that the coefficients b;, in (2.5) are given by (2.7).
Letting y = cos § = 2z — 1, one has cos nd = T,,(y) = T (z) thus

o0 o0 o0 1
— _ 1 —
ET,’:(z)u" = Z cos nfu”™ = Re [Z(e' u)"} = Re Tt
n=0 n=0 n=0
1—wucosé@ 14+ u—2uz

=(1+u—2uz) ) (4uz) (1+u)"22

r=0

“1+u?—2ucos b =(1+u)2—4u:c

The coefficient of z™ is found to be 22™~14™(1 — u)(1 + u)~2™~1, Expanding the latter

in powers of u, we find that the coefficient of u™ is precisely bn, as given by (2.7).

Proof of the identity (2.11). This identity must be known. Recall that T;(z) =

cos rf when z = (cos g)z. If m > 1 then
AN i ; 2% (9m
™ = (COS 5) — 2—2m(610/2 n 6—10/2)2m — 9—2m Z ( . )cos(m _])0
; J
J=0

The term with ] = m gives rise to 272™ (21;") = ¢ . Further, for r = 1,...,m, the two
terms with j = m £ r together give rise to 2-2m+l1 (nr‘:Tr)cos r0 = am, T (z), in view of

(1.4). This proves (2.11).
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Proof that AB = I, see Theorem 2.3. Here A, B are lower triangular hence also
C = AB. Further c¢;; = a;;b;; = 1 thus it suffices to show that ¢;;, = 0 when 1 < m < z.
From (1.4) and (2.7),

i i . . .
—o; 2: : 1] (3+m-—-1
. __E .. 3. _§ 2i4+1 _1)i+ 2m—1J_
Cim = aume— 27 (Z‘i"])( l)J "2 ( '%m —1 )

This can be written as ¢ijm = Y, (~1)! (:}_’]) g(7), where
j=m

z+m-—1 az?

with o = @;;, as a constant factor. Note that g(z) is an even polynomial of degree 2m

such that g(r) =0 for r = 0,%1,...,+(m — 1). Hence, letting : + j = s,
: 2 2 2%
o 1V N _1ys—i Y — (1A (i) —
2em = 321 (i5)00 =200~ (% )ote =) = (et =0,

since ¢ is of degree 2m < 2i. Here A = E — 1 is the usual difference operator thus

(Eg)(z) = g(z +1).

Acknowledgements. Many thanks to Burgess Davis for simplifying our original random
walk proof of Lemma 1.4.
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