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INTERPRETING THE STARS IN PRECISE HYPOTHESIS TESTING

by
James O. Berger and Julia Mortera
Purdue University Universita di Roma
ABSTRACT

The problem of testing a precise null hypothesis is considered when available informa-
tion is limited to knowledge of either the P-value or that the P-value is in some interval
(e.g., the classical one or two “stars”). Because of the recognized conflict between classical
and Bayesian measures of evidence in testing a precise null hypothesis, the interpretation of
a P-value or of “stars”, from a Bayesian perspective, is explored. This is done by treating
the P-value or the “stars” as the data, and computing corresponding posterior probabili-
ties or Bayes factors. Of particular interest are lower bounds on these measures over wide
classes of prior distributions. Comparisons are also made between classical meta-analysis
techniques for combining many tests of statistical significance and lower bounds on Bayes
factors and posterior probabilities.

Key words: P-values; Point null hypothesis; Bayes factor; Posterior probability; robust
Bayesian analysis; meta-analysis.



1. INTRODUCTION
1.1 The Problem

Let X be a random variable having density f(z|6), where 8 is an unknown parameter
assuming values in @ C R. Suppose that the observed data is of the type z € A, for
some set A and that it is desired to test Hy : § = 6y versus Hy : § # 6. (In Berger and
Delampady (1987) it was shown that point nulls are a good approximation to interval nulls
of the form Hy : |0 — 6| < €, providing ¢ < %09, where 0 is the standard error associated
with the m.l.e. §. Thus the results of this paper also hold, approximately, for such interval
nulls.)

The set A typically arises as the set of = corresponding to a specified P-value (observed
significance level), or corresponding to knowledge that the P-value is in some interval
(a,@'). The latter arises, for example, when all that is available is a report of “statistical
significance ” at, say, the “one star” level (0.01 < P-value < 0.05) or the “two star” level

(0.001 < P-value < 0.01). These are equivalent to observing = € A, for
A={z:q <|T(X)| < ¢},

where T'(X) is the test statistic used in defining the P-value.

The particular interest in studying Bayesian measures of evidence here is that such
measures, for the case of given z, are well known to indicate substantially less evidence
against Hy than is commonly thought to be implied by the corresponding P-value. (See,
for instance, Edwards, Lindman, and Savage (1963), Berger and Sellke (1987), and Berger
and Delampady (1987).) This fact is often strikingly demonstrated by showing that the
lower bound on the Bayes factor, over all “sensible” prior distributions, is much larger
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than the corresponding P-value. For instance, a typical result in this regard is that if z is
observed for which the P-value is 0.05, then the evidence for Hy (the Bayes factor) is at
least 1: 2% for any unimodal, symmetric prior. Of course, P-values and Bayes factors are
not measured on the same scale, but many consider a P-value of 0.05 to be strong evidence
against Hy, while few would consider odds of 1:2 % to be more than mild evidence against

Hy.

Whether or not the same phenomenon holds when one is only given A (and not z itself)
is the primary question that is studied here. The main tool is again the computation of
lower bounds on Bayes factors over wide classes of prior distributions. Rather surprisingly,
essentially closed form answers can be obtained for common observation sets A, allowing
easy conversion of P-values or “stars” to, at least, lower bounds on Bayes factors. While
these lower bounds cannot be thought of as complete answers to the problem, they are at
least as “objective” as P-values and are typically considerably more representative of the

actual evidence against Hp.

The problem of combining P-values or “stars” from several studies is also considered.

Lower bounds on Bayes factors are proposed as alternatives to meta-analytic P-values.

Several works have previously considered lower bounds on Bayes factors in hypothesis
testing. These include Edwards, Lindman, and Savage (1963), Berger (1985, 1986), Berger
and Delampady (1987), Berger and Sellke (1987), Casella and Berger (1987), Delampady

(1989a, 1989b), and Delampady and Berger (1990). Berger and Sellke (1987) is the only

previous paper that contains any results concerning observational sets, A.

Other relevant work on Bayes factors and on their relationship to P-values includes
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Lindley (1957, 1977), Good (1958, 1967, 1983, 1984, 1986), Jeffreys (1961), Pratt (1965),
Lempers (1971), Rubin (1971), Zellner (1971, 1984), DeGroot (1973), Dickey (1977), Smith

and Spiegelhalter (1980), Shafer (1982), Hill (1982), and Kass and Vaidyanathan (1991).

1.2 Measures of Evidence
The three measures of evidence that will be considered are as follows:
P-value: Let T(X) be a test statistic, large absolute values of which are considered to be

evidence against Hy. If zo is observed, the P-value is
p=P(|T(X)| 2 |T(z0)| o). (1.1)

Bayes factor: Let g(6) be a density (with respect to Lebesgue measure) on {6:60 # 6,}.

The Bayes factor for Hy versus H,, given the observational set A, is

P(A|Ho) _ P(Alh)
P(A|H) ~ my(d) 42

B.‘I(A) =
where

P(AIR) = [ felbis

my(A) = / P(A|6)g(8)db. (1.3)
0+#£6y

When A = {z}, P(A|0) is replaced in (1.2) and (1.3) by the density f(z|).
Posterior probability of Hy: Let mp be the prior probability of Hy. Then the posterior
probability of Hy, given the set A, is

7['0) 1 -1

By(4)

P(HylA) = |1+ a ; (1.4)



Bounds on B and P: We will assume that g(8), the prior distribution of 6 given Hy, is
known only to lie within some (large) class, G, of distributions. Of particular interest will

then be the lower bounds on (1.2) and (1.4) as g varies over G, defined by

_ . _ _P(Alb,)
-B-(Avg) - ;Ielg BQ(A) - sup mg(A) (1'5)
geg
and
P(A.G) = inf P(Ho|A) = |14 L= 1 |7 (1.6)
L\ 9€G 0 To E(A, g) .

As an example of the type of result that will be established, suppose that — in a normal
mean testing problem — the only information available is “one-star” significance, i.e., that
0.01 < p < 0.05. The lower bound on the Bayes factor over the class of all symmetric
(about ) and unimodal g is then 1/4, indicating that the odds for Hy are no worse than
1:4.

1.3 Preview

Section 2 discusses the classes of prior distributions and the types of sets A that will be
considered, and presents some needed analytical tools. The lower bounds on the Bayesian
measures of evidence for the class of all prior distributions are given in Section 3, and
for the class of all symmetric unimodal distributions in Section 4. Lower bounds on the
Bayesian measures for combining tests of statistical significance are developed in Section
5, as an alternative to classical meta-analysis techniques. Section 6 gives some closing

remarks, as well as a table which summarizes results on the subject.



2. PRELIMINARIES
2.1 Classes of Prior Distributions
The following classes of prior distributions for g will be considered:
Ga = {all distributions},
Gs = {all symmetric distributions about 6},
Gu = {all unimodal distributions with mode at 6},
Gus ={G gN Gy = all symmetric unimodal distributions with mode at 6o},
Gun = {all symmetric uniform distributions on [f — 7,60 + r],r € R}.
Lemmas 2.1 and 2.2, whose proofs are given in Appendix I, give simple formula for com-

puting (1.5) when using classes G4 and Gus. We will repeatedly use these lemmas.

Lemma 2.1: For the class G4 and any set A,

B4 0= 2L o

where 0 is that § which mazimizes P(A|f). (Note that (2.1) is the likelihood ratio of 6
to 6*, based on “data” A.)

Lemma 2.2: For the class Gus and any set A,

P(A]60)

B(A,Gpg) = sup L Ha(r)’ (2.2)
where
Go+r
Ha(r) = /0 P(A]6)d6. (2.3)



2.2 Observational Sets A

In Sections 3 and 4, attention will be confined to the canonical normal mean problem,

where

X ~N(9,1), p= P —value =2[1—®(|z — 6|)], (2.4)

® being the standard normal c.d.f.; any univariate normal problem with known variance can
obviously be transformed into this canonical form. For this problem, typical observational
sets, A, of interest include:
a) Ao = {6 — ¢,00 + ¢}, a two point set where ¢ = ®~1(1 — 3p), ®~! being the
inverse standard normal c.d.f.
b) A; = (6o +q1,80 + g2), corresponding to az < p < @y and sign of x positive; thus
(6 + gi) is the (1 — a;)™ quantile of X under Hy. (We assume that a two-sided
P-value was calculated.)
c) Az = (6o —g2,60 — q1), corresponding to a2 < p < oy and sign of z negative; thus
(6o — gi) is the (a;)™* quantile of X under Ho.
d) A3 = AjUA2 = (80 —q2,00 —q1)U(80 +41, 00 +¢2), corresponding to az < p < ax,
sign of z not known.

The motivations for b) and c) are that, in statistical reports, one is sometimes told
the “direction” of the effect (i.e., the sign of z) in addition to just the number of “stars.”
Interestingly, for symmetric (about 6y) priors g, it turns out to be irrelevant whether or
not one knows the sign of z, as Lemma 2.3 shows. Lemma 2.4 establishes a result that
will be used several times later, namely that if A; is the observational set then the Bayes

factor for any prior is equal to the Bayes factor for a symmetrized version of that prior.
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Lemma 2.3: If g € Gs and X has density f(|lz — 6]), then
By(A3) = By(A1) = By(A2).

Proof. Write g(8) as h(]8 — 6o|). Then
my(60 +3) = [ F(160 +y - 6)A(0 — 6ol)ds
= [ #1660 — y)h10 - tol)as
= [ #0160 =1 = yDAC160 ~ nl)dr

= mg(6o — y).

Hence my(A1) = my(Az) (slightly abusing notation by defining my(A4) = [m,(z)dz).
A
Also, it is clear that P(A1]|6p) = P(A2|6p). The result follows. O

Lemma 2.4: If X has density f(|z — 0|), then
By(As) = Byr(4s),

where
4'(6) = 2[6(6) + (260 — 0)] € .

Proof. Note first that
my(2) -+ my(26 — 2)

= 170z - 61) + 51260 = — OD)g(6)0
= [ £ - 8oe)ao + [ #12 ~ o280 ~ n)dn
=2 / f(lz — 6])g*(6)d6

= 2mg«(z).

Thus
mg(As) = mg(A1) +mg(Az) = 2my (A1)

7



Since P(A1]60) = P(Az2]6), it follows that

By () = TRl
_ 2P(A160)
B 2mge (A1)

= By (A1)

Since ¢g* is symmetric about fp, Lemma 2.3 yields the conclusion. U

3. LOWER BOUNDS ON BAYES FACTORS OVER ALL PRIORS

This section is concerned with finding B(4,G4), the lower bound on the Bayes factor
when A is the observation set and any prior g is allowed. The formula for B(A,G4), in
general, is given by (2.1). In the following sections, we specialize to the various A discussed
in Section 2, and to the canonical normal situation defined by (2.4). For simplicity, results
will be stated only for the case 6y = 0.
3.1 Lower Bounds When p Is Given

When p is given and 6y = 0 in the canonical normal problem, the observation set is

the two-point set Ao = {—¢,¢}. Thus (2.1) yields

_ 2¢(q)
B0, 00) = =5 + olg+ 0] D

where ¢ is the standard normal density and 6* is the point maximizing the denominator.
An extremely accurate approximation to §*, and hence to B(Ao,G4), can be given.

Indeed, consider

§* = ¢ — 2qexp{—2¢}, (3.2)

2exp{—34°}
1+ exp{—2¢2} + 2¢? exp{—4¢*}

B(40,G4) = (3.3)
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Lemma A.1 in Appendix II shows that §* and B are asymptotically (large g, i.e., small p)
correct. Note that 6* will typically be very close to ¢ (see also Table 1).

Numerical comparison between the actual B(Ag,G4) and the approximation in (3.3)
showed that the latter was accurate up to the 5th significant digit for ¢ > 1.5 and to the
2nd significant digit for 1 < ¢ < 1.5. Also, the expression in (3.3) is extremely accurate
even if the last term in the denominator is dropped.

In Table 1, comparison between the P-value, B(Ao,G4), and the corresponding P(A,,
Ga) for mg = 1/2 is given. Note that, for p = 0.05, the lower bound on the Bayes factor
corresponds to odds of roughly 3:10 for the null hypothesis Hy. Overall, B appears to be

between 5 and 9 times larger than the corresponding p.

Table 1. Comparison between p, B, and P. when p is given and G = {all priors}.

Pvalue (p) | ¢ | B(40,6a) | P(4,G4) | &
.001 3.291 .0089 .0088 3.291
.01 2.576 0725 .0676 2.576
.05 1.96 2028 .2265 1.958

1 1.645 0145 3397 1.630

If p is given and the sign of = is known, the lower bounds are the same as those given
in Berger and Sellke (1987), since learning p is equivalent in this case to learning z.
3.2 Lower Bounds When a3 < p < a; and the Sign of X is Unknown

Suppose that, instead of observing p, one only learns that a; < p < «i; in the

canonical normal problem this is equivalent to observing that
z € A3 =(—g2,—q1) U (q1,¢2)- (3.4)
Lemma 2.1 then implies that

B(As3,G4) = P(43]0)/ P(43]6%), (3.5)
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where 6* is that 8 which maximizes
P(A3)|0) = ®(6 — q1) — ®(6 — q2) + 86+ g2) — (0 + q1). (3.6)

As in the case where p is given, an accurate approximation to 6* can be found. Indeed,

2

~ 1
0 = 2o+ a2) (@ — a) e - o) (5.7

is shown in Lemma A.2 of Appendix II to be asymptotically correct as g3 — oo. Use of 6*
in (3.5) also yields a very accurate approximation to the lower bound on the Bayes factor, a
bound to be denoted by B (A3,G y); Table 2 presents exact and approximate Bayes factors

for a variety of quantiles.
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Table 2: B(As,G4) (B(43,G4)) for various Az = (—g2,—q1) U (q1,¢2).

q2
100 126 151 176 201 226 251 276  3.01
1.00 | 1.3513 1.1358 0.9645 0.8270 0.7146 0.6281 0.5581 0.5031 0.4602
(1.6173) (1.2207) (0.9917) (0.8357) (0.7193) (0.6291) (0.5585) (0.5032) (0.4603)

1.25 0.9460 0.7925 0.6678 0.5671 0.4867 0.4235 0.3742 0.3362
(0.9697) (0.7989) (0.6695) (0.5675) (0.4869) (0.4235) (0.3742) (0.3362)

1.50 0.6512 0.5364 0.4441 0.3713 0.3147 0.2713 0.2383
(0.6525) (0.5367) (0.4442) (0.3713) (0.3147) (0.2713) (0.2383)

1.75 0.4207 0.3453 0.2798 0.2299 0.1924 0.1645
(0.4297) (0.3453) (0.2798) (0.2299) (0.1924) (0.1645)

@1 2.00 0.2681 0.2096 0.1661 0.1342 0.1110
(0.2681) (0.2096) (0.1661) (0.1342) (0.1110)

2.25 0.1573 0.1197 0.0928 0.0738
(0.1573) (0.1197) (0.0928) (0.0738)

2.50 0.0868 0.0642 0.0487
(0.0868) (0.0642) (0.0487)

2.75 0.0450  0.0324
(0.0450) (0.0324)

3.00 0.0219
(0.0219)

Of course, the basic interest here again resides in the comparison between P-values
and B. Table 3 presents such comparison for various “stars”: included is P(A43,G4), the

lower bound on the posterior probability when 7y = -%, and 6*.
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Table 3. Comparison between p, B, and P. for observation set A3 and G = {all priors}.

Stars P-value (¢1,92) B(A43,G4) P(A3,G4) o*

* Ol<p<.05 (1.96,2.576) 1653 .1419 2.267
p<.05 | (1.96,00) 05 0476 o

*ok 00l<p<.01 (2.576,3.291) .0322 .0312 2.933
p<.0l | (2.576,00) 01 0099 o0

* % % .0001 < p < .001 (3.291,3.891) .0038 .0038 3.501
p<.001 | (3.891,c0) 001 001 o0

Observe that, for “+”, “+*”, and “x x ¥” significance, B is 3 to 4 times larger than
the upper bound of the P-value interval, implying substantially less doubt of Hy than is
commonly associated with “stars”. In contrast, the lower bounds B associated with the
observations p < a (or Az = (—00,—¢q1) U (g1,0)) exactly equal the upper bound on the
P-value. Indeed, by letting §* — oo, one can show that B(As,G4) equals the P-value
for such A3. (Priors that are point masses at large 6* are obviously not sensible; it is of
interest, however, that near uniform priors also yield the same B.)

3.3 Lower Bounds When a; < p < a; and the Sign of X is Known

Without loss of generality assume that the known sign of X is positive, so observing

ap < p < ay corresponds to observing that z € A;, with A; = (ql,QQ). For the canonical

normal problem it follows that
P(A;]60) = (6 — q1) — (6 — ¢2). (3.9)
It is then trivial to prove that the 6 that maximizes P(A;|0) is

0* = (q1 + ¢2)/2 (3.10)

and thus

[@(2) — B(a)]
[2(1) (’;'(42 - ql)) - 1]

12

B(4:,64) = (3.11)



Values of B(A1,G4) are typically about half those of B(As,§4) (since the mass of the half
of As that is “opposite” 6* is essentially wasted), and hence we do not present separate

numerical results.

4. LOWER BOUNDS ON BAYES FACTOR OVER THE

SYMMETRIC UNIMODAL PRIORS

This section is-concerned with finding B(4, Gus), the lower bound on the Bayes factor
when A is the observation set and any symmetric (about 6g) unimodal prior is allowed. The
formula for B(A4,Gus) is given in (2.2) and (2.3). In the following sections we specialize
to the various A discussed in Section 2, and to the canonical normal situation defined by
(2.4). For simplicity, results will be stated only for the case 6y = 0.

By Lemma 2.3, B(A,Gus) will be the same for A1 = (g1, g2) and for A3 = (—¢2,—q1)U
(q1,q2). We will formally present the results for the A3 case. Also, by Lemma 2.4, the
bounds obtained for Az are the same whether Gy or Gy, the class of all unimodal priors,
is used.

Lemma, 2.2 yields
P(43]0)

B(As,0vus) =——7">
(4s ) supal;HAs(r)

(4.1)

where

P(A3|0) = 2(‘1’(42) - ‘I’(lh ))

and (see Appendix III)

Hpy(r) =2 [(¥1(g2,7) — ¥i(q1,7) + Pa(gz,7) — Ya(qr;7)], (4.2)
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with (again letting ¢ denote the standard normal density)
Vi(g,r) =(g+7)®(g+7) — (¢ —7)®(¢ — 1),
P2(g,r) = (g +7) —(—g+r).
A closed form is not available for r*, the value maximizing 21—TH 45(r). However, r*

can be computed from the following iterative expression (explained in Appendix III):

riv1 = 2log [ Wy(ri)/T1(ri)], (4.3)

where
Ti(r) = ¢2[2(g2 +7) — B(g2 — )] — 1 [2(1 +7) — B(q1 — )],

War) = plan) [ = 7] = plar) [ = en7].
At each step, including choice of the initial rg, r; should be constrained to lie within the

interval (-%-[ql + q2], 92 + 4). Convergence is usually achieved within three iterations of
(4.3).

Table 4 presents, for various interval P-values, the lower bounds on the Bayes factors
and posterior probabilities. The values of r* that result from (4.3) are also recorded. Recall

that the prior resulting in B and P is the Uniform [—r*,r*] prior.

Table 4. Comparison between p, B, and P, for observation sets A3 (or A4;)
and G = {all symmetric, unimodal priors}.

Stars P-value (q1,¢2) B(A3,Gus) | P(As,Gus) r*

- 0l<p<.05 | (1.96,2.576) 2532 202 3.206
p<.05 | (1.96,00) 05 0476 0

k% Ml<p<.01 (2.576,3.291) .0591 0558 4.058
p<.01 (2.576, 00) .01 .0099 o0

* % % .0001 < p < .001 (3.291,3.891) .0081 .0081 4.841
p<.001 | (3.891,00) .001 001 o0

Whereas, in Table 3, B was typically 3 to 4 times the size of the corresponding “star”
P-value, here B is 5 to 8 times larger. We feel that these numbers are more reasonable
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than those for G4, since the restriction to Gug (or, equivalently for As, to Gy) eliminates
unreasonable priors.

Once again, by letting r — o0, it can be shown that, when A is defined by p < «, then
B(A,Gus) = a. While interesting, this should not be taken as proof that a is sensible in
such situations; opinions about & under H; will rarely be uniform over a huge range.

The limiting case of the above results in which the P-value is given, i.e., where Ay =
{—q, ¢}, can be reduced by Lemma 2.3 to the case in which z is given. The ensuing

computations for B and P are extensively discussed in Berger and Sellke (1987).

5. COMBINED REPORTED SIGNIFICANCE LEVELS

5.1 Introduction

In this section, a comparison is made between classical meta-analysis techniques for
combining many tests of statistical significance and lower bounds on Bayes factors and
posterior probabilities. (See Good (1958) and Hedges and Olkin (1985) for an introduction
and references.) The observations in this case will be assumed to be either a vector of
P-values, § = (p1,...,Pm), Or a combination of m; P-values, p1 = (p1,...,Pm,), and
mg P-value intervals, a; < pj < Bj, for j = my +1,...,m; + my. The m = m; +m, p-
values (or intervals) are assumed to arise from independent studies concerning §, so that

the likelihood for 8 is

£(6) = 1L Pi(Ailo) (5:)

where A; is the observation set corresponding to the :** P-value and P; is the probability
(or density) function from the i** study.
The canonical example that will be considered here is that in which the i** study has
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observation X; ~ N(8,0?); as usual we consider testing Hy : 6 = 6y versus Hy : 6 # 6p.
Also, we assume that the sign of (X; — 8) is known for each experiment, i.e. that the
“direction” of the effect is reported. Then, being given p; corresponds to knowledge of

(z; — 6p)/0i, while being given a; <p; < B; corresponds to knowledge that
15 < (zj — 6o)/0j < gaj- (5.2)

Note that, when “nonsignificance” is reported (i.e., pj > a;), the “direction” of the effect
may not be stated. But p; > a; corresponds to a region of the form (5.2) with ¢1; =
—gzj, so this situation is accommodated in what follows. Also, the general case in which
the direction of the effect is unknown could be handled with minor modifications of the
following formulas.

For the above normal situation, the likelihood for 6 becomes (after some algebra),

mi 1 (z;—0\] (mitma) 8 — 6 8, — 0
i=1 0 ag; j=mi+1 g; g;

% — 0\ (m1+m2) 6, — 0 Gy — 6
ke () T (e (et )~ (ait == B3)
g j=m1+1 aj agj

where
rpn o (32) »
T=0 —, 6= = , ;
1= 12 =1 0'12
my .
& exp {—% i__Z_)l(:vz- - ;,;)2/01?}

(27r)(m1 -1)/2 [nff o'i]
=1

K(g) =

The following scenarios involving ¢ = (o1,... ,0m) will be considered or discussed:
Case (i): g known;
Case (ii): ¢ unknown, and no prior information about ¢ is available;
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Case (iii): ¢ is known up to a multiplicative constant — this arises typically when the
sample sizes, n;, in each study are known, and the individual data in the studies have a

common variance o2: then
2 .
o =o®/n,, i=1,...,m. (5.5)

m
For this case, (5.3) becomes, after defining n = 5 n; and making the transformation
=1 )

n= \/7_7‘(0 - 00)/0a (56)

rrm =Ko ([ 2 EZA) )
S ) o )

One can then use f*(n) in the computation of lower bounds on the Bayes factor, noting
that = 0 corresponds to the null hypothesis § = 6y, and that all other quantities in
(5.7) are known (with the exception of K(g), which will always cancel in our Bayes factor
computations).

5.2 Lower Bounds Over G4

The lower bound on B over all priors is still given by Lemma 2.1, namely (letting
A = (Al, e ,Am1+m2))

B(4,G4) = f(60)/ £(6%), (5.8)

where 6* maximizes f(f). In general, determining 6* can only be done numerically. For
the case of independent studies, however, a lower bound on B is available. We state this

first in generality, and then specialize to the normal problem.
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Lemma 5.1: Suppose f(8) = 'i'nll fi(9), where fi(0) is the likelihood, P;(A;|6), from the

it study. Then

B(4,G4) = f(60)/ sup 1)

> 1 Bi(4i,94),

where B; is the lower bound on the Bayes factor from the it* study alone.

Proof: This follows immediately from the fact that
sup f(6) < 1i sup £i(6).
6 =1 ¢

Corollary 5.2: For the canonical normal problem, with f(8) as in (5.3),

(=i —60)? }] (mitma)  [$(ga;) — B(q1;)]

B(4,64)> |TI { '
(~ gA) [i=1 €xXp 20'12 j=mi+1 [2(1) (%(QZJ - qlJ)) - 1]

Proof: This is immediate from Lemma 5.1, using (3.11).

(5.9)

(5.10)

O

Example 1: A meta-analysis is desired of 8 independent studies on 8. Five studies

have reported (two-sided) P-values of 0.04, 0.08, 0.05, 0.03, and 0.01, all associated with

a positive effect. One study claims only “one-star” significance, one claims “two-star”

significance, both with positive effects, and one claims no significance at the “one-star”

level (sign of effect not noted).

The first five studies correspond to (z; — 6y)/o; equal to 2.05, 1.75, 1.96, 2.17, and

2.58, respectively. The sixth study, interpreted as 0.01 < ps < 0.05 with a positive

effect, corresponds to (two-sided P-value) g1 = 1.96, g6 = 2.576. The seventh study

gives qi7 = 2.576, o7 = 3.291. The eighth study of “no significance” corresponds to

qig = —1.96, g8 = 1.96.
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Computation of (5.10) yields B > 1.70 x 1078, It is of interest to compare this
with a classical solution. One popular classical solution (see Hedges and Olkin, 1985, for
discussion and alternatives) is the “inverse normal method,” which is based on the fact

that the test statistic

is N'(0,1) under Hy. Unfortunately, for studies 6, 7, and 8 it is known only that ¢1; <
(z; — 00)/0; < g2i- To compute Z we simply chose (zi — 6p)/0: to be the midpoint of
each interval for these three studies. The va,lué of Z was then z = 5.55, resulting in a
(two-sided) P-value of 2.86 x1078.

Interestingly, the classical P-value is larger than B. As we shall see in Example 2, the
reason is probably that B is too crude a bound. U

The lower bounds (5.9) and (5.10) can be excessively low, especially when the f;(6)
differ substantially. It is thus very desirable to identify situations in which B itself can
actually be determined. One such is the case (iii) scenario in which ¢7 = o2 /n;, with the

n; being known. Then, from (5.7) it is clear that

B(A,Ga) = f*(0)/ sup f*(n)

can be computed. An important special case is when m; = m, in which case this becomes

B(4,64) =exp{—% [5 E(w—"ze—")r}. (5.11)

=\ n o
Example 2: Four studies produced (two-sided) P-values of 0.05, 0.001, 0.1, and 0.005,
all with an effect in the positive direction. The sample sizes were 50, 100, 150, and 200,
respectively. Here the (z;—8o)/0; are 1.96, 3.29, 1.645, and 2.81, respectively, and n = 500.
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Calculation yields B(4,G4) = 1.15x 107, The analogous bound from (5.10) is 3.25x 107¢,
which is too small by a factor of 3.5.

The usual classical analysis here would be based on the statistic

T=7% ‘/E.M,
=1 n a;

which is A(0,1) under Ho. Computation yields ¢ = 4.77, resulting in a two-sided P-value
of 1.84 x1075. As in Table 1, the classical P-value is thus only about 1/6 the value of
B(A,Ga).

5.3 Lower Bounds for Guys

The analysis here is again based on Lemma 2.2. Indeed, for general f(6) as in (5.1),

0o+1"

B(4,6us) = f(66)/sup - / £(6)do. (5.12)

00—1‘

This could be specialized to f(6) in (5.3) if the o; were known, or to f*(n) in (5.7) if

? = o2 /n;, with n; known but 0% unknown; in the latter case, Gus would be defined as

the class of all symmetric, unimodal densities in 5 (see (5.6)), rather than in 8. (One could,
of course, question the suitability of assuming unimodality in 7, and use instead, say, Gs.
Our recommendation, however, would be to use Gus, since it is a large and reasonably
“objective” class of priors.)

Simplification in (5.12) occurs for f(6) in (5.3) or f*(n) in (5.7) when m; = m. Indeed,

as in Berger and Sellke (1987), for the single study case it can then be shown that

B _ 1 ift<1
80609 = { sy 40 o0 01 i£651,

where

E—bol/c  for f(6),
t = iglﬁl%l for f*(n),
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and, for ¢t > 1.645,7* can be approximated using the iterative formula
rip1 =t + [2log(r; /®(r; — t)) — 1.838]'/2, (5.13)

beginning with ro = ¢.
Example 2 (continued). It was earlier calculated that ¢ = 4.77, and iteration in (5.13)
yields r* = 6.17 (only 3 iterations being required for convergence). Thus B(4,Gus) =

6.11 x 10~%; compare with B(4,G4) = 1.15 x 10~°.

6. CONCLUSIONS

The lower bounds on Bayes factors are not> meant to be a substitute for actual sub-
jective Bayes factors. They are, however, useful for getting some feel as to how “stars” or
P-values convert into understandable measures of evidence for testing precise hypotheses.
We recommend use of B(A, Gus) when possible, since it corresponds to a lower bound over
“reasonable” priors.

The discrepancies between “stars” and B are generally less than the discrepancies
between P-values and B given the actual data. Indeed, for the observational set corre-
sponding to {p < a}, we saw that B = a. Nevertheless, for many common reports, such
as .01 < p < .05, B will often be 3 to 5 times larger than the “star” level.

We conclude with Table 5 that may help to summarize and locate existing formulas
for B. (The meta-analysis scenarios are not included, since there are so many different
possibilities, only a few of which were covered in Section 5.) The table also indicates the
complexity of the numerical calculation of B. The table specifically refers only to the

normal problem, though many of the results given are more general.
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Table 5. Summary and location of results for determining B
in the normal, single study, problem.

p-given o <p<a
prior sign z sign z sign x sign z
class known not known known not known
See Berger See Section 3.1. See Section 3.3. See Section 3.2.
and Sellke Approximate -Closed form Approximate
Ga (1987). closed answers. closed
Closed form form answers. form answers.
answers.
See Berger See Section 4.
and Sellke Equivalent Tterative Equivalent
Gus (1987). 4= by Lemma 2.3. closed form <= by Lemma 2.3.
Iterative answers.
closed form
answers.
Equivalent Equivalent
Gu by Lemma 2.4. by Lemma 2.4.
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Appendix I
Proof of Lemma 2.1: This is immediate from the fact that my(A) in (1.3) is a linear

functional of ¢, and hence is maximized over “point mass” ¢.
b

Proof of Lemma 2.2: Any g € Gus can be represented as

56)= [ 55 Los-rausn @) (A1)
0

for some distribution function F, where 1¢(6) denotes the indicator function on the set C'.
Thus, for ¢ € Gus, an application of Fubini’s theorem yields
By(4) = P4l [ P(AIB)g(6)d0

8+#£8
P(Al6)

001
Ofﬂ

f P(Ale)]'(eo—‘f‘,90+r)(9)d6 dF(r)
6+#0¢
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P(A|6)

= — . (A.2)
J 3-Ha(r)dF(r)
0
Since any ¢ as in (A.1) can also be shown to be in Gysg, it follows that
B(A,Gus) = inf Bgy(A)
{all F}
__ P(4)
sup [ =Ha(r)dF(r)
{all F} 0
_ P(A1%)
sup[5 Ha(r)]’
by the same reasoning as in the proof of Lemma 2.1. O

Appendix II
Lemma A.1: 6* in (8.2) and B in (3.3) are asymptotically correct in the sense that, as
q — oo,
6" = ¢ — 2gexp{—2¢°}(1 + o(1)), (A.3)

2exp{-3¢°}

B(Ao,G.) = . A4
B(do,Ga) = 7 + exp{~2¢?} + 2¢ exp{—4¢*}(1 + o(1)) (A4
Proof. Defining h(8) = loglp(g — ) + ¢(g + 0)], computation yields
! d 2q9
R'(6) = Eh(ﬁ) =q—60—2q/(1+¢€*7). (A.5)
Setting equal to zero and replacing 6 by
0 = g — 2gexp{—2¢*}(1+¢)
shows that any maximizing § must satisfy
(14 €)[exp{—2¢°} + exp{—4¢*(1 + 6)6"2‘12 H=1 (A.6)
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It is easy to check that for, say, ¢ > 100, the left hand side of (A.6) is less than 1 when
¢ = 0, and is greater than 1 when ¢ = ¢~!. Obviously the left hand side of (A.6) is
continuous in €, so the equation must have a solution with 0 < € < ¢~ 1. This proves that
(A.3) defines a solution to h'(6) = 0.

Next, observe that

d?
h"(0) = Wh(é) = -1+ 4q2(699 + e—qa)—Z'

Since 6* > 1 for large g,

R"(6*) < —1+4¢%e721 <0

for large ¢. Hence 6* is a local maximum.

Finally, 2"(6) = 0 clearly has at most 2 solutions, so that h'(§) = 0 can have at most
three solutions. Besides * in (A.3), it can be shown that(—6*) is a solution to A'(§) = 0,
with h(—6*) = h(6*) by symmetry. The third solution to A'(f) = 0 is § = 0, and since it
lies between two local maxima it must be a minimum. Hence 6* is a global maximum.

Equation (A.4) follows from a lengthy Taylors series argument, inserting (A.3)

into (3.1). . .

Lemma A.2: 6* in (8.7) is an asymptotically correct approzimation to 6%, in the sense

that, as g1 — oo,
1 2
0" = Ha1+ 22) — (@2 — ) e (e - )14 o(1)) (A7)
Proof. Define § = (g2 — ¢1) and

Q(g1,6) = (6) e~ (Ga+ad) (1 _ ~Rns+e),
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so that (A.7) becomes

0 = 5(01 +02) — Qan,6)(1 + D))

From (3.6), calculation gives

%P(A;;W) = (0 —q1) — (0 — g2) + (0 + g2) — p(0 + q1)

= (0 — 1)1 — 1% — (6 — ga)[1 — e7*%7].
Next, define €(0) by
0= g+ 36— Qlan, 61+ e(0));

from (A.8) it is clear that our goal is to show that e(6*) = o(1).

Using (A.10) in (A.9) yields

1

V2r

GP(al6) = T exp(— 378 + Q1 + ) 11(e),

where
9(€) = [1 - exp{ 201 (a1 + 56 — Q1 + )} exp{55Q(1 + )
~[1— exp{-2(a1 + )@ + 55— QL+ )Y exp{~55Q(1 + )}

Note first that

i log Q(g1,0) = —s-at [exp{2¢16 + 62} — 1]
1 2(q1 +96)
ST T gt e <P

for large ¢;. Hence

Q(a1,9) < lim Q(a1,6) = 2qre~20,
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If we consider |e(d)| < 1, it follows that ¢;Q(1 + €) = o(1) uniformly in €, so that
$(€) = [1 — exp{~2Qs(a1 + 581+ (D)L + 56Q(1 + (1 +0(1))]
— (1 — exp{~2(a1 +8)(ar + 58)}(1 + o)L ~ 56Q(L+ )1 +o(1))]
= Q1 + €)1+ o(1)) — exp{~2ai(as + 6)}(1 + (1))

= exp{—2q1(q1 + 8)}(¢ + o(1)).

It can be checked that the o(1) term is uniform in |e¢] < 1 and is continuous in €. The
conclusion is that there exists an € which is o(1) for which ¥(€) and hence (A.11) is zero,
so that (A.10) defines a local maxima or minima. The other zeroes of & P(A4;]6) can be

shown to be (—8*) and 0. For very large 6 the derivative is negative, so 6* must be a global

maxima. ]

Appendix III

Proof of Equation (4.2): Using Lemma 2.3 we obtain

r

Ha,(r) = / P(A;]6)d8

=2 / P(A118)d8

r T

=2/ <I)(9—q1)d6—2/ B(6 — g2)db.

—r —-r

Since
T

[ 2wy = 23() + o(a),

—00

1t follows that

Hay(r) = 2{ [ = )8 = 0) + (7 = a0l = [~ )20 — ) + (7 — 2]
P +0)(1 = B(r + 1)) — o(r + a)] — [(r + g2)(1 = B(r + g2) —so(r+q2>]}.
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Algebra yields (4.2).

Explanation of Equation (4.3): The maximizing r is a solution to

d 1 1 Hy(r)
0= —log[o—Hay(r)] = —— + Halr)
where (using (4.2))
, d
Hy,(r) = 5 Haa(r) = P(4s|r) + P(4s] —r)

=2[®(r —q1) — @(r +@1) + B(r + g2) — B(r — ¢2)].

Rearranging terms gives (4.3).
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