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Abstract

Capture-recapture models are widely used in the estimation of population sizes.
Based on data augmentation considerations, we show how Gibbs sampling can be applied
to calculate Bayes estimates in this setting. As a result, formulations which were
previously avoided because of analytical and numerical intractability, can now be
considered for practical application. We illustrate this potential by using Gibbs sampling to
calculate Bayes estimates for a hierarchical capture-recapture model in a real example.

Keywords: Data augmentation; Estimation of population size; Gibbs sampling;
Hierarchical models; Log concavity; Multinomial model; Multiple-recapture sampling.

IThis report was formerly titied “Capture-Recapture Models and Bayesian Sampling”. The authors would like to
thank George Casella and Martin Wells for helpful discussions, and a referee for pointing out the recursive relation
(29). This research was partially supported by the U.S. Army Research Office through the Mathematical Science
Institute at Cornell University, and by the Graduate School of Business at the University of Chicago.



1. Introduction

A common experimental setup for estimating the unknown size of a closed
population, is based on sampling the population more than once, paying special attention to
the number of recaptured individuals (those that appeared in more than one sample). First
used by Laplace (1786) to estimate the population size of France, this approach received its
main impetus in the context of estimating the size of wildlife populations, where it became
known as the capture-recapture methodology (Otis et al. 1978, Seber 1982, and Pollock
1991). This setup has also appeared in proofreading problems (Polya 1976), in reliability
problems in manufacturing quality control and program debugging (Jewell 1985, and
Nayak 1988), and in estimating the number of vital human events (Mark, Seltzer and Krot
1974). A recent application which has received much attention is the estimation of
coverage error in surveys and censuses (Wolter 1986).

A general formulation of the underlying capture-recapture experiment is as follows.
Let N be the unknown size of the population of interest, and let I be the number of samples
taken. The probability that individual (j) is captured in sample (i) is given by Pij-
Assuming that all captures are independent, the likelihood of N and p = (pyy,....peN) 1S

I N
(1.1) L(N,pldata):HH o8 (1 - py)! %

i=1 j=1

where Sij =1 or 0 according to whether or not individual j is captured in samplei.

Typically, the parameter space of the general model (1.1) is restricted so that information
about N can be extracted from the data. For example, the commonly applied restriction Dij
= p; pertains to experiments where the probability of capture is identical across individuals
within each sample. This case is the focus of Sections 2, 3 and 4. Models based on other
restrictions are discussed in Section 5.

Although a variety of frequentist and likelihood approaches for making inference
about N have appeared in the literature (Bishop, Fienberg, and Holland 1975, Burnham et
al. 1986, Pickands and Raghavachari 1989, and Huggins 1989), we shall consider only the
Bayesian approach (Castledine 1981, Jewell 1985, Smith 1988, and Leite and Pereira
1990). In the capture-recapture setting, the Bayesian approach to extracting information



about N proceeds as follows. For a particular setup, the joint posterior of N and p can be
obtained from the likelihood L(N,p | data) and the (possibly improper) prior ©(N,p),

(1.2) T(N,p | data) =« L(N,p | data) m(N,p).

The marginal posterior of N is then in principle obtained as
(1.3) (N | data) = J a(N,p | data) dp.

A deficiency of this approach is the potential difficulty of calculating these marginals or
even just the posterior quantities of interest such as the (formal) posterior mean E(N ] data).
Unfortunately, such difficulties are sometimes overcome by making additional assumptions
which may not be justified.

The purpose of this paper is to show how Gibbs sampling, as an alternative to both
analytical calculation and numerical approximation, greatly enhances the potential for
Bayesian analyses of capture-recapture models. Effectively, the Gibbs sampler allows us
to approximate the marginal posterior of N, namely (N | data), by simulated sampling
from the conditional distributions

(1.4) n(N|p, data) and =(p|N, data),

see Gelfand and Smith (1990) and Casella and George (1991). Starting with an initial
value for N, say N, the Gibbs sampler produces an auxiliary “Gibbs sequence”

(1.5) N(O), p(O), N(l), p(l)’_“’
by alternately sampling from
(1.6) N® ~ (N | p(k'l), data) and p(k) ~ T(p | N®), data).

Under weak conditions, the distribution of N® converges to T(N | data) as k—oo (see



Diebolt and Robert (1990) and Schervish and Carlin (1990)). By simulating a long
sequence, this property can then be exploited to use aspects of the Gibbs sequence (1.5) to

approximate T(N | data). For example, N= Il—(Z%:lN(k) would be a consistent estimator of

E(N | data). An even better estimator of E(N | data), as argued in Gelfand and Smith (1990)
and Liu, Wong and Kong (1991), is the average of the conditional expectations, namely
%Zlé:lE(N | p(k)). Similarly one could estimate the posterior density T(IN | data) by

< Zhm(N | p®).

A major reason for the successful implementation of the Gibbs sampler in these
capture-recapture setups is the simplification provided by the conditioning in (1.4). This is
because the general model (1.1) is multinomial, the analysis of which is well understood
when either the population size N or the probabilities p;; are known. Note that the
traditional Bayesian calculation of integrating out the pyj, which often leads to intractable
expressions, does not exploit this special structure. Our approach of introducing additional
structure which treats the p;; as missing values is fundamentally the idea behind data
augmentation (Tanner and Wong 1987). As will be seen in the sequel, many priors yield
conditional posteriors (1.4) which are well-known and can be efficiently simulated using
standard routines in packages such as IMSL, NAG and S. Furthermore, a large class of
priors leads to conditional posteriors which turn out to be log concave, and so can be
efficiently simulated using the adaptive rejection sampling algorithms of Gilks and Wild
(1991).

The plan of this paper is as follows. In Section 2, we show how Gibbs sampling
leads to manageable Bayes calculations for the special case of (1.1) where p;=p; In
Section 3, we show how these methods may also be applied to natural hierarchical
extensions of these models. In Section 4, the Gibbs sampler is used to compute
hierarchical Bayes estimates for the sunfish data example of Castledine (1981). In Section
5, we show how Gibbs sampling may be applied to various other capture-recapture models
including a hierarchical model for adaptive stratification.



2. Bayes Calculations for the Homogeneous Catch Model

In this section we consider the following multiple recapture experiment which has
been studied extensively in the literature (Darroch 1958, Castledine 1981, and Seber 1982).
From a closed population of unknown size N, I samples of sizes ny,...n; are consecutively
drawn, marked, and returned to the population. The total number of distinct captured
individuals, denoted r, is recorded. Note that r = Zli=1ni — m, where m is the total number
of times a recaptured individual is observed. (This notation will be used throughout the
paper.) If n,,...nare treated as random, the likelihood for this experiment may be
obtained as the special case of (1.1) when the probability of any capture in the ith sample is
P;j = p;» namely

I
N! n; N-ny
@.1) LNp ldata) o 77 1_11 ol (1~ p)
i=

where henceforth p = (py,...,p). An alternative perspective of this situation which has
also been studied treats ny,...n; as fixed so that the model is conditional on these sample

sizes. In this case the likelihood is obtained from the hypergeometric model as

I
N
22) L(N| data) = (r )/ H(

i=1

N
n:

)

When I = 2, both of these likelihoods correspond to the Lincoln-Petersen capture-recapture
model, which dates back to Laplace (1786). Note that for I = 2, the maximum likelihood
estimator of N in both (2.1) and (2.2) is

(2.3) &MLE = \\%J

where | - | denotes the integer part function.

We now proceed to consider the problem of obtaining Bayesian estimates for the



model (2.1) using priors under which N and p are independent, so that
2.4) (N,p) = (N)n(p)
This mild restriction which seems plausible in many applications, was also considered by

Castledine (1981). It is easy to see that (2.4) when combined with (2.1) yields full
conditionals of the form

N! N
2.5) 7N |p, data) o« em o (=1 (1 =) 709
(2.6) n(p l N, data) o< {HLI p{‘i (1- pi)N_n" } 7(p)

Both (2.5) and (2.6) turn out to be especially tractable.

For example, suppose ©(p) = HIi=1 n(p;), where n(p;) = Be(a,b), the Beta
distribution
(2.7) n(py) o< p (1 —p)°7 !

with known hyperparameters a > O and b > 0. Then as shown in Castledine (1981),

Nt [pTON-n+b)
(2.8) (N | data) = m m t(N).
i=1

For this case,

(2.9)

I
n(N+1|data)  (N+1) HN_ni+B (N + 1)

7c(N|data) T (N-1 i=1N+(1+[3 t(N) °’

so that t(N | data) in (2.8) can be computed exactly by recursion whenever (N + 1)/mt(N)



is readily available such as when m(N) =Po(A) or m(N) =constant. This then allows for
at least straightforward numerical approximation of

(2.10) n(p|data) = Yy n(p | N, data) (N | data),

if this quantity is of interest. Although these calculations are inexpensive by today’s
computing standards, it is interesting that Castledine (1981) used a normal approximation
rather than (2.9) to compute n(N | data). Also, note that integrating out p; with respect to
(2.7) for the choice (a,b) = (0,1) yields the hypergeometric model (2.2).

Of course, not all prior formulations allow as clean a solution as (2.9). We now
proceed to show that in those cases where T(N I data) and/or n(p | data) cannot be
conveniently obtained by analytical or numerical methods, Monte Carlo approximation
using the Gibbs sampler may be a promising approach. Starting with an initial value N@

for N, such as ﬁMLE, the Gibbs sampler simulates a Gibbs sequence

2.11) N(O),p(o),N(l),p(l),N(z),p(Z), .

by alternately sampling from

2.12)  N® N |p®D, daa) and p® ~ n(p| N®, data).
p p

It follows from the main results of Schervish and Carlin (1990) that when the support of
n(p) is [0,1], the distribution of p(k) will converge to n(p | data). It then follows from the
duality principle of Diebolt and Robert (1990) that the distribution of N® will converge to
(N | data) . Thus, for such n(p), characteristics of these marginal posteriors of N and p
can be approximated from the sequence (2.11).

In order to use the Gibbs sampler effectively here, it is only necessary to be able to
simulate N and p easily and efficiently from the conditional distributions in (2.5) and (2.6).
Fortunately, these are often standard distributions. For example, in the simulation of N, if
T(N) = Po(A), the Poisson distribution with mean A, then (2.5) can be replaced by



(2.13) (N - r|p, data) = PO(?» <HiI =1(1- pi)>)

the Poisson distribution with mean A (I-LI =1(1 - pi)). Alternatively, one might consider

the improper prior T(N) = 1, in which case
(2.14) n(N| p, data) = NB(r, 1-TI- - Pi)),

the negative binomial distribution with mean r / [1 - iI= 11— pi)i| . Both of these

distributions can be readily simulated.
For the simulation of p, one might consider the general adaptive rejection scheme of
Gilks and Wild (1991) which requires only that w(p | N, data) be log concave in each p;,

(i.e. dlogn(p IN , data)/dp; is nonincreasing for each i). From (2.6), this will be satisfied
whenever 7t(p;) is log concave. One might also consider a prior on a natural transformation
of p, such as the normal prior on the logits o; = log{p;/(1 — p;)}, i = 1,....1, where n(p)

is such that
(2.15) y,...,0 fid ~ N(W,02).

In this case, the full conditional n(p | N, data) is obtained from w(0y,...,04 | N, data)
=[I; (0 I N, data) where

o0l = (o~ W)’720°

(2.16) (o | N, data) o<
(1 + %N

These o can also be simulated using the general adaptive rejection methods

since T(0y IN, data) is log concave in o,



3. Hierarchical Bayes Extensions
In this section, we consider the special case of (2.4) where N and p are a priori
independent, and p;,...,p; are a priori exchangeable. Such priors will then be of the form

G3.1) n(N, p|0)n(8) = { Tk n(ps | 0) o),

where 6 is a hyperparameter governing each prior n(p; | 0). As opposed to the priors in
Section 2, this prior formulation, also considered by Castledine (1981), allows for greater
flexibility in the specification of the prior m(p). Note that (3.1) reduces to the previous
formulation when 6 is known so that (8) is degenerate. Another possible simplification
occurs when p can be eliminated from the above by obtaining 7(6 | N, data) and (N l 0,
data). Our focus here is on those cases where such simplifications are not readily
available.

Combined with the likelihood (2.1), the full conditional posteriors for N, p and O are

N! N
32) =N lp, 0, data) = 2N |p, datw) o« sy (M- a- p)) m(N)
(3.3) n(p|N, 8, data) < [Ti- pf* (1 - p)N ™ n(p; 1 6)
(3.4) w(®| N, p, data) =8| p) = { [T 7(p; )} @)
Note that T(N | p, 6, data) does not depend on 6, and 7(6 | N, p, data) does not depend on

N or the data. This feature of hierarchical models makes them particularly well suited for
simulation methods such as Gibbs sampling, see Morris (1987).

As in Section 2, in those cases where the marginal posteriors of N, p or 6 cannot be
conveniently obtained by analytical or numerical methods, the Gibbs sampler provides an
alternative. Here the Gibbs sequence is of the form

(3.5) 9(0),N(0),p(0),0(1),N(1),p(1),9(2),N(2),p(2),. 3



where except for the preselected initial values 0@ and N©, the sequence is obtained by
alternately simulating from

3.6) 8% ~ (8 |p®D), N® ~x(N|p*D, data), p® ~n(p|N®, 6®), data),

By an argument similar to that used in Section 2, when the support of every m(p; | 0) is
[0,1], the distributions of N(k), p(k) and 0% will converge to T(N | data), n(p | data) and
(0 | data) respectively. Thus for such priors, characteristics of these marginal posteriors
can be approximated from the sequence (3.5).

The Gibbs sampler is especially attractive here because of the ease with which the
three conditionals in (3.6) can be simulated. Noting first that T(N | p, 9, data) in (3.2) is of
the same form as (N | p, data) in (2.5), the same considerations discussed there apply
here. For example, the choices n(N) = Po(A) and ©(N) = constant yield the familiar
conditionals given in (2.13) and (2.14), respectively.

A natural candidate for this approach to let each n(p; | 0) = Be(a,b), the Beta
distribution
(3.7) n(p; | a,b) o« p~ (1 - p)P !

as in (2.7). However, unlike (2.7), © = (a,b) is here treated as unknown. In this case
(3.3) becomes

(3.8) (| N, ab, data) e« [Ty pli* L (1 = p)Vm+P-1,

Each p; is conditionally Beta with parameters (n; + a) and (N — n; + b). Fast methods for
simulating this well-known distribution are readily available.
For the Beta prior (3.7), the conditional distribution (3.4) is of the form

I'(a+b ’ a b
(39  n@blNp, data)“l:f&;(t),):r[ Lip] [T po] nab).

The first three terms on the right hand side of (3.9) are log-concave in a and b. (The log-



concavity of the first term follows from the well-known properties of the digamma function
dlogl’(x)/dx.) Thus, nt(a,b | N, p, data) will be log-concave whenever n(a,b) is log-
concave. In such cases, (a,b) can be simulated from (3.9) sequentially via r(a | b, N, p,
data) and nt(b |a, N, p, data) using the adaptive rejection routine of Gilks and Wild (1991).
For example, a prior such as 1t(a,b) e exp[-c(a+b)] on a,b > 0 for ¢ > 0 will work.
Furthermore, it can be shown that for w(a,b) = constant on a,b > 0, (3.9) will be a proper
posterior when I 2 2. This improper prior might be considered non-informative.

It may be of interest to note that the efficiency of the Gibbs sampler does not appear
to benefit from any analytical or numerical simplification of (3.2)-(3.4). For example,
using (2.8) and (2.9) one could compute T(N | 0, data) and use this to simulate the N®’s in
(3.5). Although this would provide faster convergence of (3.5), it is much more costly in
computation requirements. Furthermore, it does not appear that (6 | N, data) can be
obtained, making simulation of the p(i)’s from (3.3) necessary.

Although Castledine (1981) considered the hierarchical prior (3.1), he avoided the
Beta prior (3.7) calling it intractable, and instead obtained approximations for a hierarchical
generalization of (2.15), the normal on the logits o; = log{p;/(1 —~ pp}, i=1,...,I. He
coupled the model

(3.10) T(y,...,04 | ) = iid ~ N(, 0%)
with
(3.11) n(w) = N(M,to).

(He treated 62, 1N and % as known). Here too, the Gibbs sampler is easily implemented.
As before, the conditional nt(p | N, W, data) is obtained from n(a.;,...,04 | N, u, data) = Hi
(o l N, M, data) where

oun; ~ (04 - W)°120°

3.12) m(ey | N, 1, data) =
' (1 +e%N

is log-concave and so can also be simulated using Gilks and Wild (1991). Again the
conditionals (N | P, 1, data) are easily simulated since p is a function of a,...,04.

10



Finally, the conditional

20y 2
(3.13) (| N, p, data) = n(u | p) =N(T o +(c/n TG’ J

2+ (¥ T+ (0¥

where o = %ZL 104, 1s easily simulated. Generalizing this approach to perform the

calculations for further elaborations of this model such as putting priors on o?, 7 and/or 2
is straightforward.

4. The Sunfish Example

In this section, we briefly illustrate the extension of our techniques to the multiple
recapture setup by application to a real data set. The data set we consider, shown in Table
1, is from Seber (1973, p.143) and was also analyzed by Castledine (1981). It consists of
14 capture events from a population of sunfish. At the ith capture, n, fish are captured, out
of which m; have been previously captured. Thus,r = 21i=1(ni —m;) = 138 is the total
number of different fish captured.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
n; 10 27 17 7 1 5 6 15 9 18 16 5 7 19
m; 0 0 0 0 0 0 2 1 5 5 4 2 2 3

Table 1. Multiple recapture data for a population of sunfish.

For this data, Castledine (1981) considered the homogeneous catch model (2.1) with
I = 14 capture events. Assuming prior independence, i.e. a(N,p) = T(N)(p), he
considered the prior 7(p | a,b) = [Tie; m(p; | a,b) where 7(p; | a,b) is the beta distribution
Be(a,b) in (2.7) and (3.7), and w(N) =< 1/N is the improper prior. In Table 2 below, we
present characteristics of (N | data) for his choices of (a,b). These were computed using

(2.9) rather than with Castledine’s normal approximations. Note that the estimates depend
strongly on the choice of (a,b).

11



a b Meanof N | Std. Dev.of N | 95% Credible Interval
0 1 | 4461 81.4 319-636
2 100 506.9 70.5 389 - 664
3 100 418.8 51.2 332 -532
10 500 547.4 54.9 450 — 665
15 500 408.9 35.8 345 - 485
20 | 1000 556.0 49.7 466 — 661
30 | 1000 406.8 32.3 348 — 475

Table 2. Posterior characteristics of N for fixed a and b.

Following Castledine (1981), we also considered the homogeneous catch model with
the priors nt(p | a,b) = H1i=1 n(p; | a,b) and t(N) < 1/N. Howeyver, rather than focus on
the posterior of N for various values of a and b as Castledine did, we treated a and b as
unknown by using the hierarchical improper prior n(a,b) =1 on a,b > 0. Castledine
(1981) mentioned that he did not pursue this hierarchical setup because of its intractability.
As indicated in Section 3, this setup is tailor-made for calculation via the Gibbs sampler.
This is accomplished by simulating the Gibbs sequence

4.1) a® b@ NO O ,p§0),a(1),b(l),N(l),pﬁl),. . ,pfl),a(z),b(z),N @,...

where we initialized a® = 1, b = 1 and N© = Ny, ; = 460, and then generated

subsequent values from the following conditional distributions:

(4.2) a(p® | N®, a® p® data) = Be(n; + a®, N® — n, + b®),
pl 1 1
'(a+b® a
(4.3) n(a(k+ 1) | b(k), p(k), data) o [%Jl [ iI=1 pgk)] ,

12



I
T@** D+ >
(4.4) n(b®* V[ ak+ D, 50, data)“[(T(b)_) [ i _pi)] ’

.5) r(N&+ D | ), data) = NB(r - 1, 1 - [T 11 = pf9) ).

Samples from the distributions (4.2) and (4.5) were simulated using the IMSL routines
DRNBET and RNNBN respectively. Samples from the distributions (4.3) and (4.4) were
simulated using the adaptive rejection algorithm of Gilks and Wild (1991). Note that in
addition to obtaining an approximation to the posterior of N, the Gibbs sequence
automatically provides approximations to the posteriors of p and (a,b), features which may
be valuable at least in assessing modeling considerations.

Figure 1 below presents histograms of a, b and N from a generated Gibbs sequence
of length 10,000 (after 50 initializing iterations to lessen dependence on starting values).
These histograms may be considered estimates of the marginal posteriors 7t(a | data),

(b | data) and (N | data). In Table 3 below we present estimates of posterior distribution
characteristics for a, b and N which were obtained simply from the sample mean, the
sample standard deviation, and the 2.5% and 97.5% quantiles of the generated Gibbs
sequence. Although it would require substantially more effort, one could obtain even better
estimates of all these characteristics by using conditional quantities such as
—lﬁzléln(N | p(k)) or lKE}((:lE(N | p(k)). For the sake of brevity we have not reported
posterior estimates for (py,...,p14), however the estimates for a and b provide indirect
information about their distribution.

To begin with, note that the posterior means of a and b do not correspond closely to
any of the choices in Table 2. Moreover, it turns out that for the fixed choice (a,b) = (5.83,
233.5), the posterior T(N | data) has mean 463.2, standard deviation 50.25 and 95%
credible interval 376-572. Although 463.2 agrees with our estimate 464.0, our posterior is
much more widely dispersed, a consequence of treating a and b as random. Furthermore,
our approach allows us to obtain information about the appropriate values of a and b, rather
than arbitrarily imposing fixed values. This is important in practice because in such
problems we are not apt to know much about the probabilities p,...,p14-

Comparing our posterior estimates of N with those in Table 2, we see that our

13



estimate 464.0 falls in the middle of the range of the means, our estimate 89.4 is larger than
all of the standard deviations, and our 95% credible interval (329, 679) contains all the
other intervals except for the one corresponding to (a,b) = (0,1). Finally, it is interesting to
note that our estimate is essentially the same as N MLE = 460. This is consistent with the
idea that (a,b) = 1 is a non-informative prior. This contrasts with Castledine (1981) who
suggested that fixing (a,b) = (0,1) corresponds to using a non-informative prior.

1500 2000
1000 1500
1000
S00 500
0.00 19.50 0 400 800
a b
2000
1500
1000
500
240 600 960
N

Figure 1. Histograms based on a Gibbs sequence of length 10,000.

Parameter Mean St. Dev. 95% Credible Interval

a 5.83 3.7 1.77 — 16.42
b 233.5 157. 59.9 - 673.8
N 464.0 89.4 329 - 679

Table 3. Posterior distribution estimates based on a Gibbs sequence of length 10,000.

14



5. Various Related Models

The homogeneous catch model (2.1) provides information about the size of N by
exploiting the assumption of homogeneous capture probabilities across individuals within
capture events. In this section, we consider some examples of alternative capture-
recapture models which are based on imposing different homogeneity restrictions on the
general model (1.1). For each of these models, we easily obtain the full conditional
distributions which provide the basis for Bayesian calculations via the Gibbs sampler.

5.1 The uniform model
Perhaps the simplest model is obtained by assuming complete homogeneity which
restricts p;; = p in (1.1), so that all capture probabilities are identical across individuals and

samples. The likelihood for this model is

!

N N, q _ IN-1,
(5.1) L(N, p|data) = 57 9™ (1-P)

where n_ = Zli=1ni is the total number of captures. Combining (5.1) with priors of the
form m(N,p) = t(N)7n(p) as in (2.4) yields full conditionals of the form

wop AP

(5.2) (N | p, data) o

(5.3) n(p | N, data) o {p™* (1 - p)™N "™} n(p).

Comparing these with (2.5) and (2.6), it is easy to see how the methods of Section 2 may
be applied here.

5.2 The behavioral model

An important variation of the capture recapture setup occurs when the probability of
recapture is different from the probability of initial capture. This variation is obtained as a
special case of the general model (1.1) when the probabilities p;; are allowed to depend on

the capture variables 8;; where i’ <i. For example, a special case would have p;; = p; if

18



individual j has not been captured before time i, and p;; = p, if individual j has been

captured at least once before time 1. In the simple case of I=2 capture events, the
likelihood for this model becomes

N' -n
(5.4) L(N,p | data) = Nopr AR -p)™ - () p N

Combining (5.4) with priors of the form n(N,p) = *(N)®(p) as in (2.4) yields full
conditionals of the form

(5.5) (N | p, data) YN T(N)

N!
N=D1 (I-p;
(5.6) (P | N, data) o pf pJ (1 - p)™ "™ (1 - p)™ "™ n(p).

Comparing these with (2.5) and (2.6), it is easy to see how the methods of Sections 2 and
3 may be applied to this case.

5.3 Stratification models

When the target population can be partitioned into identifiable strata such as
malelfemale, young/adult/senior, etc...., it is sometimes more reasonable to assume
homogeneity of catch probabilities only within strata. For example, suppose the population
was partitioned into S strata such that P;j = P, if individual i belonged to strata s, where s =
1,...,S. This setup assumes homogeneous catch probabilities within strata across sample
events. The likelihood is then obtained as the product of likelihoods (5.1) of the uniform
model

N,!
(7 LN, p |data) < H (N, - 1)! ps ™ (1— Ps) 7T

where Nj is the (unknown) size of the sth stratum, n_ is the total number of captures from
the sth stratum, and r; is the number of distinct individuals captured from the sth stratum.

The unknown overall population size is here given by N = 2§=1 N,. More sophisticated

16



stratification models would be obtained by varying the capture probabilities across samples.
A straightforward approach to analyzing (5.7) would be to treat each of the S

problems as separate uniform models of the form (5.1). Using one of the approaches of

Section 2, N could then be estimated by the sum of the estimates of Nj,...,Ng. A more

comprehensive approach would be to use a hierarchical extension similar to those
considered in Section 3. For example, suppose it seemed likely that p;,...,ps were similar.

This could be modeled with an exchangeable prior of the form

(5.8) =N, p|0) x(®) = {TIS_; =Nm(p, | )},
where
(5.9 (N,) = Po(Ay), T(p | 0) =Be(a,b), w(0®) =mn(a,b) = constant.

It can be shown that when s > 2, this yields a proper posterior. The full conditionals for

this prior are
(5.10) (N, — 1, | p, a,b, data) e« Po(d, (1 - p)'™N*),
(5.11) n(p, | N, a,b, data) e Be(n,, +a, IN,—n, +b),
| T(a+b) T [rrs s >
(5.12)  mablN,p, data) = [r(a)r(b)] (M50 p,] (TS0

Both (5.10) and (5.11) can be efficiently simulated by standard methods, whereas (5.12),
by virtue of its log concavity, can be efficiently simulated using Gilks and Wild (1991).
Thus here too, the Gibbs sampler can here be usefully employed to obtain marginal
posterior distributions.
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6. Conclusion

We have shown how Gibbs sampling can dramatically facilitate Bayesian analyses
of a large variety of capture-recapture models, thus allowing for a much wider choice of the
prior distribution. This can be especially valuable when only limited prior information is
available. The Gibbs sampler enabled us to use a noninformative hierarchical model to
analyze a real example, an analysis that was otherwise intractable. Our analysis led to
different results than Castledine (1981), who was forced to choose more limited priors.
The reason for the success of the Gibbs sampler in the capture-recapture framework, is the
reduction to manageable conditional posterior distributions through data augmentation. This
reduction is obtained by alternately treating the population size N and the capture
probabilities p;; as missing data.

Obviously, our coverage of capture-recapture models is far from being exhaustive
and there are many variants where Gibbs sampling could actually be of use. For instance,
a missing data representation would simplify the treatment of open population problems
where deaths and immigrations can occur, as is often the case in practice. Such
representations would also be appropriate for tag-loss extensions where there is a possible
misclassification of recaptured objects (see Seber and Felton (1976)).
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